1
|
Dong Y, Toume K, Zhu S, Shi Y, Tamura T, Yoshimatsu K, Komatsu K. Metabolomics analysis of peony root using NMR spectroscopy and impact of the preprocessing method for NMR data in multivariate analysis. J Nat Med 2023; 77:792-816. [PMID: 37432536 DOI: 10.1007/s11418-023-01721-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/06/2023] [Indexed: 07/12/2023]
Abstract
Peony root is an important herbal drug used as an antispasmodic analgesic. To evaluate peony roots with different botanical origins, producing areas, and post-harvest processing, 1H NMR-based metabolomics analysis was employed. Five types of monoterpenoids, including albiflorin (4), paeoniflorin (6), and sulfonated paeoniflorin (25), and six other compounds, including 1,2,3,4,6-penta-O-galloyl-β-D-glucose (18), benzoic acid (21), gallic acid (22), and sucrose (26) were detected in the extracts of peony root samples. Among them, compounds 4, 6, 18, and total monoterpenoids including 21 were quantified by quantitative 1H NMR (qHNMR). Compound 25 was detected in 1H NMR spectra of sulfur-fumigated white peony root (WPR) extracts indicating that 1H NMR was a fast and effective method for identifying sulfur-fumigated WPR. The content of 26, the main factor affecting extract yield, increased significantly in peony root after low-temperature storage for one month, whereas that in WPR did not increase due to the boiling treatment after harvesting. We investigated the impact of preprocessing methods to such analysis for NMR data from commercial samples, resulting that the data matrix transformed from qHNMR spectra and normalized to internal standard were optimum for multivariate analysis. The multivariate analysis demonstrated that among commercial samples derived from P. lactiflora, peony root samples in Japanese market (PR) had high contents of 18 and 22, and red peony root (RPR) samples had high content of monoterpenoids represented by 6; and among RPR samples, those derived from P. veitchii showed higher contents of 18 and 22 than those from P. lactiflora. The 1H NMR-based metabolomics method coupled with qHNMR was useful for evaluation of peony root and would be applicable for other crude drugs.
Collapse
Affiliation(s)
- Yuzhuo Dong
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan
| | - Kazufumi Toume
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan.
| | - Shu Zhu
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan
| | - Yanhong Shi
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan
| | - Takayuki Tamura
- Center for Medicinal Plant Resources, Toyama Prefectural Institute for Pharmaceutical Research, 2732 Hirono, Kamiichi-Machi, Nakaniikawa-gun, Toyama, 930-0412, Japan
| | - Kayo Yoshimatsu
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Katsuko Komatsu
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
2
|
Hawashin A, Brakmann IC, Tian Y, Gründer S, Ortega-Ramírez AM. Modulation of Acid-Sensing Ion Channels by Tannic Acid and Green Tea via a Membrane-Mediated Mechanism. ACS Chem Neurosci 2023. [PMID: 37379568 DOI: 10.1021/acschemneuro.3c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated ion channels that contribute to pain perception and neurotransmission. Being involved in sensing inflammation and ischemia, ASIC1a and ASIC3 are promising drug targets. Polyphenol tannic acid (TA) as well as green tea can interact with a variety of ion channels, but their effect on ASICs remains unknown. In addition, it is unknown whether they interact with ion channels via a common mechanism. Here, we show that TA is a potent modulator of ASICs. TA inhibited the transient current of rat ASIC3 expressed in HEK cells with an apparent IC50 of 2.2 ± 0.6 μM; it potentiated the sustained current and induced a slowly declining decay current. In addition, it produced an acidic shift of the pH-dependent activation of ASIC3 and inhibited the window current at pH 7.0. Moreover, TA inhibited the transient current of ASIC1a, ASIC1b, and ASIC2a. Pentagalloylglucose that is chemically identical to the central part of TA and a green tea extract both had effects on ASIC3 comparable to TA. TA and green tea inhibited inward currents generated by gramicidin channels, indicating interaction with the membrane. These results show that TA, pentagalloylglucose, and green tea modulate ASICs and identify alteration of the membrane as the potential common mechanism of this modulation. These properties will limit clinical application of these molecules.
Collapse
Affiliation(s)
- Ammar Hawashin
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, Aachen D-52074, Germany
| | - Ilka C Brakmann
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, Aachen D-52074, Germany
| | - Yuemin Tian
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, Aachen D-52074, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, Aachen D-52074, Germany
| | | |
Collapse
|
3
|
Serafim MS, Rodrigues DM, Ribeiro VP, Ccana-Ccapatinta GV, Groppo M, Martins CHG, Ambrósio SR, Bastos ANDJK. Eucalyptus botryoides' resin and its new 2- O-galloyl-1,6- O-di- trans- p-coumaroyl- β-D-glycopyranoside compound display good antimicrobial activity. Nat Prod Res 2023; 37:618-627. [PMID: 35514129 DOI: 10.1080/14786419.2022.2065486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fungal resistance to different therapeutic drugs has become a growing challenge. This crucial health problem requires new effective drug alternatives. Herein, we report the study of Eucalyptus botryoides' resin used in folk medicine as antimicrobial. Thus, E. botryoides' resin was extracted with aqueous-ethanol and fractionated using Sephadex chromatography, furnishing its major compounds. The crude extracts and the isolated compounds were evaluated for their in vitro antimicrobial activity against bacteria and yeasts. The crude extract displayed MIC of 25 μg/mL against S. salivarius, and for C. albicans, C. glabrata, and C. tropicalis the MIC were between 2.9 and 5.9 μg/mL. The 7-O-Methyl-aromadendrin was the most effective against C. glabrata and C. krusei (MIC = 1.6 μg/mL). 2-O-Galloyl-1,6-O-di-trans-p-coumaroyl-β-D-glycopyranoside, first time reported, showed MIC of 3.1 μg/mL against C. glabrata and C. krusei. Overall, this work gave promising results, indicating that Eucalyptus botryoides' resin and its compounds have the potential for developing anti-yeast products.
Collapse
Affiliation(s)
- Marcela Sayegh Serafim
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Débora Munhoz Rodrigues
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Milton Groppo
- Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Sérgio Ricardo Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, SP, Brazil
| | - A N D Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Hydrolysable tannins change physicochemical parameters of lipid nano-vesicles and reduce DPPH radical - Experimental studies and quantum chemical analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183778. [PMID: 34537215 DOI: 10.1016/j.bbamem.2021.183778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/28/2021] [Accepted: 09/12/2021] [Indexed: 11/23/2022]
Abstract
Tannins belong to plant secondary metabolites exhibiting a wide range of biological activity. One of the important aspects of the realization of the biological effects of tannins is the interaction with lipids of cell membranes. In this work we studied the interaction of two hydrolysable tannins: 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG) and 1,2-di-O-galloyl-4,6-valoneoyl-β-d-glucose (T1) which had the same number of both aromatic rings (5) and hydroxyl groups (15) but differing in flexibility due to the presence of valoneoyl group in the T1 molecule with DMPC (dimyristoylphosphatidylcholine) lipid nano-vesicles (liposomes). Tannins-liposomes interactions were investigated using fluorescence spectroscopy, differential scanning calorimetry, laser Doppler velocimetry, dynamic light scattering and Fourier Transform Infra-Red spectroscopy. It was shown that more flexible PGG molecules stronger decreased the microviscosity of the liposomal membranes and increased the values of negative zeta potential in comparison with the more rigid T1. Both compounds diminished the phase transition temperature of DMPC membranes, interacted with liposomes via PO groups of head of phospholipids and their hydrophobic regions. These tannins neutralized DPPH free radicals with the stoichiometry of the reaction equal 1:1. The effects of the studied compounds on liposomes were discussed in relation to tannin quantum chemical parameters calculated by molecular modeling.
Collapse
|
5
|
High Capability of Pentagalloylglucose (PGG) in Inhibiting Multiple Types of Membrane Ionic Currents. Int J Mol Sci 2020; 21:ijms21249369. [PMID: 33316951 PMCID: PMC7763472 DOI: 10.3390/ijms21249369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
Pentagalloyglucose (PGG, penta-O-galloyl-β-d-glucose; 1,2,3,4,6-pentagalloyl glucose), a pentagallic acid ester of glucose, is recognized to possess anti-bacterial, anti-oxidative and anti-neoplastic activities. However, to what extent PGG or other polyphenolic compounds can perturb the magnitude and/or gating of different types of plasmalemmal ionic currents remains largely uncertain. In pituitary tumor (GH3) cells, we found out that PGG was effective at suppressing the density of delayed-rectifier K+ current (IK(DR)) concentration-dependently. The addition of PGG could suppress the density of proton-activated Cl− current (IPAC) observed in GH3 cells. The IC50 value required for the inhibitory action of PGG on IK(DR) or IPAC observed in GH3 cells was estimated to be 3.6 or 12.2 μM, respectively, while PGG (10 μM) mildly inhibited the density of the erg-mediated K+ current or voltage-gated Na+ current. The presence of neither chlorotoxin, hesperetin, kaempferol, morin nor iberiotoxin had any effects on IPAC density, whereas hydroxychloroquine or 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5yl)oxy] butanoic acid suppressed current density effectively. The application of PGG also led to a decrease in the area of voltage-dependent hysteresis of IPAC elicited by long-lasting isosceles-triangular ramp voltage command, suggesting that hysteretic strength was lessened in its presence. In human cardiac myocytes, the exposure to PGG also resulted in a reduction of ramp-induced IK(DR) density. Taken literally, PGG-perturbed adjustment of ionic currents could be direct and appears to be independent of its anti-oxidative property.
Collapse
|
6
|
Inhibition of interaction between Staphylococcus aureus α-hemolysin and erythrocytes membrane by hydrolysable tannins: structure-related activity study. Sci Rep 2020; 10:11168. [PMID: 32636484 PMCID: PMC7341856 DOI: 10.1038/s41598-020-68030-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/11/2020] [Indexed: 01/17/2023] Open
Abstract
The objective of the study was a comparative analysis of the antihemolytic activity against two Staphylococcus aureus strains (8325-4 and NCTC 5655) as well as α-hemolysin and of the membrane modifying action of four hydrolysable tannins with different molecular mass and flexibility: 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-d-glucose (T1), 1,2,3,4,5-penta-O-galloyl-β-d-glucose (T2), 3-O-galloyl-1,2-valoneoyl-β-d-glucose (T3) and 1,2-di-O-galloyl-4,6-valoneoyl-β-d-glucose (T4). We showed that all the compounds studied manifested antihemolytic effects in the range of 5–50 µM concentrations. However, the degree of the reduction of hemolysis by the investigated tannins was not uniform. A valoneoyl group—containing compounds (T3 and T4) were less active. Inhibition of the hemolysis induced by α-hemolysin was also noticed on preincubated with the tannins and subsequently washed erythrocytes. In this case the efficiency again depended on the tannin structure and could be represented by the following order: T1 > T2 > T4 > T3. We also found a relationship between the degree of antihemolytic activity of the tannins studied and their capacity to increase the ordering parameter of the erythrocyte membrane outer layer and to change zeta potential. Overall, our study showed a potential of the T1 and T2 tannins as anti-virulence agents. The results of this study using tannins with different combinations of molecular mass and flexibility shed additional light on the role of tannin structure in activity manifestation.
Collapse
|
7
|
Wang PY, Ji QT, Xiang HM, Zhang TH, Zeng D, Zhou X, Chang F, Liu LW, Li Z, Yang S. Assembling Anthracene-Tailored Amphiphiles: Charge-Transfer Interactions Directed Hierarchical Nanofibers with Ameliorative Antibacterial Activity toward Plant Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5579-5585. [PMID: 32348138 DOI: 10.1021/acs.jafc.0c01991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effective prevention of plant bacterial infections has been complicated and challenged by unceasing bacterial resistance. The application of traditional bactericides has achieved certain effects to alleviate this situation. However, these chemicals also have limitations, such as short half-life in reality, limited bioavailability, and pollutant emission from their formulations. These disadvantages drive the demand for promoting antibacterial therapeutics. Self-assembled nanostructures based on amphiphiles have inherently versatile characteristics, including high durability, good bioavailability, sustained release, and regenerability. As such, they have garnered wide interest because of these advantages that may serve as a feasible platform for the management of pathogenic infections. Flexible tuning of the shapes of these nanostructures by manipulating noncovalent driving forces consequently results in different levels of antibacterial activity. Herein, an antibacterial amphiphile, 1-[11-(9-anthracenylmethoxy)-11-oxoundecyl]pyridinium bromide (AP), was assembled into microfilms in screening medium. Hierarchical nanofibers were constructed by introducing an electron-deficient trinitrofluorenone (TNF) molecule into the assembling system directed by charge-transfer (CT) interactions to further investigate the contribution of aggregate shape to bioactivity. Biological evaluation revealed that antibacterial efficacy improved after CT complex formation. This study provides an innovative platform for developing versatile assembled structures for restraining the propagation of plant pathogens and an improved understanding of the actual interplay between the self-assembly and antibacterial ability of bactericides at the supramolecular level.
Collapse
Affiliation(s)
- Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qing-Tian Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong-Mei Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Dan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Fei Chang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhong Li
- College of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- College of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Reis A, Soares S, Sousa CF, Dias R, Gameiro P, Soares S, de Freitas V. Interaction of polyphenols with model membranes: Putative implications to mouthfeel perception. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183133. [PMID: 31785236 DOI: 10.1016/j.bbamem.2019.183133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Food polyphenols in fruits juices, tea, coffee, wine and beer confer sensory properties such as colour, astringency and bitterness. The development of functional healthy drinks without the unpleasant sensory feeling is boosting research for a clearer understanding on the interactions of polyphenols within the oral mucosa. In this study we investigated the interaction of astringent polyphenols, namely ECG, EGCG, procyanidin B4 and PGG, with lipids in model membranes by spectroscopic techniques. The membrane model was built varying the cholesterol content to mimic mouth regions and experiments were conducted at pH 5 to mimic the pH drop at the moment of beverage (e.g. green tea, red wine) intake. Fluorescence quenching results conducted on LUVs with cholesterol molar fractions ranging between 0.34 < χchol < 0.74 and similar size distributions (122.9 ± 3.7 nm) showed that interaction of polyphenols is structure- and concentration-dependent. Also, the decrease of partition constants (Kp) with increasing cholesterol content (χchol) suggest that the affinity of polyphenols is weaker in cholesterol-rich liposomes. STD results revealed that the interaction of EGCG and PGG with membrane lipids involved mainly galloyl residues. Overall, spectroscopic data show that polyphenols interact to higher extent with more polar regions found in buccal, flour of the mouth and gingiva regions than with more hydrophobic regions located in the palate and tongue supporting that lipid microenvironments play a role in oral sensory perception.
Collapse
Affiliation(s)
- Ana Reis
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Sónia Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Carla F Sousa
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Ricardo Dias
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Paula Gameiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Susana Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
9
|
Penta-O-galloyl-β-d-glucose, a hydrolysable tannin from Radix Paeoniae Alba, inhibits adipogenesis and TNF-α-mediated inflammation in 3T3-L1 cells. Chem Biol Interact 2019; 302:156-163. [PMID: 30721698 DOI: 10.1016/j.cbi.2019.01.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
Abstract
Penta-O-galloyl-β-d-glucose (PGG) was purified and identified from Radix Paeoniae Alba by HSCCC and HPLC/ESI-MS, and its inhibitory effects on adipogenesis and TNF-α-induced inflammation were assessed in 3T3-L1 cell line. The results showed that PGG dose-dependently reduced intracellular lipids accumulation, and this involved decrease the expression levels of major adipogenic markers, PPARγ, C/EBP α, through MAPKs inhibition. This was accompanied by a reduction of lipogenic genes, ACC, FAS, and SCD-1, involved in fatty acid synthesis. Furthermore, PGG also inhibited TNF-α-induced expression of inflammatory cytokines including IL-6 and MCP-1 in the matured 3T3-L1 adipocytes. The inhibitions were likely mediated by blocking the MAPKs and NF-κB activation. These findings highlighted that PGG could serve as a potent therapeutic agent for controlling obesity and obesity-related chronic inflammation.
Collapse
|
10
|
Effects of Toona sinensis Leaf Extract and Its Chemical Constituents on Xanthine Oxidase Activity and Serum Uric Acid Levels in Potassium Oxonate-Induced Hyperuricemic Rats. Molecules 2018; 23:molecules23123254. [PMID: 30544886 PMCID: PMC6321014 DOI: 10.3390/molecules23123254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 01/10/2023] Open
Abstract
Toona sinensis leaf is used as a seasonal vegetable in Korea. A 70% ethanol extract of these leaves exhibited potent xanthine oxidase (XO) inhibition, with a 50% inhibitory concentration (IC50) of 78.4 µM. To investigate the compounds responsible for this effect, bioassay-guided purification led to the isolation of five constituents, identified as quercetin-3-O-rutinoside, quercetin-3-O-β-d-glucopyranoside, 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose (compound 3), quercetin-3-O-α-l-rhamnopyranoside, and kaempferol-3-O-α-l-rhamnopyranoside. Compound 3 showed the most potent inhibition of XO, with an IC50 of 2.8 µM. This was similar to that of allopurinol (IC50 = 2.3 µM), which is used clinically to treat hyperuricemia. Kinetic analyses found that compound 3 was a reversible noncompetitive XO inhibitor. In vivo, the T. sinensis leaf extract (300 mg/kg), or compound 3 (40 mg/kg), significantly decreased serum uric acid levels in rats with potassium oxonate-induced hyperuricemia. Furthermore, ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis identified a high level of compound 3 in the leaf extract. These findings suggest that T. sinensis leaves could be developed to produce nutraceutical preparations.
Collapse
|
11
|
Torres-León C, Ventura-Sobrevilla J, Serna-Cock L, Ascacio-Valdés JA, Contreras-Esquivel J, Aguilar CN. Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
12
|
Shin H, Park Y, Choi JH, Jeon YH, Byun Y, Sung SH, Lee KY. Structure elucidation of a new triterpene from Rhus trichocarpa roots. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:763-766. [PMID: 28042674 DOI: 10.1002/mrc.4574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Hyeji Shin
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Korea
| | - Yeeun Park
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Korea
| | - Ji Hoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Korea
| |
Collapse
|
13
|
Wang P, Rong ZM, Ma CX, Zhao XF, Xiao CN, Zheng XH. Distribution of Metabolites in Root Barks of Seven Tree Peony Cultivars for Quality Assessment Using NMR-based Metabolomics. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60073-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Olchowik-Grabarek E, Mavlyanov S, Abdullajanova N, Gieniusz R, Zamaraeva M. Specificity of Hydrolysable Tannins from Rhus typhina L. to Oxidants in Cell and Cell-Free Models. Appl Biochem Biotechnol 2016; 181:495-510. [PMID: 27600811 DOI: 10.1007/s12010-016-2226-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/26/2016] [Indexed: 01/08/2023]
Abstract
Polyphenols of plant origin with wide range of antiradical activity can prevent diseases caused by oxidative and inflammatory processes. In this study, we show using ESR method that the purified water-soluble extract from leaves of Rhus typhina L. containing hydrolysable tannins and its main component, 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose (C55H40O34), displayed a strong antiradical activity against the synthetic 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) in homogenous (solution) and heterogeneous systems (suspension of DPPH containing liposomes) in the range of 1-10 μg/ml. The C55H40O34 and extract at 1-30 μg/ml also efficiently, but to a various degree, decreased reactive oxygen and nitrogen species (RONS) formation induced in erythrocytes by oxidants, following the sequence: tert-butyl hydroperoxide (tBuOOH) > peroxynitrite (ONOO-) >hypochlorous acid (HClO). The explanation of these differences should be seen in the specificity of scavenging different RONS types. These relationships can be represented for C55H40O34 and the extract by the following order of selectivity: O.-2 ≥ NO· > ·OH > 1O2. The extract exerted a more pronounced antiradical effect in reaction with DPPH and ROS in all models of oxidative stress in erythrocytes in comparison with C55H40O34. The redox processes between the extract components and their specificity in relation to RONS can underlie this effect.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Department of Biophysics, University of Bialystok, K. Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Saidmukhtar Mavlyanov
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Abdullaev 83, Tashkent, Uzbekistan, 100125
| | - Nodira Abdullajanova
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Abdullaev 83, Tashkent, Uzbekistan, 100125
| | - Ryszard Gieniusz
- Laboratory of Magnetism, University of Bialystok, K. Ciolkowskiego 1L, 15-245, Bialystok, Poland
| | - Maria Zamaraeva
- Department of Biophysics, University of Bialystok, K. Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| |
Collapse
|
15
|
Ma H, Liu W, Frost L, Wang L, Kong L, Dain JA, Seeram NP. The hydrolyzable gallotannin, penta-O-galloyl-β-D-glucopyranoside, inhibits the formation of advanced glycation endproducts by protecting protein structure. MOLECULAR BIOSYSTEMS 2016; 11:1338-47. [PMID: 25789915 DOI: 10.1039/c4mb00722k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycation is a spontaneous process initiated by a condensation reaction between reducing sugars and proteins that leads to the formation of advanced glycation endproducts (AGEs). The in vivo accumulation of AGEs is associated with several chronic human diseases and, thus, the search for AGE inhibitors is of great research interest. Hydrolyzable tannins (gallotannins and ellagitannins) are bioactive plant polyphenols which show promise as natural inhibitors of glycation and AGE formation. Notably, the gallotannin, 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG), is a key intermediate involved in the biosynthesis of hydrolyzable tannins in plants. Herein, we investigated the effects of PGG on the individual stages of protein glycation and on protein structure (using bovine serum albumin; BSA). MALDI-TOF data demonstrated that PGG inhibited early glycation by 75% while the synthetic AGE inhibitor, aminoguanidine (AG), was not active (both at 50 μM). In addition, PGG reduced the formation of middle and late stage AGEs by 90.1 and 60.5%, respectively, which was superior to the positive control, AG. While glycation induced conformational changes in BSA from α-helix to β-sheets (from circular dichroism and congo red binding studies), PGG (at 50 μM) reduced this transition by 50%. Moreover, BSA treated with PGG was more stable in its structure and retained its biophysical properties (based on zeta potential and electrophoretic mobility measurements). The interaction between PGG and BSA was further supported by molecular docking studies. Overall, the current study adds to the growing body of data supporting the anti-AGE effects of hydrolyzable tannins, a ubiquitous class of bioactive plant polyphenols.
Collapse
Affiliation(s)
- Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Sekowski S, Ionov M, Dubis A, Mavlyanov S, Bryszewska M, Zamaraeva M. Biomolecular Interactions of Tannin Isolated from Oenothera gigas with Liposomes. J Membr Biol 2015; 249:171-9. [PMID: 26621636 DOI: 10.1007/s00232-015-9858-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/18/2015] [Indexed: 11/30/2022]
Abstract
We have examined the interaction between hydrolysable tannin 1-O-galloyl-4,6-hexahydroxydiphenoyl-β-D-glucose (OGβDG) with neutral liposomes as a model of cell membranes composed of three lipids: lecithin, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at different mass ratios. OGβDG in the concentration range 0.5-15 µg/ml (0.4-12 µM) strongly interacts with liposomal membranes by changing their structure, surface charge and fluidity. Used OGβDG molecules decrease and increase the rigidity of hydrophilic surface and hydrophobic parts of liposomes, respectively. At higher concentrations of tannin (>15 µM), liposomes are aggregated. Fourier Transform Infra-Red (FTIR) analysis showed that mainly -OH groups from OGβDG and also PO(2-) groups from phospholipids are responsible for the interaction. Obtained data indicate the importance of membrane lipid composition in interactions between tannins and cells.
Collapse
Affiliation(s)
- Szymon Sekowski
- Department of Biophysics, Laboratory of Molecular Biophysics, Faculty of Biology and Chemistry, University of Bialystok, 15-950, Bialystok, Poland.
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Alina Dubis
- Department of Natural Products Chemistry, Faculty of Biology and Chemistry, University of Bialystok, 15-950, Bialystok, Poland.,Bio-Nano-Techno Center, Faculty of Biology and Chemistry, University of Bialystok, 15-950, Bialystok, Poland
| | - Saidmukhtar Mavlyanov
- Institute of Bioorganic Chemistry, Academy of Science of Republic of Uzbekistan, Tashkent-143, Uzbekistan
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Maria Zamaraeva
- Department of Biophysics, Laboratory of Molecular Biophysics, Faculty of Biology and Chemistry, University of Bialystok, 15-950, Bialystok, Poland
| |
Collapse
|
17
|
Cryan LM, Bazinet L, Habeshian KA, Cao S, Clardy J, Christensen KA, Rogers MS. 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose inhibits angiogenesis via inhibition of capillary morphogenesis gene 2. J Med Chem 2013; 56:1940-5. [PMID: 23394144 PMCID: PMC3600088 DOI: 10.1021/jm301558t] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Capillary morphogenesis gene 2 (CMG2) is a transmembrane extracellular matrix binding protein that is also an anthrax toxin receptor. We have shown that high-affinity CMG2 binders can inhibit angiogenesis and tumor growth. We recently described a high-throughput FRET assay to identify CMG2 inhibitors. We now report the serendipitous discovery that PGG (1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose) is a CMG2 inhibitor with antiangiogenic activity. PGG is a gallotannin produced by a variety of medicinal plants that exhibits a wide variety of antitumor and other activities. We find that PGG inhibits CMG2 with a submicromolar IC50 and it also inhibits the migration of human dermal microvascular endothelial cells at similar concentrations in vitro. Finally, oral or intraperitoneal administration of PGG inhibits angiogenesis in the mouse corneal micropocket assay in vivo. Together, these results suggest that a portion of the in vivo antitumor activity of PGG may be the result of antiangiogenic activity mediated by inhibition of CMG2.
Collapse
Affiliation(s)
- Lorna M. Cryan
- Vascular Biology Program, Department of Surgery, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Lauren Bazinet
- Vascular Biology Program, Department of Surgery, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Kaiane A. Habeshian
- Vascular Biology Program, Department of Surgery, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Shugeng Cao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | | | - Michael S. Rogers
- Vascular Biology Program, Department of Surgery, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
18
|
Affiliation(s)
- Jingjing Hu
- CAS Key Laboratory of Soft Matter
Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People’s
Republic of China
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter
Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People’s
Republic of China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory
Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, People’s Republic of China
- Shanghai
Key Laboratory of Magnetic
Resonance, Department of Physics, East China Normal University, Shanghai, 200062, P.R.China
| |
Collapse
|
19
|
Antioxidant activities and phytochemical study of leaf extracts from 18 indigenous tree species in taiwan. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:215959. [PMID: 22454657 PMCID: PMC3291425 DOI: 10.1155/2012/215959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/25/2011] [Indexed: 01/07/2023]
Abstract
The objective of this study is to assess antioxidant activities of methanolic extracts from the leaves of 18 indigenous tree species in Taiwan. Results revealed that, among 18 species, Acer oliverianum exhibited the best free radical scavenging activities. The IC50 values were 5.8 and 11.8 μg/mL on DPPH radical and superoxide radical scavenging activities, respectively. In addition, A. oliverianum also exhibited the strongest ferrous ion chelating activity. Based on a bioactivity-guided isolation principle, the resulting methanolic crude extracts of A. oliverianum leaves were fractionated to yield soluble fractions of hexane, EtOAc, BuOH, and water. Of these, the EtOAc fraction had the best antioxidant activity. Furthermore, 8 specific phytochemicals were isolated and identified from the EtOAc fraction. Among them, 1,2,3,4,6-O-penta-galloyl-β-D-glucopyranose had the best free radical scavenging activity. These results demonstrate that methanolic extracts and their derived phytochemicals of A. oliverianum leaves have excellent antioxidant activities and thus they have great potential as sources for natural health products.
Collapse
|