1
|
Berzina MY, Eletskaya BZ, Kayushin AL, Dorofeeva EV, Lutonina OI, Fateev IV, Zhavoronkova ON, Bashorin AR, Arnautova AO, Smirnova OS, Antonov KV, Paramonov AS, Dubinnyi MA, Esipov RS, Miroshnikov AI, Konstantinova ID. Intramolecular Hydrogen Bonding in N 6-Substituted 2-Chloroadenosines: Evidence from NMR Spectroscopy. Int J Mol Sci 2023; 24:ijms24119697. [PMID: 37298648 DOI: 10.3390/ijms24119697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Two forms were found in the NMR spectra of N6-substituted 2-chloroadenosines. The proportion of the mini-form was 11-32% of the main form. It was characterized by a separate set of signals in COSY, 15N-HMBC and other NMR spectra. We assumed that the mini-form arises due to the formation of an intramolecular hydrogen bond between the N7 atom of purine and the N6-CH proton of the substituent. The 1H,15N-HMBC spectrum confirmed the presence of a hydrogen bond in the mini-form of the nucleoside and its absence in the main form. Compounds incapable of forming such a hydrogen bond were synthesized. In these compounds, either the N7 atom of the purine or the N6-CH proton of the substituent was absent. The mini-form was not found in the NMR spectra of these nucleosides, confirming the importance of the intramolecular hydrogen bond in its formation.
Collapse
Affiliation(s)
- Maria Ya Berzina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Barbara Z Eletskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Alexei L Kayushin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Elena V Dorofeeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Olga I Lutonina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Ilya V Fateev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Olga N Zhavoronkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Arthur R Bashorin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Alexandra O Arnautova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Olga S Smirnova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Konstantin V Antonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Maxim A Dubinnyi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, 141700 Moscow, Russia
| | - Roman S Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Anatoly I Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Irina D Konstantinova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| |
Collapse
|
2
|
Michalik D, Jiao H, Langer P. NMR spectroscopic and theoretical study on the isomerism of dimethyl benzodiazepine(diylidene)diacetates. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:845-856. [PMID: 35373394 DOI: 10.1002/mrc.5272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The isomerism of dimethyl 2,2'-(7,8-dichloro-1H-benzo[b][1,4]diazepine-2,4-(3H,5H)diylidene)diacetate (1a) and dimethyl 2,2'-(7,8-dichloro-3-methyl-1H-benzo[b][1,4]diazepine-2,4-(3H,5H)diylidene)diacetate (1b) was investigated by 1 H, 13 C and 15 N nuclear magnetic resonance (NMR) spectroscopy. In CDCl3 solution, inversion of the diazepine ring was observed, whereas in (D6 )DMSO and (D7 )DMF solution, besides the ring inversion, a partial cleavage of one chelate ring appeared connected with (E/Z) isomerization about one of the exocyclic C=C bonds. Gibbs free energies (ΔG) and free activation energies (ΔG≠ ) were calculated based on B3PW91-SCRF/ZVP DFT computations. Agreement between NMR data and density functional theory (DFT) computations was found.
Collapse
Affiliation(s)
- Dirk Michalik
- Leibniz-Institut für Katalyse (LIKAT), Rostock, Germany
- Institut für Chemie, Universität Rostock, Rostock, Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse (LIKAT), Rostock, Germany
| | - Peter Langer
- Leibniz-Institut für Katalyse (LIKAT), Rostock, Germany
- Institut für Chemie, Universität Rostock, Rostock, Germany
| |
Collapse
|
3
|
Hanft A, Rottschäfer D, Wieprecht N, Geist F, Radacki K, Lichtenberg C. Aminotroponiminates: Impact of the NO 2 Functional Group on Coordination, Isomerisation, and Backbone Substitution. Chemistry 2021; 27:14250-14262. [PMID: 34314083 PMCID: PMC8597084 DOI: 10.1002/chem.202102324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 01/17/2023]
Abstract
Aminotroponiminate (ATI) ligands are a versatile class of redox-active and potentially cooperative ligands with a rich coordination chemistry that have consequently found a wide range of applications in synthesis and catalysis. While backbone substitution of these ligands has been investigated in some detail, the impact of electron-withdrawing groups on the coordination chemistry and reactivity of ATIs has been little investigated. We report here Li, Na, and K salts of an ATI ligand with a nitro-substituent in the backbone. It is demonstrated that the NO2 group actively contributes to the coordination chemistry of these complexes, effectively competing with the N,N-binding pocket as a coordination site. This results in an unprecedented E/Z isomerisation of an ATI imino group and culminates in the isolation of the first "naked" (i. e., without directional bonding to a metal atom) ATI anion. Reactions of sodium ATIs with silver(I) and tritylium salts gave the first N,N-coordinated silver ATI complexes and unprecedented backbone substitution reactions. Analytical techniques applied in this work include multinuclear (VT-)NMR spectroscopy, single-crystal X-ray diffraction analysis, and DFT calculations.
Collapse
Affiliation(s)
- Anna Hanft
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Dennis Rottschäfer
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Nele Wieprecht
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Felix Geist
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Crispin Lichtenberg
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Hoz ADL, Alkorta I, Elguero J. The mechanism of the reaction of hydrazines with α,β-unsaturated carbonyl compounds to afford hydrazones and 2-pyrazolines (4,5-dihydro-1H-pyrazoles): Experimental and theoretical results. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Casabianca LB. Calculating nuclear magnetic resonance chemical shifts in solvated systems. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:611-624. [PMID: 31916612 DOI: 10.1002/mrc.4994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The nuclear magnetic resonance (NMR) chemical shift is extremely sensitive to molecular geometry, hydrogen bonding, solvent, temperature, pH, and concentration. Calculated magnetic shielding constants, converted to chemical shifts, can be valuable aids in NMR peak assignment and can also give detailed information about molecular geometry and intermolecular effects. Calculating chemical shifts in solution is complicated by the need to include solvent effects and conformational averaging. Here, we review the current state of NMR chemical shift calculations in solution, beginning with an introduction to the theory of calculating magnetic shielding in general, then covering methods for inclusion of solvent effects and conformational averaging, and finally discussing examples of applications using calculated chemical shifts to gain detailed structural information.
Collapse
Affiliation(s)
- Leah B Casabianca
- Department of Chemistry, Clemson University, Clemson, South Carolina
| |
Collapse
|
6
|
Desens W, Jiao H, Langer P, Michalik D. NMR Spectroscopic and Theoretical Studies on Tautomerism and Isomerism of Perfluoroalkyl‐Substituted 1,5‐Benzodiazepines. ChemistrySelect 2020. [DOI: 10.1002/slct.201904639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Willi Desens
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a Rostock 18059 Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse (LIKAT) Albert-Einstein-Str. 29a Rostock 18059 Germany
| | - Peter Langer
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a Rostock 18059 Germany
- Leibniz-Institut für Katalyse (LIKAT) Albert-Einstein-Str. 29a Rostock 18059 Germany
| | - Dirk Michalik
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a Rostock 18059 Germany
- Leibniz-Institut für Katalyse (LIKAT) Albert-Einstein-Str. 29a Rostock 18059 Germany
| |
Collapse
|
7
|
Desens W, Jiao H, Langer P, Michalik D. NMR spectroscopic and theoretical studies on the isomerism of 1,5-benzodiazepin-2-one derivatives containing a perfluorinated side chain. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Semenov VA, Samultsev DO, Krivdin LB. Calculation of 15N NMR Chemical Shifts in a Diversity of Nitrogen-Containing Compounds Using Composite Method Approximation at the DFT, MP2, and CCSD Levels. J Phys Chem A 2019; 123:8417-8426. [PMID: 31465226 DOI: 10.1021/acs.jpca.9b06780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computations of 15N NMR chemical shifts in 93 diverse nitrogen-containing compounds representing almost all known classes are performed at the density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2), and coupled cluster singles and doubles (CCSD) levels using the composite method approximation (CMA) in comparison with experimental results. It is shown that the CMA-DFT and CMA-CCSD methods provided the best performance characterized by a normalized mean absolute error of 1.1-1.3% as compared to 2.3% for the CMA-MP2 results. Taking into account solvent effects within the conductor-like polarizable continuum model decreased the normalized mean absolute error by 0.4% for the CMA-DFT and by 0.2% for the CMA-CCSD calculations.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry , Siberian Branch of the Russian Academy of Sciences , Favorsky St. 1 , 664033 Irkutsk , Russia
| | - Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry , Siberian Branch of the Russian Academy of Sciences , Favorsky St. 1 , 664033 Irkutsk , Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry , Siberian Branch of the Russian Academy of Sciences , Favorsky St. 1 , 664033 Irkutsk , Russia
| |
Collapse
|
9
|
Semenov VA, Samultsev DO, Krivdin LB. DFT computational schemes for 15 N NMR chemical shifts of the condensed nitrogen-containing heterocycles. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:346-358. [PMID: 30769377 DOI: 10.1002/mrc.4851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
A systematic density functional theory (DFT) study of the accuracy factors (functionals, basis sets, and solvent effects) for the computation of 15 N NMR chemical shifts has been performed in the series of condensed nitrogen-containing heterocycles. The behavior of the most representative functionals was examined based on the benchmark calculations of 15 N NMR chemical shifts in the reference set of compounds. It was found that the best agreement with experiment was achieved with OLYP functional in combination with aug-pcS-3(N)//pc-2 locally dense basis set scheme providing mean absolute error of 5.2 ppm in the range of about 300 ppm. Taking into account solvent effects was performed within a general Tomasi's polarizable continuum model scheme. It was also found that computationally demanding supermolecular solvation model computations essentially improved some "difficult" cases, as was illustrated with phenanthroline dissolved in methanol. Based on the performed calculations, some 200 unknown 15 N NMR chemical shifts were predicted with a high level of confidence for about 50 real-life condensed nitrogen-containing heterocycles, which could serve as a practical guide in structural elucidation of this class of compounds.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
10
|
Semenov VA, Samultsev DO, Krivdin LB. GIAO-DFT calculation of 15 N NMR chemical shifts of Schiff bases: Accuracy factors and protonation effects. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:727-739. [PMID: 29427330 DOI: 10.1002/mrc.4721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
15 N NMR chemical shifts in the representative series of Schiff bases together with their protonated forms have been calculated at the density functional theory level in comparison with available experiment. A number of functionals and basis sets have been tested in terms of a better agreement with experiment. Complimentary to gas phase results, 2 solvation models, namely, a classical Tomasi's polarizable continuum model (PCM) and that in combination with an explicit inclusion of one molecule of solvent into calculation space to form supermolecule 1:1 (SM + PCM), were examined. Best results are achieved with PCM and SM + PCM models resulting in mean absolute errors of calculated 15 N NMR chemical shifts in the whole series of neutral and protonated Schiff bases of accordingly 5.2 and 5.8 ppm as compared with 15.2 ppm in gas phase for the range of about 200 ppm. Noticeable protonation effects (exceeding 100 ppm) in protonated Schiff bases are rationalized in terms of a general natural bond orbital approach.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| | - Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| |
Collapse
|
11
|
Semenov VA, Samultsev DO, Krivdin LB. Substitution effects in the 15 N NMR chemical shifts of heterocyclic azines evaluated at the GIAO-DFT level. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:767-774. [PMID: 29504638 DOI: 10.1002/mrc.4731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
A systematic study of the accuracy factors for the computation of 15 N NMR chemical shifts in comparison with available experiment in the series of 72 diverse heterocyclic azines substituted with a classical series of substituents (CH3 , F, Cl, Br, NH2 , OCH3 , SCH3 , COCH3 , CONH2 , COOH, and CN) providing marked electronic σ- and π-electronic effects and strongly affecting 15 N NMR chemical shifts is performed. The best computational scheme for heterocyclic azines at the DFT level was found to be KT3/pcS-3//pc-2 (IEF-PCM). A vast amount of unknown 15 N NMR chemical shifts was predicted using the best computational protocol for substituted heterocyclic azines, especially for trizine, tetrazine, and pentazine where experimental 15 N NMR chemical shifts are almost totally unknown throughout the series. It was found that substitution effects in the classical series of substituents providing typical σ- and π-electronic effects followed the expected trends, as derived from the correlations of experimental and calculated 15 N NMR chemical shifts with Swain-Lupton's F and R constants.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033, Irkutsk, Russia
| | - Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033, Irkutsk, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033, Irkutsk, Russia
| |
Collapse
|
12
|
Calculation of 15N NMR chemical shifts of amines in the framework of the density functional theory. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-2009-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Samultsev DO, Rusakov YY, Krivdin LB. On the long-range relativistic effects in the 15 N NMR chemical shifts of halogenated azines. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:990-995. [PMID: 28557069 DOI: 10.1002/mrc.4618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 06/07/2023]
Abstract
Long-range β- and γ-relativistic effects of halogens in 15 N NMR chemical shifts of 20 halogenated azines (pyridines, pyrimidines, pyrazines, and 1,3,5-triazines) are shown to be unessential for fluoro-, chloro-, and bromo-derivatives (1-2 ppm in average). However, for iodocontaining compounds, β- and γ-relativistic effects are important contributors to the accuracy of the 15 N calculation. Taking into account long-range relativistic effects slightly improves the agreement of calculation with experiment. Thus, mean average errors (MAE) of 15 N NMR chemical shifts of the title compounds calculated at the non-relativistic and full 4-component relativistic levels in gas phase are accordingly 7.8 and 5.5 ppm for the range of about 150 ppm. Taking into account solvent effects within the polarizable continuum model scheme marginally improves agreement of computational results with experiment decreasing MAEs from 7.8 to 7.4 ppm and from 5.5 to 5.3 ppm at the non-relativistic and relativistic levels, respectively. The best result (MAE: 5.3 ppm) is achieved at the 4-component relativistic level using Keal and Tozer's KT3 functional used in combination with Dyall's relativistic basis set dyall.av3z with taking into account solvent effects within the polarizable continuum solvation model. The long-range relativistic effects play a major role (of up to dozen of parts per million) in 15 N NMR chemical shifts of halogenated nitrogen-containing heterocycles, which is especially crucial for iodine derivatives. This effect should apparently be taken into account for practical purposes.
Collapse
Affiliation(s)
- Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| | - Yury Yu Rusakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| |
Collapse
|
14
|
Samultsev DO, Semenov VA, Krivdin LB. On the accuracy factors and computational cost of the GIAO-DFT calculation of 15 N NMR chemical shifts of amides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:1015-1021. [PMID: 28600816 DOI: 10.1002/mrc.4625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/04/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
The main factors affecting the accuracy and computational cost of Gauge-independent Atomic Orbital-density functional theory (GIAO-DFT) calculation of 15 N NMR chemical shifts in the benchmark series of 16 amides are considered. Among those are the choice of the DFT functional and basis set, solvent effects, internal reference conversion factor and applicability of the locally dense basis set (LDBS) scheme. Solvent effects are treated within the polarizable continuum model (PCM) scheme as well as at supermolecular level with solvent molecules considered in explicit way. The best result is found for Keal and Tozer's KT3 functional used in combination with Jensen's pcS-3 basis set with taking into account solvent effects within the polarizable continuum model. The proposed LDBS scheme implies pcS-3 on nitrogen and pc-2 elsewhere in the molecule. The resulting mean average error for the calculated 15 N NMR chemical shifts is about 6 ppm. The application of the LDBS approach tested in a series of 16 amides results in a dramatic decrease in computational cost (more than an order of magnitude in time scale) with insignificant loss of accuracy.
Collapse
Affiliation(s)
- Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033, Irkutsk, Russia
| | - Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033, Irkutsk, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033, Irkutsk, Russia
| |
Collapse
|
15
|
Krivdin LB. Calculation of 15N NMR chemical shifts: Recent advances and perspectives. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:98-119. [PMID: 29157495 DOI: 10.1016/j.pnmrs.2017.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Recent advances in computation of 15N NMR chemical shifts are reviewed, concentrating mainly on practical aspects of computational protocols and accuracy factors. The review includes the discussion of the level of theory, the choice of density functionals and basis sets together with taking into account solvent effects, rovibrational corrections and relativistic effects. Computational aspects of 15N NMR are illustrated for the series of neutral and protonated open-chain nitrogen-containing compounds and nitrogen heterocycles, coordination and intermolecular complexes.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
16
|
|