1
|
Patra B, Agarwal V, Nishiyama Y, Sinha N. Probing Spatial Proximities Between Protons of Collagen Protein in Native Bone Using 2D 1H Multiple Quantum Experiments Under Fast MAS NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2025. [PMID: 39743659 DOI: 10.1002/mrc.5508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
In solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) 1H-1H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz). This method uncovered distinct 1H-1H dipolar coupling networks involving long-chain charged residues of collagen protein, highlighting their role in maintaining the stability of the collagen triple helix. Our study opens up new avenues for 1H-detected multi-quantum-based experiments at fast MAS on native collagen-containing biological systems to explore their complex heterogeneous structural details more efficiently.
Collapse
Affiliation(s)
- Bijaylaxmi Patra
- Centre of Biomedical Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, India
| | | | - Neeraj Sinha
- Centre of Biomedical Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Surowiec RK, Saldivar R, Rai RK, Metzger CE, Jacobson AM, Allen MR, Wallace JM. Ex vivo exposure to calcitonin or raloxifene improves mechanical properties of diseased bone through non-cell mediated mechanisms. Bone 2023; 173:116805. [PMID: 37196853 PMCID: PMC10330631 DOI: 10.1016/j.bone.2023.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Raloxifene (RAL) reduces clinical fracture risk despite modest effects on bone mass and density. This reduction in fracture risk may be due to improved material level-mechanical properties through a non-cell mediated increase in bone hydration. Synthetic salmon calcitonin (CAL) has also demonstrated efficacy in reducing fracture risk with only modest bone mass and density improvements. This study aimed to determine if CAL could modify healthy and diseased bone through cell-independent mechanisms that alter hydration similar to RAL. 26-week-old male C57BL/6 mice induced with chronic kidney disease (CKD) beginning at 16 weeks of age via 0.2 % adenine-laced casein-based (0.9 % P, 0.6 % C) chow, and their non-CKD control littermates (Con), were utilized. Upon sacrifice, right femora were randomly assigned to the following ex vivo experimental groups: RAL (2 μM, n = 10 CKD, n = 10 Con), CAL (100 nM, n = 10 CKD, n = 10 Con), or Vehicle (VEH; n = 9 CKD, n = 9 Con). Bones were incubated in PBS + drug solution at 37 °C for 14 days using an established ex vivo soaking methodology. Cortical geometry (μCT) was used to confirm a CKD bone phenotype, including porosity and cortical thinning, at sacrifice. Femora were assessed for mechanical properties (3-point bending) and bone hydration (via solid state nuclear magnetic resonance spectroscopy with magic angle spinning (ssNMR)). Data were analyzed by two-tailed t-tests (μCT) or 2-way ANOVA for main effects of disease, treatment, and their interaction. Tukey's post hoc analyses followed a significant main effect of treatment to determine the source of the effect. Imaging confirmed a cortical phenotype reflective of CKD, including lower cortical thickness (p < 0.0001) and increased cortical porosity (p = 0.02) compared to Con. In addition, CKD resulted in weaker, less deformable bones. In CKD bones, ex vivo exposure to RAL or CAL improved total work (+120 % and +107 %, respectively; p < 0.05), post-yield work (+143 % and +133 %), total displacement (+197 % and +229 %), total strain (+225 % and +243 %), and toughness (+158 % and +119 %) vs. CKD VEH soaked bones. Ex vivo exposure to RAL or CAL did not impact any mechanical properties in Con bone. Matrix-bound water by ssNMR showed CAL treated bones had significantly higher bound water compared to VEH treated bones in both CKD and Con cohorts (p = 0.001 and p = 0.01, respectively). RAL positively modulated bound water in CKD bone compared to VEH (p = 0.002) but not in Con bone. There were no significant differences between bones soaked with CAL vs. RAL for any outcomes measured. RAL and CAL improve important post-yield properties and toughness in a non-cell mediated manner in CKD bone but not in Con bones. While RAL treated CKD bones had higher matrix-bound water content in line with previous reports, both Con and CKD bones exposed to CAL had higher matrix-bound water. Therapeutic modulation of water, specifically the bound water fraction, represents a novel approach to improving mechanical properties and potentially reducing fracture risk.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA; Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Rosario Saldivar
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Epidemiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ratan K Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Corinne E Metzger
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Andrea M Jacobson
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Matthew R Allen
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Dwivedi N, Siddiqui MA, Srivastava S, Sinha N. 1 H- 13 C cross-polarization kinetics to probe hydration-dependent organic components of bone extracellular matrix. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:397-406. [PMID: 36946081 DOI: 10.1002/mrc.5347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 06/09/2023]
Abstract
Bone is a living tissue made up of organic proteins, inorganic minerals, and water. The organic component of bone (mainly made up of Type-I collagen) provides flexibility and tensile strength. Solid-state nuclear magnetic resonance (ssNMR) is one of the few techniques that can provide atomic-level structural insights of such biomaterials in their native state. In the present article, we employed the variable contact time cross-polarization (1 H-13 C CP) kinetics experiments to study the hydration-dependent atomic-level structural changes in the bone extracellular matrix (ECM). The natural abundant 13 C CP intensity of the bone ECM is measured by varying CP contact time and best fitted to the nonclassical kinetic model. Different relaxation parameters were measured by the best-fit equation corresponding to the different hydration conditions of the bone ECM. The associated changes in the measured parameters due to varying levels of hydration observed at different sites of collagen protein have provided its structural arrangements and interaction with water molecules in bone ECM. Overall, the present study reveals a better understanding of the kinetics of the organic part inside the bone ECM that will help in comprehending the disease-associated pathways.
Collapse
Affiliation(s)
- Navneet Dwivedi
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
- Department of Physics, Integral University, Lucknow, 226026, India
| | - Mohd Adnan Siddiqui
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
| | - Seema Srivastava
- Department of Physics, Integral University, Lucknow, 226026, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
| |
Collapse
|
4
|
Matlahov I, Kulpanovich A, Iline-Vul T, Nadav-Tsubery M, Goobes G. Selective excitation with recoupling pulse schemes uncover properties of disordered mineral phases in bone-like apatite grown with bone proteins. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 124:101860. [PMID: 36913847 DOI: 10.1016/j.ssnmr.2023.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Bone construction has been under intensive scrutiny for many years using numerous techniques. Solid-state NMR spectroscopy helped unravel key characteristics of the mineral structure in bone owing to its capability of analyzing crystalline and disordered phases at high-resolution. This has invoked new questions regarding the roles of persistent disordered phases in structural integrity and mechanical function of mature bone as well as regarding regulation of early events in formation of apatite by bone proteins which interact intimately with the different mineral phases to exert biological control. Here, spectral editing tethered to standard NMR techniques is employed to analyze bone-like apatite minerals prepared synthetically in the presence and absence of two non-collagenous bone proteins, osteocalcin and osteonectin. A 1H spectral editing block allows excitation of species from the crystalline and disordered phases selectively, facilitating analysis of phosphate or carbon species in each phase by magnetization transfer via cross polarization. Further characterization of phosphate proximities using SEDRA dipolar recoupling, cross-phase magnetization transfer using DARR and T1/T2 relaxation times demonstrate that the mineral phases formed in the presence of bone proteins are more complex than bimodal. They reveal disparities in the physical properties of the mineral layers, indicate the layers in which the proteins reside and highlight the effect that each protein imparts across the mineral layers.
Collapse
Affiliation(s)
- Irina Matlahov
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Alexey Kulpanovich
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Taly Iline-Vul
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Merav Nadav-Tsubery
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Gil Goobes
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
5
|
Wang H, Falcoz S, Morales J, Berteau JP. Investigating bone resorption in Atlantic herring fish intermuscular bones with solid-state NMR. Phys Chem Chem Phys 2023; 25:9336-9348. [PMID: 36920434 DOI: 10.1039/d2cp03023c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Bones are connective tissues mainly made of collagen proteins with calcium phosphate deposits. They undergo constant remodeling, including destroying existing bones tissues (known as bone resorption) and rebuilding new ones. Bone remodeling has been well-described in mammals, but it is not the case in fish. Here, we focused on the mobile phase of the bone vascular system by carefully preserving moisture in adult Atlantic herring intermuscular bones. We detected pore water with high ionic strength and soluble degraded peptides whose 1H-transverse relaxation times, T2s, exceed 15 milliseconds. With favorable T2s, we incorporated a solution state spinlock scheme into the INEPT techniques to unequivocally demonstrate collagen degradation. In addition, we detected a substantial amount of inorganic phosphate in solution with 31P-NMR in the considerable background of solid hydroxyapatite calcium phosphate by saturation recovery experiment. It is consistent with the idea that bone resorption degrades bone collagen and releases calcium ions and phosphate ions in the pore water with increased ionic strength. Our report is the first to probe the resorption process in the heterogenous bone microstructure with a rigorous characterization of 1H and 13C relaxation behavior and direct assignments. In addition, we contribute to the fish bones literature by investigating fish bone remodeling using NMR for the first time.
Collapse
Affiliation(s)
- Hsin Wang
- Department of Chemistry and Biochemistry, The City College of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA.
| | - Steve Falcoz
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Jorge Morales
- Department of Chemistry and Biochemistry, The City College of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA.
| | - Jean-Philippe Berteau
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314, USA.,New York Centre for Biomedical Engineering, City University of New York - City College of New York, New York 10031, USA.,Nanosciences Initiative, City University of New York - Advanced Science Research Center, New York 10031, USA
| |
Collapse
|
6
|
Bruno F, Gigli L, Ferraro G, Cavallo A, Michaelis VK, Goobes G, Fratini E, Ravera E. Lysozyme is Sterically Trapped Within the Silica Cage in Bioinspired Silica-Lysozyme Composites: A Multi-Technique Understanding of Elusive Protein-Material Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8030-8037. [PMID: 35738569 PMCID: PMC9261187 DOI: 10.1021/acs.langmuir.2c00836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Lysozyme is widely known to promote the formation of condensed silica networks from solutions containing silicic acid, in a reproducible and cost-effective way. However, little is known about the fate of the protein after the formation of the silica particles. Also, the relative arrangement of the different components in the resulting material is a matter of debate. In this study, we investigate the nature of the protein-silica interactions by means of solid-state nuclear magnetic resonance spectroscopy, small-angle X-ray scattering, and electron microscopy. We find that lysozyme and silica are in intimate contact and strongly interacting, but their interaction is neither covalent nor electrostatic: lysozyme is mostly trapped inside the silica by steric effects.
Collapse
Affiliation(s)
- Francesco Bruno
- Magnetic
Resonance Center (CERM), University of Florence, via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Lucia Gigli
- Magnetic
Resonance Center (CERM), University of Florence, via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Giovanni Ferraro
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
- Consorzio
per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia, 3, Sesto Fiorentino 50019, Italy
| | - Andrea Cavallo
- CERTEMA
S.c.a.r.l., S.P. Del
Cipressino Km 10, Cinigiano 58044, Italy
| | | | - Gil Goobes
- Department
of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Emiliano Fratini
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
- Consorzio
per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia, 3, Sesto Fiorentino 50019, Italy
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence, via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| |
Collapse
|
7
|
Nanda R, Hazan S, Sauer K, Aladin V, Keinan-Adamsky K, Corzilius B, Shahar R, Zaslansky P, Goobes G. Molecular differences in collagen organization and in organic-inorganic interfacial structure of bones with and without osteocytes. Acta Biomater 2022; 144:195-209. [PMID: 35331939 DOI: 10.1016/j.actbio.2022.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
Bone is a fascinating biomaterial composed mostly of type-I collagen fibers as an organic phase, apatite as an inorganic phase, and water molecules residing at the interfaces between these phases. They are hierarchically organized with minor constituents such as non-collagenous proteins, citrate ions and glycosaminoglycans into a composite structure that is mechanically durable yet contains enough porosity to accommodate cells and blood vessels. The nanometer scale organization of the collagen fibrous structure and the mineral constituents in bone were recently extensively scrutinized. However, molecular details at the lowest hierarchical level still need to be unraveled to better understand the exact atomic-level arrangement of all these important components in the context of the integral structure of the bone. In this report, we unfold some of the molecular characteristics differentiating between two load-bearing (cleithrum) bones, one from sturgeon fish, where the matrix contains osteocytes and one from pike fish where the bone tissue is devoid of these bone cells. Using enhanced solid-state NMR measurements, we underpin disparities in the collagen fibril structure and dynamics, the mineral phases, the citrate content at the organic-inorganic interface and water penetrability in the two bones. These findings suggest that different strategies are undertaken in the erection of the mineral-organic interfaces in various bones characterized by dissimilar osteogenesis or remodeling pathways and may have implications for the mechanical properties of the particular bone. STATEMENT OF SIGNIFICANCE: Bone boasts unique interactions between collagen fibers and mineral phases through interfaces holding together this bio-composite structure. Over evolution, fish have gone from mineralizing their bones aided by certain bone cells called osteocytes, like tetrapod, to mineralization without these cells. Here, we report atomic level differences in collagen fiber cross linking and organization, porosity of the mineral phases and content of citrate molecules at the bio-mineral interface in bones from modern versus ancient fish. The dissimilar structural features may suggest disparate mechanical properties for the two bones. Fundamental level understanding of the organic and inorganic components in bone and the interfacial interactions holding them together is essential for successful bone repair and for treating better tissue pathologies.
Collapse
|
8
|
Tiwari N, Wi S, Mentink-Vigier F, Sinha N. Mechanistic Insights into the Structural Stability of Collagen-Containing Biomaterials Such as Bones and Cartilage. J Phys Chem B 2021; 125:4757-4766. [PMID: 33929847 PMCID: PMC8151626 DOI: 10.1021/acs.jpcb.1c01431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural stability of various collagen-containing biomaterials such as bones and cartilage is still a mystery. Despite the spectroscopic development of several decades, the detailed mechanism of collagen interaction with citrate in bones and glycosaminoglycans (GAGs) in the cartilage extracellular matrix (ECM) in its native state is unobservable. We present a significant advancement to probe the collagen interactions with citrate and GAGs in the ECM of native bones and cartilage along with specific/non-specific interactions inside the collagen assembly at the nanoscopic level through natural-abundance dynamic nuclear polarization-based solid-state nuclear magnetic resonance spectroscopy. The detected molecular-level interactions between citrate-collagen and GAG-collagen inside the native bone and cartilage matrices and other backbone and side-chain interactions in the collagen assembly are responsible for the structural stability and other biomechanical properties of these important classes of biomaterials.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow – 226014, INDIA
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi – 221005, INDIA
| | - Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA
| | | | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow – 226014, INDIA
| |
Collapse
|
9
|
Wang H, Falcoz S, Berteau JP. Long-Chain Fatty Acids in Bones and Their Link to Submicroscopic Vascularization Network: NMR Assignment and Relaxation Studies under Magic Angle Spinning Conditions in Intramuscular Bones of Atlantic Herring Fish. J Phys Chem B 2021; 125:4585-4595. [PMID: 33914538 DOI: 10.1021/acs.jpcb.1c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The long-lasting proton signals in bones are identified as long-chain fatty acids, including saturated, mono-, and di-unsaturated fatty acids, with direct nuclear magnetic resonance evidence. We used intramuscular bones from Atlantic Herring fish to avoid interference from lipid-rich marrows. The key is to recognize that these signals are from mobile phase materials and study them with J-coupled correlation spectroscopies under magic angle spinning conditions. We kept extensive 1H-spin-echo records that allowed us to examine the effect of magic angle spinning on the transverse relaxation time of water and lipids over time. While it is impossible to distinguish based on chemical shifts, the relaxation data suggest that the signals are more consistent with the interpretation of phospholipid membranes than triglycerides in lipid droplets. In particular, the simultaneous T2 changes in water and lipids suggest that the centrifugal impact of magic angle spinning alters the lipid's structure in very tight spaces. Additional evidence of phospholipid membranes came from the choline-γ resonance at 3.2 ppm in fresh samples, which disappears with magic angle spinning. Thus, the fatty acid signals are at least partially from membrane bilayer structures, and we propose that they are linked to the submicroscopic vascularization channels similar to the dense canaliculi network in mammalian bones. Our detection of phospholipids from bones depended critically on two factors: (1) the elimination of the overwhelming triglyceride signals from marrows and (2) the preservation of water that biomembranes require. The relaxation data reveal aspects of lipid fluidity that have not been elucidated by previous order parameter studies on model membranes. Relaxation times have long been considered difficult to interpret. A robust and renewed understanding may be beneficial.
Collapse
Affiliation(s)
- Hsin Wang
- Department of Chemistry and Biochemistry, The City College of New York and CUNY Institute for Macromolecular Assemblies, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Steve Falcoz
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, New York 10314, United States
| | - Jean-Philippe Berteau
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, New York 10314, United States.,New York Centre for Biomedical Engineering, City University of New York - City College of New York, New York, New York 10031, United States.,Nanosciences Initiative, City University of New York - Advance Science Research Center, New York, New York 10031, United States
| |
Collapse
|
10
|
Viani A, Mácová P, Machová D, Mali G. Technical Note: Post-burial alteration of bones: Quantitative characterization with solid-state 1H MAS NMR. Forensic Sci Int 2021; 323:110783. [PMID: 33878550 DOI: 10.1016/j.forsciint.2021.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/28/2021] [Accepted: 04/05/2021] [Indexed: 12/01/2022]
Abstract
The identification of markers of the modifications occurring in human bones after death and of the sedimentary and post-sedimentary processes affecting their state of preservation, is of interest for several scientific disciplines. A new index, obtained from spectral deconvolution of the 1H MAS NMR spectra of bones, relating the number of organic protons to the amount of hydrogen nuclei in the OH- groups of bioapatite, is proposed as indicator of the state of preservation of the organic fraction. In the osteological material from three different archaeological sites, this index resulted positively correlated with the extent of collagen loss derived from infrared spectroscopy. Its sensitivity to changes in the physical and chemical characteristics of bone allows to identify distinct diagenetic pathways specific to each site and to distinguish different trajectories within the same site.
Collapse
Affiliation(s)
- Alberto Viani
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic.
| | - Petra Mácová
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic
| | - Dita Machová
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic
| | - Gregor Mali
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
11
|
Ranjan R, Sinha N. Nuclear magnetic resonance (NMR)-based metabolomics for cancer research. NMR IN BIOMEDICINE 2019; 32:e3916. [PMID: 29733484 DOI: 10.1002/nbm.3916] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/01/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Nuclear magnetic resonance (NMR) has emerged as an effective tool in various spheres of biomedical research, amongst which metabolomics is an important method for the study of various types of disease. Metabolomics has proved its stronghold in cancer research by the development of different NMR methods over time for the study of metabolites, thus identifying key players in the aetiology of cancer. A plethora of one-dimensional and two-dimensional NMR experiments (in solids, semi-solids and solution phases) are utilized to obtain metabolic profiles of biofluids, cell extracts and tissue biopsy samples, which can further be subjected to statistical analysis. Any alteration in the assigned metabolite peaks gives an indication of changes in metabolic pathways. These defined changes demonstrate the utility of NMR in the early diagnosis of cancer and provide further measures to combat malignancy and its progression. This review provides a snapshot of the trending NMR techniques and the statistical analysis involved in the metabolomics of diseases, with emphasis on advances in NMR methodology developed for cancer research.
Collapse
Affiliation(s)
- Renuka Ranjan
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, India
- School of Biotechnology, Institute of Science Banaras Hindu University, Varanasi, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, India
| |
Collapse
|
12
|
Kaflak A, Moskalewski S, Kolodziejski W. The solid-state proton NMR study of bone using a dipolar filter: apatite hydroxyl contentversusanimal age. RSC Adv 2019; 9:16909-16918. [PMID: 35516370 PMCID: PMC9064436 DOI: 10.1039/c9ra01902b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
The hydroxyl content of bone apatite mineral has been measured using proton solid-state NMR performed with a multiple-pulse dipolar filter under slow magic angle spinning (MAS). This new method succeeded in resolving and relatively enhancing the main hydroxyl peak at ca. 0 ppm from whole bone, making it amenable to rigorous quantitative analysis. The proposed methodology, involving line fitting, the measurement of the apatite concentration in the studied material and adequate calibration, was proved to be convenient and suitable for monitoring bone mineral hydroxylation in different species and over the lifetime of the animal. It was found that the hydroxyl content in the cranial bone mineral of pig and rats remained in the 5–10% range, with reference to stoichiometric hydroxyapatite. In rats, the hydroxyl content showed a non-monotonic increase with age, which was governed by biological processes rather than by chemical, thermodynamically driven apatite maturation. Mineral hydroxylation in whole bone can be accurately studied using proton MAS NMR with a multiple-pulse dipolar filter.![]()
Collapse
Affiliation(s)
- Agnieszka Kaflak
- Medical University of Warsaw
- Faculty of Pharmacy
- Department of Analytical Chemistry and Biomaterials
- Warsaw 02-097
- Poland
| | - Stanisław Moskalewski
- Medical University of Warsaw
- Department of Histology and Embryology
- Warsaw 02-004
- Poland
| | - Waclaw Kolodziejski
- Medical University of Warsaw
- Faculty of Pharmacy
- Department of Analytical Chemistry and Biomaterials
- Warsaw 02-097
- Poland
| |
Collapse
|
13
|
Teotia AK, Raina DB, Singh C, Sinha N, Isaksson H, Tägil M, Lidgren L, Kumar A. Nano-Hydroxyapatite Bone Substitute Functionalized with Bone Active Molecules for Enhanced Cranial Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6816-6828. [PMID: 28171719 DOI: 10.1021/acsami.6b14782] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of this study was to synthesize and characterize a nano-hydroxyapatite (nHAP) and calcium sulfate bone substitute (NC) for cranioplasty. The NC was functionalized with low concentrations of bone morphogenetic protein-2 (BMP-2) and zoledronic acid (ZA) and characterized both in vitro and in vivo. In vitro studies included MTT, ALP assays, and fluorescent staining of Saos-2 (human osteoblasts) and MC3T3-E1 (murine preosteoblasts) cells cultured on NC. An in vivo study divided 20 male Wistar rats into four groups: control (defect only), NC, NC + ZA, and NC + ZA + rhBMP-2. The materials were implanted in an 8.5 mm critical size defect in the calvarium for 12 weeks. Micro-CT quantitative analysis was carried out in vivo at 8 weeks and ex vivo after 12 weeks. Mineralization was highest in the NC + ZA + rhBMP-2 group (13.0 ± 2.8 mm3) compared to the NC + ZA group (9.0 ± 3.2 mm3), NC group (6.4 ± 1.9 mm3), and control group (3.4 ± 1.0 mm3) after 12 weeks. Histological and spectroscopic analysis of the defect site provided a qualitative confirmation of neo-bone, which was in agreement with the micro-CT results. In conclusion, NC can be used as a carrier for bioactive molecules, and functionalization with rhBMP-2 and ZA in low doses enhances bone regeneration.
Collapse
Affiliation(s)
- Arun Kumar Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Deepak Bushan Raina
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
- Department of Orthopedics, Clinical Sciences Lund, Lund University , Lund 221 85, Sweden
| | - Chandan Singh
- Center for Biomedical Research, SGPGIMS Campus , Lucknow 226014, India
| | - Neeraj Sinha
- Center for Biomedical Research, SGPGIMS Campus , Lucknow 226014, India
| | - Hanna Isaksson
- Department of Orthopedics, Clinical Sciences Lund, Lund University , Lund 221 85, Sweden
- Department of Biomedical Engineering, Lund University , Lund 221 00, Sweden
| | - Magnus Tägil
- Department of Orthopedics, Clinical Sciences Lund, Lund University , Lund 221 85, Sweden
| | - Lars Lidgren
- Department of Orthopedics, Clinical Sciences Lund, Lund University , Lund 221 85, Sweden
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| |
Collapse
|
14
|
Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale. Clin Rev Bone Miner Metab 2016; 14:133-149. [PMID: 28936129 DOI: 10.1007/s12018-016-9222-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review presents an overview of the characterization techniques available to experimentally evaluate bone quality, defined as the geometric and material factors that contribute to fracture resistance independently of areal bone mineral density (aBMD) assessed by dual energy x-ray absorptiometry. The methods available for characterization of the geometric, compositional, and mechanical properties of bone across multiple length scales are summarized, along with their outcomes and their advantages and disadvantages. Examples of how each technique is used are discussed, as well as practical concerns such as sample preparation and whether or not each testing method is destructive. Techniques that can be used in vivo and those that have been recently improved or developed are emphasized, including high resolution peripheral quantitative computed tomography to evaluate geometric properties and reference point indentation to evaluate material properties. Because no single method can completely characterize bone quality, we provide a framework for how multiple characterization methods can be used together to generate a more comprehensive analysis of bone quality to complement aBMD in fracture risk assessment.
Collapse
|