1
|
Luo T, Wang B, Chen R, Qi Q, Wu R, Xie S, Chen H, Han J, Wu D, Cao S. Research progress of nitroxide radical-based MRI contrast agents: from structure design to application. J Mater Chem B 2025; 13:372-398. [PMID: 39565110 DOI: 10.1039/d4tb02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Magnetic resonance imaging (MRI) remains a cornerstone of diagnostic imaging, offering unparalleled insights into anatomical structures and pathological conditions. Gadolinium-based contrast agents have long been the standard in MRI enhancement, yet concerns over nephrogenic systemic fibrosis have spurred interest in metal-free alternatives. Nitroxide radical-based MRI contrast agents (NO-CAs) have emerged as promising candidates, leveraging their biocompatibility and imaging capabilities. This review summaries the latest advancements in NO-CAs, focusing on synthesis methodologies, influencing effects of structures of NO-CAs on relaxation efficiency and their applications across various clinical contexts. Comprehensive discussions encompass small molecular, polymeric, and nano-sized NO-CAs, detailing their unique properties and potential clinical utilities. Despite challenges, NO-CAs represent a dynamic area of research poised to revolutionize MRI diagnostics. This review serves as a critical resource for researchers and practitioners seeking to navigate the evolving landscape of MRI contrast agents.
Collapse
Affiliation(s)
- Tao Luo
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Bo Wang
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Runxin Chen
- Shenzhen University General Hospital, Shenzhen, China
| | - Qi Qi
- Shenzhen University General Hospital, Shenzhen, China
| | - Ruodai Wu
- Shenzhen University General Hospital, Shenzhen, China
| | - Shunzi Xie
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Hanbing Chen
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Jialei Han
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Dalin Wu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-Sen University, Shenzhen, China
| | | |
Collapse
|
2
|
Matsumoto KI, Nakanishi I, Zhelev Z, Bakalova R, Aoki I. Nitroxyl Radical as a Theranostic Contrast Agent in Magnetic Resonance Redox Imaging. Antioxid Redox Signal 2022; 36:95-121. [PMID: 34148403 PMCID: PMC8792502 DOI: 10.1089/ars.2021.0110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance:In vivo assessment of paramagnetic and diamagnetic conversions of nitroxyl radicals based on cyclic redox mechanism can be an index of tissue redox status. The redox mechanism of nitroxyl radicals, which enables their use as a normal tissue-selective radioprotector, is seen as being attractive on planning radiation therapy. Recent Advances:In vivo redox imaging using nitroxyl radicals as redox-sensitive contrast agents has been developed to assess tissue redox status. Chemical and biological behaviors depending on chemical structures of nitroxyl radical compounds have been understood in detail. Polymer types of nitroxyl radical contrast agents and/or nitroxyl radical-labeled drugs were designed for approaching theranostics. Critical Issues: Nitroxyl radicals as magnetic resonance imaging (MRI) contrast agents have several advantages compared with those used in electron paramagnetic resonance (EPR) imaging, while support by EPR spectroscopy is important to understand information from MRI. Redox-sensitive paramagnetic contrast agents having a medicinal benefit, that is, nitroxyl-labeled drug, have been developed and proposed. Future Directions: A development of suitable nitroxyl contrast agent for translational theranostic applications with high reaction specificity and low normal tissue toxicity is under progress. Nitroxyl radicals as redox-sensitive magnetic resonance contrast agents can be a useful tool to detect an abnormal tissue redox status such as disordered oxidative stress. Antioxid. Redox Signal. 36, 95-121.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Group, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Zhivko Zhelev
- Medical Faculty, Trakia University, Stara Zagora, Bulgaria.,Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rumiana Bakalova
- Functional and Molecular Imaging Goup, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Ichio Aoki
- Functional and Molecular Imaging Goup, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| |
Collapse
|
3
|
Matsumoto KI, Mitchell JB, Krishna MC. Multimodal Functional Imaging for Cancer/Tumor Microenvironments Based on MRI, EPRI, and PET. Molecules 2021; 26:1614. [PMID: 33799481 PMCID: PMC8002164 DOI: 10.3390/molecules26061614] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
Radiation therapy is one of the main modalities to treat cancer/tumor. The response to radiation therapy, however, can be influenced by physiological and/or pathological conditions in the target tissues, especially by the low partial oxygen pressure and altered redox status in cancer/tumor tissues. Visualizing such cancer/tumor patho-physiological microenvironment would be a useful not only for planning radiotherapy but also to detect cancer/tumor in an earlier stage. Tumor hypoxia could be sensed by positron emission tomography (PET), electron paramagnetic resonance (EPR) oxygen mapping, and in vivo dynamic nuclear polarization (DNP) MRI. Tissue oxygenation could be visualized on a real-time basis by blood oxygen level dependent (BOLD) and/or tissue oxygen level dependent (TOLD) MRI signal. EPR imaging (EPRI) and/or T1-weighted MRI techniques can visualize tissue redox status non-invasively based on paramagnetic and diamagnetic conversions of nitroxyl radical contrast agent. 13C-DNP MRI can visualize glycometabolism of tumor/cancer tissues. Accurate co-registration of those multimodal images could make mechanisms of drug and/or relation of resulted biological effects clear. A multimodal instrument, such as PET-MRI, may have another possibility to link multiple functions. Functional imaging techniques individually developed to date have been converged on the concept of theranostics.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| |
Collapse
|
4
|
Golubeva EN, Chumakova NA. Spin Probe Method for Diagnostics of Polyester Porous Matrixes Formed in Supercritical Carbon Dioxide (Review). RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793119070078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Sato S, Sugawara K, Konno H, Ito T. Synthesis and Evaluation of β-Galactosidase-Targeting Spin-Label Probe: 5-O-β-D-Galactosyl-5-hydroxy-1,1,3,3-tetramethylisoindoline-2-oxyl. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Soikkeli M, Kettunen MI, Nivajärvi R, Olsson V, Rönkkö S, Laakkonen JP, Lehto VP, Kavakka J, Heikkinen S. Assessment of the Relaxation-Enhancing Properties of a Nitroxide-Based Contrast Agent TEEPO-Glc with In Vivo Magnetic Resonance Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5629597. [PMID: 31920468 PMCID: PMC6942761 DOI: 10.1155/2019/5629597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/26/2019] [Indexed: 11/18/2022]
Abstract
Magnetic resonance imaging examinations are frequently carried out using contrast agents to improve the image quality. Practically all clinically used contrast agents are based on paramagnetic metals and lack in selectivity and specificity. A group of stable organic radicals, nitroxides, has raised interest as new metal-free contrast agents for MRI. Their structures can easily be modified to incorporate different functionalities. In the present study, a stable nitroxide TEEPO (2,2,6,6-tetraethylpiperidin-1-oxyl) was linked to a glucose moiety (Glc) to construct a water-soluble, potentially tumor-targeting compound with contrast-enhancing ability. The ability was assessed with in vivo MRI experiments. The constructed TEEPO-Glc agent proved to shorten the T 1 relaxation time in tumor, while the T 1 time in healthy brain tissue remained the same. The results indicate the potential of TEEPO-Glc as a valuable addition to the growing field of metal-free contrast enhancement in MRI-based diagnostics.
Collapse
Affiliation(s)
- Maiju Soikkeli
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikko I. Kettunen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Riikka Nivajärvi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Venla Olsson
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Seppo Rönkkö
- Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Jari Kavakka
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sami Heikkinen
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
7
|
Emoto MC, Sasaki K, Maeda K, Fujii HG, Sato S. Synthesis and Evaluation as a Blood-Brain Barrier-Permeable Probe of 7-N-(PROXYL-3-yl-methyl)theophylline. Chem Pharm Bull (Tokyo) 2019; 66:887-891. [PMID: 30175747 DOI: 10.1248/cpb.c18-00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The drug-nitroxide radical hybrid-compound 7-N-((2,2,5,5-tetramethylpyrrolidine-1-yloxy(PROXYL))-3-yl-methyl)theophylline (3) was synthesized by coupling 7-N-tosyltheophylline with 3-hydroxymethyl-PROXYL, HMP). The stability of 3 relative to that of HMP was examined in the presence of the anti-oxidant, ascorbic acid (AsA). The initial reduction rate constants of 3 and HMP were 11.9±5.3 and 6.1±5.2 M-1 min-1, respectively. In the presence of glutathione (GSH), these constants increased slightly to 22.3±6.8 and 9.1±2.4 M-1 min-1, respectively. Two-dimensional cranial electron paramagnetic resonance imaging of mice intravenously injected with 3 via the tail vein revealed that probe 3 enters the mouse brain by passing through the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Miho C Emoto
- Center for Medical Education, Sapporo Medical University
| | - Kota Sasaki
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Koya Maeda
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | | | - Shingo Sato
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| |
Collapse
|
8
|
Chumakova NA, Golubeva EN, Ivanova TA, Vorobieva NN, Timashev PS, Bagratashvili VN. EPR Diagnostics of D,L-Polylactide Porous Matrices Formed in Supercritical CO2. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2019. [DOI: 10.1134/s1990793118080031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Tian M, Lan T, Gao M, Li B, Zhang G, Wang HB. Synthesis and Characterization of Two Chiral Pyrrolyl α-Nitronyl Nitroxide Radicals and Determination of their Cytotoxicity and Radioprotective Properties in C6 Cells and Mice under Ionizing Radiation. Aust J Chem 2019. [DOI: 10.1071/ch18625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, two chiral nitronyl nitroxyl radicals, L1 and D1, were synthesized and evaluated for their potential radioprotective properties invitro and invivo. We synthesized the new stable nitronyl nitroxide radicals, L1 and D1, according to Ullman’s method, and their chemical structures were characterized using UV-vis absorption, electron spin resonance (ESR), and circular dichroism (CD) spectra. The cytotoxicity of L1 and D1 on C6 glioma cells (C6 cells) was examined using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. To study the anti-radiation effects of L1 and D1 on C6 cells, we determined the optical density (OD) values of irradiated C6 cells using the MTT assay. The effects of L1 and D1 on the survival rate of mice after radiation exposure was evaluated. To demonstrate the influence of L1 and D1 pre-treatment on the antioxidant enzyme system, we studied the activities of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GSH) in mouse plasma after exposure to 6.5 Gy gamma radiation. The results showed that L1 and D1 did not have any obvious cytotoxicity at concentrations below 125μgmL−1. Moreover, L1 and D1 had the same cytotoxic effects on C6 cells. L1 and D1 significantly enhanced C6 cell survival after 8, 10, and 12 Gy radiation exposure, and there was no significant difference in the OD values between L1 and D1. The effects of these drugs on mouse survival rates were dose-dependent. Pre-treatment with different concentrations of L1, D1, or WR2721 significantly increased the activity of SOD, CAT, and GSH and significantly decreased the activity of MDA compared with radiation exposure only. In addition, the activities of SOD, CAT, and GSH in the L1 group were higher than those in the D1 group, whereas the activity of MDA was lower. Therefore, L1 and D1 have potential as safe and efficient therapeutic drugs against radiation damage.
Collapse
|
10
|
Shetty Y, Prabhu P, Prabhakar B. Emerging vistas in theranostic medicine. Int J Pharm 2018; 558:29-42. [PMID: 30599229 DOI: 10.1016/j.ijpharm.2018.12.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed a paradigm shift in the focus of healthcare towards development of customized therapies which cater to the unmet needs in a myriad of disease areas such as cancer, infections, cardiovascular diseases, neurodegenerative disorders and inflammatory disorders. The term 'theranostic' refers to such multifunctional systems which combine the features of diagnosis and treatment in a single platform for superior control of the disease. Theranostic systems enable detection of disease, treatment and real time monitoring of the diseased tissue. Theranostic nanocarriers endowed with multiple features of imaging, targeting, and providing on-demand delivery of therapeutic agents have been designed for enhancement of therapeutic outcomes. Fabrication of theranostics involves utilization of materials having distinct properties for imaging, targeting, and programming drug release spatially and temporally. Although the field of theranostics has been widely researched and explored so far for treatment of different types of cancer, there have been considerable efforts in the past few years to extend its scope to other areas such as infections, neurodegenerative disorders and cardiovascular diseases. This review showcases the potential applications of theranostics in disease areas other than cancer. It also highlights the cardinal issues which need to be addressed for successful clinical translation of these theranostic tools.
Collapse
Affiliation(s)
- Yashna Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Priyanka Prabhu
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
11
|
Soikkeli M, Horkka K, Moilanen JO, Timonen M, Kavakka J, Heikkinen S. Synthesis, Stability and Relaxivity of TEEPO-Met: An Organic Radical as a Potential Tumour Targeting Contrast Agent for Magnetic Resonance Imaging. Molecules 2018; 23:E1034. [PMID: 29702628 PMCID: PMC6102570 DOI: 10.3390/molecules23051034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/06/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022] Open
Abstract
Cancer is a widespread and life-threatening disease and its early-stage diagnosis is vital. One of the most effective, non-invasive tools in medical diagnostics is magnetic resonance imaging (MRI) with the aid of contrast agents. Contrast agents that are currently in clinical use contain metals, causing some restrictions in their use. Also, these contrast agents are mainly non-specific without any tissue targeting capabilities. Subsequently, the interest has notably increased in the research of organic, metal-free contrast agents. This study presents a new, stable organic radical, TEEPO-Met, where a radical moiety 2,2,6,6-tetraethylpiperidinoxide (TEEPO) is attached to an amino acid, methionine (Met), as a potentially tumour-targeting moiety. We describe the synthesis, stability assessment with electron paramagnetic resonance (EPR) spectroscopy and relaxation enhancement abilities by an in vitro nuclear magnetic resonance (NMR) and phantom MRI studies of TEEPO-Met. The new compound proved to be stable notably longer than the average imaging time in conditions mimicking a biological matrix. Also, it significantly reduced the relaxation times of water, making it a promising candidate as a novel tumour targeting contrast agent for MRI.
Collapse
Affiliation(s)
- Maiju Soikkeli
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.
| | - Kaisa Horkka
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.
- Department of Clinical Neuroscience, Karolinska Institutet, S-17176 Stockholm, Sweden.
| | - Jani O Moilanen
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.
| | - Marjut Timonen
- HUS Helsinki Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, P.O. Box 340, 00029 HUS, Helsinki, Finland.
| | - Jari Kavakka
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.
- Stora Enso, Innovation Centre for Biomaterials, Fannys väg 1, S-13154 Nacka, Sweden.
| | - Sami Heikkinen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.
| |
Collapse
|
12
|
Sasaki K, Ito T, Fujii HG, Sato S. Synthesis and Reduction Kinetics of Five Ibuprofen-Nitroxides for Ascorbic Acid and Methyl Radicals. Chem Pharm Bull (Tokyo) 2017; 64:1509-1513. [PMID: 27725505 DOI: 10.1248/cpb.c16-00347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hybrid compounds 1-5 comprised of five nitroxides with ibuprofen were synthesized and their reduction rate for ascorbic acid (AsA) and methyl radicals were measured in comparison with 3-hydroxy-tetramethylpyrrolidine-1-oxyl (PROXYL) 6. The rate constants in reduction reaction with 200-fold excess of AsA were determined in following order: 1 (0.42±0.06), 3 (0.17±0.06), 2 (0.10±0.05), and 6 (0.09±0.02 M-1s-1). The remaining two sterically shielded nitroxides 4 and 5 scarcely reacted with AsA. In the reaction with the more reactive methyl radicals, produced by 200-fold excess of Fenton's reagent, the reduction rates of 2, 4, and 5 were in the following decreasing order: 2 (1.1±0.2), 4 (0.76±0.09), and 5 (0.31±0.03 M-1s-1).
Collapse
Affiliation(s)
- Kota Sasaki
- Graduate School of Science and Engineering, Yamagata University
| | | | | | | |
Collapse
|