1
|
Dabbs JD, Taylor CC, Holdren MS, Brewster SE, Quillin BT, Meng AQ, Dickie DA, Pate BH, Harman WD. Designing chemical systems for precision deuteration of medicinal building blocks. Nat Commun 2024; 15:8473. [PMID: 39349937 PMCID: PMC11442640 DOI: 10.1038/s41467-024-52127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Methods are lacking that can prepare deuterium-enriched building blocks, in the full range of deuterium substitution patterns at the isotopic purity levels demanded by pharmaceutical use. To that end, this work explores the regio- and stereoselective deuteration of tetrahydropyridine (THP), which is an attractive target for study due to the wide prevalence of piperidines in drugs. A series of d0-d8 tetrahydropyridine isotopomers were synthesized by the stepwise treatment of a tungsten-complexed pyridinium salt with H-/D- and H+/D+. The resulting decomplexed THP isotopomers and isotopologues were analyzed via molecular rotational resonance (MRR) spectroscopy, a highly sensitive technique that distinguishes isotopomers and isotopologues by their unique moments of inertia. In order to demonstrate the medicinal relevance of this approach, eight unique deuterated isotopologues of erythro-methylphenidate were also prepared.
Collapse
Affiliation(s)
- Jonathan D Dabbs
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Caleb C Taylor
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Martin S Holdren
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Sarah E Brewster
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Brian T Quillin
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Alvin Q Meng
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Brooks H Pate
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| | - W Dean Harman
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Rayner PJ, Fekete M, Gater CA, Ahwal F, Turner N, Kennerley AJ, Duckett SB. Real-Time High-Sensitivity Reaction Monitoring of Important Nitrogen-Cycle Synthons by 15N Hyperpolarized Nuclear Magnetic Resonance. J Am Chem Soc 2022; 144:8756-8769. [PMID: 35508182 PMCID: PMC9121385 DOI: 10.1021/jacs.2c02619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Here, we show how
signal amplification by reversible exchange hyperpolarization
of a range of 15N-containing synthons can be used to enable
studies of their reactivity by 15N nuclear magnetic resonance
(NO2– (28% polarization), ND3 (3%), PhCH2NH2 (5%), NaN3 (3%),
and NO3– (0.1%)). A range of iridium-based
spin-polarization transfer catalysts are used, which for NO2– work optimally as an amino-derived carbene-containing
complex with a DMAP-d2 coligand. We harness
long 15N spin-order lifetimes to probe in situ reactivity
out to 3 × T1. In the case of NO2– (T1 17.7 s
at 9.4 T), we monitor PhNH2 diazotization in acidic solution.
The resulting diazonium salt (15N-T1 38 s) forms within 30 s, and its subsequent reaction with
NaN3 leads to the detection of hyperpolarized PhN3 (T1 192 s) in a second step via the
formation of an identified cyclic pentazole intermediate. The role
of PhN3 and NaN3 in copper-free click chemistry
is exemplified for hyperpolarized triazole (T1 < 10 s) formation when they react with a strained alkyne.
We also demonstrate simple routes to hyperpolarized N2 in
addition to showing how utilization of 15N-polarized PhCH2NH2 enables the probing of amidation, sulfonamidation,
and imine formation. Hyperpolarized ND3 is used to probe
imine and ND4+ (T1 33.6 s) formation. Furthermore, for NO2–, we also demonstrate how the 15N-magnetic resonance imaging
monitoring of biphasic catalysis confirms the successful preparation
of an aqueous bolus of hyperpolarized 15NO2– in seconds with 8% polarization. Hence, we create
a versatile tool to probe organic transformations that has significant
relevance for the synthesis of future hyperpolarized pharmaceuticals.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Marianna Fekete
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Callum A Gater
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Norman Turner
- Department of Engineering and Technology, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire HD1 3DH, U.K
| | - Aneurin J Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
3
|
Rapid SABRE Catalyst Scavenging Using Functionalized Silicas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020332. [PMID: 35056646 PMCID: PMC8778821 DOI: 10.3390/molecules27020332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
In recent years the NMR hyperpolarisation method signal amplification by reversible exchange (SABRE) has been applied to multiple substrates of potential interest for in vivo investigation. Unfortunately, SABRE commonly requires an iridium-containing catalyst that is unsuitable for biomedical applications. This report utilizes inductively coupled plasma-optical emission spectroscopy (ICP-OES) to investigate the potential use of metal scavengers to remove the iridium catalytic species from the solution. The most sensitive iridium emission line at 224.268 nm was used in the analysis. We report the effects of varying functionality, chain length, and scavenger support identity on iridium scavenging efficiency. The impact of varying the quantity of scavenger utilized is reported for the three scavengers with the highest iridium removed from initial investigations: 3-aminopropyl (S1), 3-(imidazole-1-yl)propyl (S4), and 2-(2-pyridyl) (S5) functionalized silica gels. Exposure of an activated SABRE sample (1.6 mg mL-1 of iridium catalyst) to 10 mg of the most promising scavenger (S5) resulted in <1 ppm of iridium being detectable by ICP-OES after 2 min of exposure. We propose that combining the approach described herein with other recently reported approaches, such as catalyst separated-SABRE (CASH-SABRE), would enable the rapid preparation of a biocompatible SABRE hyperpolarized bolus.
Collapse
|
4
|
Norcott PL. Selective NMR detection of individual reaction components hyperpolarised by reversible exchange with para-hydrogen. Phys Chem Chem Phys 2022; 24:13527-13533. [DOI: 10.1039/d2cp01657e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR spectroscopy can sometimes be hampered by two inherent weaknesses: low sensitivity and overlap of signals in complex mixtures. Hyperpolarisation techniques using para-hydrogen (including the method known as SABRE) can...
Collapse
|
5
|
Joalland B, Nantogma S, Chowdhury MRH, Nikolaou P, Chekmenev EY. Magnetic shielding of parahydrogen hyperpolarization experiments for the masses. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1180-1186. [PMID: 33948988 PMCID: PMC8568740 DOI: 10.1002/mrc.5167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 05/07/2023]
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA
| | - Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA
| | | | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA
- Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
6
|
Tickner BJ, Semenova O, Iali W, Rayner PJ, Whitwood AC, Duckett SB. Optimisation of pyruvate hyperpolarisation using SABRE by tuning the active magnetisation transfer catalyst. Catal Sci Technol 2020; 10:1343-1355. [PMID: 32647563 PMCID: PMC7315823 DOI: 10.1039/c9cy02498k] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
Hyperpolarisation techniques such as signal amplification by reversible exchange (SABRE) can deliver NMR signals several orders of magnitude larger than those derived under Boltzmann conditions. SABRE is able to catalytically transfer latent magnetisation from para-hydrogen to a substrate in reversible exchange via temporary associations with an iridium complex. SABRE has recently been applied to the hyperpolarisation of pyruvate, a substrate often used in many in vivo MRI studies. In this work, we seek to optimise the pyruvate-13C2 signal gains delivered through SABRE by fine tuning the properties of the active polarisation transfer catalyst. We present a detailed study of the effects of varying the carbene and sulfoxide ligands on the formation and behaviour of the active [Ir(H)2(η2-pyruvate)(sulfoxide)(NHC)] catalyst to produce a rationale for achieving high pyruvate signal gains in a cheap and refreshable manner. This optimisation approach allows us to achieve signal enhancements of 2140 and 2125-fold for the 1-13C and 2-13C sites respectively of sodium pyruvate-1,2-[13C2].
Collapse
Affiliation(s)
- Ben J Tickner
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| | - Olga Semenova
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| | - Wissam Iali
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| | - Peter J Rayner
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| | - Adrian C Whitwood
- Department of Chemistry , University of York , Heslington , YO10 5DD , UK
| | - Simon B Duckett
- Centre for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , YO10 5NY , UK .
| |
Collapse
|
7
|
Iali W, Roy SS, Tickner BJ, Ahwal F, Kennerley AJ, Duckett SB. Hyperpolarising Pyruvate through Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019; 58:10271-10275. [PMID: 31115970 PMCID: PMC7004201 DOI: 10.1002/anie.201905483] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 11/10/2022]
Abstract
Hyperpolarisation methods that premagnetise agents such as pyruvate are currently receiving significant attention because they produce sensitivity gains that allow disease tracking and interrogation of cellular metabolism by magnetic resonance. Here, we communicate how signal amplification by reversible exchange (SABRE) can provide strong 13 C pyruvate signal enhancements in seconds through the formation of the novel polarisation transfer catalyst [Ir(H)2 (η2 -pyruvate)(DMSO)(IMes)]. By harnessing SABRE, strong signals for [1-13 C]- and [2-13 C]pyruvate in addition to a long-lived singlet state in the [1,2-13 C2 ] form are readily created; the latter can be observed five minutes after the initial hyperpolarisation step. We also demonstrate how this development may help with future studies of chemical reactivity.
Collapse
Affiliation(s)
- Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| | - Soumya S. Roy
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
- Present address: Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangalore560012India
| | - Ben J. Tickner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| | - Aneurin J. Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| |
Collapse
|
8
|
Iali W, Roy SS, Tickner BJ, Ahwal F, Kennerley AJ, Duckett SB. Hyperpolarising Pyruvate through Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905483] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| | - Soumya S. Roy
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
- Present address: Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Ben J. Tickner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| | - Aneurin J. Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| |
Collapse
|
9
|
Pravdivtsev AN, Hövener JB. Simulating Non-linear Chemical and Physical (CAP) Dynamics of Signal Amplification By Reversible Exchange (SABRE). Chemistry 2019; 25:7659-7668. [PMID: 30689237 DOI: 10.1002/chem.201806133] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/18/2019] [Indexed: 01/30/2023]
Abstract
The hyperpolarization of nuclear spins by using parahydrogen (pH2 ) is a fascinating technique that allows spin polarization and thus the magnetic resonance signal to be increased by several orders of magnitude. Entirely new applications have become available. Signal amplification by reversible exchange (SABRE) is a relatively new method that is based on the reversible exchange of a substrate, catalyst and parahydrogen. SABRE is particularly interesting for in vivo medical and industrial applications, such as fast and low-cost trace analysis or continuous signal enhancement. Ever since its discovery, many attempts have been made to model and understand SABRE, with various degrees of simplifications. In this work, we reduced the simplifications further, taking into account non-linear chemical and physical (CAP) dynamics of several multi-spin systems. A master equation was derived and realized using the MOIN open-source software. The effects of different parameters (exchange rates, concentrations, spin-spin couplings) on relaxation and the polarization level have been evaluated and the results provide interesting insights into the mechanism of SABRE.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
10
|
Salnikov OG, Shchepin RV, Chukanov NV, Jaigirdar L, Pham W, Kovtunov KV, Koptyug IV, Chekmenev EY. Effects of Deuteration of 13C-Enriched Phospholactate on Efficiency of Parahydrogen-Induced Polarization by Magnetic Field Cycling. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:24740-24749. [PMID: 31447960 PMCID: PMC6707357 DOI: 10.1021/acs.jpcc.8b07365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report herein a large-scale (>10 g) synthesis of isotopically enriched 1-13C-phosphoenolpyruvate and 1-13C-phosphoenolpyruvate-d2 for application in hyperpolarized imaging technology. The 1-13C-phosphoenolpyruvate-d2 was synthesized with 57% overall yield (over two steps), and >98% 2H isotopic purity, representing an improvement over the previous report. The same outcome was achieved for 1-13C-phosphoenolpyruvate. These two unsaturated compounds with C=C bonds were employed for parahydrogen-induced polarization via pairwise parahydrogen addition in aqueous medium. We find that deuteration of 1-13C-phosphoenolpyruvate resulted in overall increase of 1H T1 of nascent hyperpolarized protons (4.30 ± 0.04 s versus 2.06 ± 0.01 s) and 1H polarization (~2.5% versus ~0.7%) of the resulting hyperpolarized 1-13C-phospholactate. The nuclear spin polarization of nascent parahydrogen-derived protons was transferred to 1-13C nucleus via magnetic field cycling procedure. The proton T1 increase in hyperpolarized deuterated 1-13C-phospholactate yielded approximately 30% better 13C polarization compared to non-deuterated hyperpolarized 1-13C-phospholactate. Analysis of T1 relaxation revealed that deuteration of 1-13C-phospholactate may have resulted in approximately 3-fold worse H→13C polarization transfer efficiency via magnetic field cycling. Since magnetic field cycling is a key polarization transfer step in the Side-Arm Hydrogenation approach, the presented findings may guide more rationale design of contrast agents using parahydrogen polarization of a broad range of 13C hyperpolarized contrast agents for molecular imaging employing 13C MRI. The hyperpolarized 1-13C-phospholactate-d2 is of biomedical imaging relevance because it undergoes in vivo dephosphorylation and becomes 13C hyperpolarized lactate, which as we show can be detected in the brain using 13C hyperpolarized MRI; an implication for future imaging of neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS)
- Department of Radiology
| | - Nikita V. Chukanov
- International Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Lamya Jaigirdar
- Vanderbilt University Institute of Imaging Science (VUIIS)
- School of Engineering
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science (VUIIS)
- Department of Radiology
- Department of Biomedical Engineering
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United
States
| | - Kirill V. Kovtunov
- International Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS)
- Department of Radiology
- Department of Biomedical Engineering
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United
States
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute
(KCI), Detroit, Michigan, 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
- Corresponding Author:
| |
Collapse
|
11
|
Rayner PJ, Norcott P, Appleby KM, Iali W, John RO, Hart SJ, Whitwood AC, Duckett SB. Fine-tuning the efficiency of para-hydrogen-induced hyperpolarization by rational N-heterocyclic carbene design. Nat Commun 2018; 9:4251. [PMID: 30315170 PMCID: PMC6185983 DOI: 10.1038/s41467-018-06766-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022] Open
Abstract
Iridium N-heterocyclic carbene (NHC) complexes catalyse the para-hydrogen-induced hyperpolarization process, Signal Amplification by Reversible Exchange (SABRE). This process transfers the latent magnetism of para-hydrogen into a substrate, without changing its chemical identity, to dramatically improve its nuclear magnetic resonance (NMR) detectability. By synthesizing and examining over 30 NHC containing complexes, here we rationalize the key characteristics of efficient SABRE catalysis prior to using appropriate catalyst-substrate combinations to quantify the substrate's NMR detectability. These optimizations deliver polarizations of 63% for 1H nuclei in methyl 4,6-d2-nicotinate, 25% for 13C nuclei in a 13C2-diphenylpyridazine and 43% for the 15N nucleus of pyridine-15N. These high detectability levels compare favourably with the 0.0005% 1H value harnessed by a routine 1.5 T clinical MRI system. As signal strength scales with the square of the number of observations, these low cost innovations offer remarkable improvements in detectability threshold that offer routes to significantly reduce measurement time.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Philip Norcott
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Kate M Appleby
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Richard O John
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Sam J Hart
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Adrian C Whitwood
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK.
| |
Collapse
|