1
|
Coe LJ, Zhao Y, Padva L, Keto A, Schittenhelm R, Tailhades J, Pierens G, Krenske EH, Crüsemann M, De Voss JJ, Cryle MJ. Reassignment of the Structure of a Tryptophan-Containing Cyclic Tripeptide Produced by the Biarylitide Crosslinking Cytochrome P450 blt. Chemistry 2024; 30:e202400988. [PMID: 38712638 DOI: 10.1002/chem.202400988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
The structure of the sidechain crosslinked Tyr-Leu-Trp peptide produced by the biarylitide crosslinking cytochrome P450Blt from Micromonospora sp. MW-13 has been reanalysed by a series of NMR, computational and isotope labelling experiments and shown to contain a C-N rather than a C-O bond. Additional in vivo experiments using such a modified peptide show there is a general tolerance of biarylitide crosslinking P450 enzymes for histidine to tryptophan mutations within their minimal peptide substrate sequences despite the lack of such residues noted in natural biarylitide gene clusters. This work further highlights the impressive ability of P450s from biarylitide biosynthesis pathways to act as biocatalysts for the formation of a range of sidechain crosslinked tripeptides.
Collapse
Affiliation(s)
- Laura J Coe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yongwei Zhao
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Leo Padva
- Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Angus Keto
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ralf Schittenhelm
- Monash Proteomics and Metabolomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Greg Pierens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| |
Collapse
|
2
|
Chiari C, Batista PR, Viesser RV, Schenberg LA, Ducati LC, Linclau B, Tormena CF. Molecular dynamics and NMR reveal the coexistence of H-bond-assisted and through-space JFH coupling in fluorinated amino alcohols. Org Biomol Chem 2024; 22:2580-2595. [PMID: 38441115 DOI: 10.1039/d4ob00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The JFH coupling constants in fluorinated amino alcohols were investigated through experimental and theoretical approaches. The experimental JFH couplings were only reproduced theoretically when explicit solvation through molecular dynamics (MD) simulations was conducted in DMSO as the solvent. The combination of MD conformation sampling and DFT NMR spin-spin coupling calculations for these compounds reveals the simultaneous presence of through-space (TS) and hydrogen bond (H-bond) assisted JFH coupling between fluorine and hydrogen of the NH group. Furthermore, MD simulations indicate that the hydrogen in the amino group participates in both an intermolecular bifurcated H-bond with DMSO and in transmitting the observed JFH coupling. The contribution of TS to the JFH coupling is due to the spatial proximity of the fluorine and the NH group, aided by a combination of the non-bonding transmission pathway and the hydrogen bonding pathway. The experimental JFH coupling observed for the molecules studied should be represented as 4TS/1hJFH coupling.
Collapse
Affiliation(s)
- Cassia Chiari
- Institute of Chemistry, University of Campinas - UNICAMP, P. O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| | - Patrick R Batista
- Institute of Chemistry, University of Campinas - UNICAMP, P. O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| | - Renan V Viesser
- Department of Chemistry, University of Houston, Houston, TX 77024, USA
| | - Leonardo A Schenberg
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Lucas C Ducati
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Bruno Linclau
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Cláudio F Tormena
- Institute of Chemistry, University of Campinas - UNICAMP, P. O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Dorst KM, Widmalm G. Conformational Preferences at the Glycosidic Linkage of Saccharides in Solution as Deduced from NMR Experiments and MD Simulations: Comparison to Crystal Structures. Chemistry 2024; 30:e202304047. [PMID: 38180821 DOI: 10.1002/chem.202304047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Glycans are central to information content and regulation in biological systems. These carbohydrate molecules are active either as oligo- or polysaccharides, often in the form of glycoconjugates. The monosaccharide entities are joined by glycosidic linkages and stereochemical arrangements are of utmost importance in determining conformation and flexibility of saccharides. The conformational preferences and population distributions at the glycosidic torsion angles φ and ψ have been investigated for O-methyl glycosides of three disaccharides where the substitution takes place at a secondary alcohol, viz., in α-l-Fucp-(1→3)-β-d-Glcp-OMe, α-l-Fucp-(1→3)-α-d-Galp-OMe and α-d-Glcp-(1→4)-α-d-Galp-OMe, corresponding to disaccharide structural elements present in bacterial polysaccharides. Stereochemical differences at or adjacent to the glycosidic linkage were explored by solution state NMR spectroscopy using one-dimensional 1 H,1 H-NOESY NMR experiments to obtain transglycosidic proton-proton distances and one- and two-dimensional heteronuclear NMR experiments to obtain 3 JCH transglycosidic coupling constants related to torsion angles φ and ψ. Computed effective proton-proton distances from molecular dynamics (MD) simulations showed excellent agreement to experimentally derived distances for the α-(1→3)-linked disaccharides and revealed that for the bimodal distribution at the ψ torsion angle for the α-(1→4)-linked disaccharide experiment and simulation were at variance with each other, calling for further force field developments. The MD simulations disclosed a highly intricate inter-residue hydrogen bonding pattern for the α-(1→4)-linked disaccharide, including a nonconventional hydrogen bond between H5' in the glucosyl residue and O3 in the galactosyl residue, supported by a large downfield 1 H NMR chemical shift displacement compared to α-d-Glcp-OMe. Comparison of population distributions of the glycosidic torsion angles φ and ψ in the disaccharide entities to those of corresponding crystal structures highlighted the potential importance of solvation on the preferred conformation.
Collapse
Affiliation(s)
- Kevin M Dorst
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| |
Collapse
|
4
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
5
|
Li Z, Xu B, Kojasoy V, Ortega T, Adpressa DA, Ning W, Wei X, Liu J, Tantillo DJ, Loesgen S, Rudolf JD. First trans-eunicellane terpene synthase in bacteria. Chem 2023; 9:698-708. [PMID: 36937101 PMCID: PMC10022577 DOI: 10.1016/j.chempr.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Terpenoids are the largest family of natural products, but prokaryotes are vastly underrepresented in this chemical space. However, genomics supports vast untapped biosynthetic potential for terpenoids in bacteria. We discovered the first trans-eunicellane terpene synthase (TS), AlbS from Streptomyces albireticuli NRRL B-1670, in nature. Mutagenesis, deuterium labeling studies, and quantum chemical calculations provided extensive support for its cyclization mechanism. In addition, parallel stereospecific labeling studies with Bnd4, a cis-eunicellane TS, revealed a key mechanistic distinction between these two enzymes. AlbS highlights bacteria as a valuable source of novel terpenoids, expands our understanding of the eunicellane family of natural products and the enzymes that biosynthesize them, and provides a model system to address fundamental questions about the chemistry of 6,10-bicyclic ring systems.
Collapse
Affiliation(s)
- Zining Li
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Volga Kojasoy
- Department of Chemistry, University of California–Davis, Davis, CA, United States
| | - Teresa Ortega
- Department of Chemistry, University of California–Davis, Davis, CA, United States
| | | | - Wenbo Ning
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Xiuting Wei
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Jamin Liu
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California–Davis, Davis, CA, United States
| | - Sandra Loesgen
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| | - Jeffrey D. Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- Lead contact
| |
Collapse
|
6
|
Unabara D, Nishijima M. Complete Structure Assignment of Azathioprine as a Proton-Deficient Nucleic Acid Analogue Using 1H- 13C Long-Range Heteronuclear Single Quantum Multiple Bond Correlation. J Org Chem 2023; 88:653-657. [PMID: 36563180 DOI: 10.1021/acs.joc.2c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this Note, the successful structural assignment of a proton-deficient nucleic acid analogue using the 1H-13C long-range heteronuclear single quantum multiple bond correlation (LR-HSQMBC) technique is described. LR-HSQMBC is a 2D NMR technique for the sensitive detection of weak C-H spin couplings. The immunosuppressant drug, azathioprine, served as the target compound. The LR-HSQMBC measurements revealed the existence of covalent bonds between the purine and imidazole rings based on observations of 5JCH and 6JCH with good sensitivity.
Collapse
Affiliation(s)
- Daisuke Unabara
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Masaki Nishijima
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
7
|
Wiedemann C, Fushman D, Bordusa F. 15N NMR studies provide insights into physico-chemical properties of room-temperature ionic liquids. Phys Chem Chem Phys 2021; 23:12395-12407. [PMID: 34027941 PMCID: PMC8195554 DOI: 10.1039/d1cp01492g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids (ILs) have gained a lot of attention as alternative solvents in many fields of science in the last two decades. It is known that the type of anion has a significant influence on the macroscopic properties of the IL. To gain insights into the molecular mechanisms responsible for these effects it is important to characterize these systems at the microscopic level. Such information can be obtained from nuclear spin-relaxation studies which for compounds with natural isotope abundance are typically performed using direct 1H or 13C measurements. Here we used direct 15N measurements to characterize spin relaxation of non-protonated nitrogens in imidazolium-based ILs which are liquid at ambient temperature. We report heteronuclear 1H-15N scalar coupling constants (nJHN) and 15N relaxation parameters for non-protonated nitrogens in ten 1-ethyl-3-methylimidazolium ([C2C1IM]+)-based ILs containing a broad range of anions. The 15N relaxation rates and steady-state heteronuclear 15N-{1H} NOEs were measured using direct 15N detection at 293.2 K and two magnetic field strengths, 9.4 T and 16.4 T. The experimental data were analyzed to determine hydrodynamic characteristics of ILs and to assess the contributions to 15N relaxation from 15N chemical shift anisotropy and from 1H-15N dipolar interactions with non-bonded protons. We found that the rotational correlation times of the [C2C1IM]+ cation determined from 15N relaxation measurements at room temperature correlate linearly with the macroscopic viscosity of the ILs. Depending on the selected anion, the 15N relaxation characteristics of [C2C1IM]+ differ considerably reflecting the influence of the anion on the physicochemical properties of the IL.
Collapse
Affiliation(s)
- Christoph Wiedemann
- Martin Luther University Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle/S., Germany.
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland 20742, USA
| | - Frank Bordusa
- Martin Luther University Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle/S., Germany.
| |
Collapse
|
8
|
Kim CK, Wang D, Wilson BAP, Saurí J, Voeller D, Lipkowitz S, O’Keefe BR, Gustafson KR. Suberitamides A-C, Aryl Alkaloids from a Pseudosuberites sp. Marine Sponge that Inhibit Cbl-b Ubiquitin Ligase Activity. Mar Drugs 2020; 18:E536. [PMID: 33126420 PMCID: PMC7693676 DOI: 10.3390/md18110536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Three new aryl alkaloids named suberitamides A-C (1-3), were isolated from an extract of the marine sponge Pseudosuberites sp. collected along the coast of North Carolina. Their planar structures were established by extensive nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. To assign the challenging relative configuration of the saturated five-membered ring in suberitamide A (1), a simple and efficient NMR protocol was applied that is based on the analysis of 2- and 3-bond 1H-13C spin-spin coupling constants using a PIP (pure in-phase) HSQMBC (heteronuclear single quantum multiple bond correlation) IPAP (in-phase and anti-phase) experiment. Suberitamides A (1) and B (2) inhibited Cbl-b, an E3 ubiquitin ligase that is an important modulator of immune cell function, with IC50 values of approximately 11 μM.
Collapse
Affiliation(s)
- Chang-Kwon Kim
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA; (C.-K.K.); (D.W.); (B.A.P.W.); (B.R.O.)
| | - Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA; (C.-K.K.); (D.W.); (B.A.P.W.); (B.R.O.)
| | - Brice A. P. Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA; (C.-K.K.); (D.W.); (B.A.P.W.); (B.R.O.)
| | - Josep Saurí
- Structure Elucidation Group, Analytical Research and Development, Merck & Co., Inc., Boston, MS 02115, USA;
| | - Donna Voeller
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1578, USA; (D.V.); (S.L.)
| | - Stanley Lipkowitz
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1578, USA; (D.V.); (S.L.)
| | - Barry R. O’Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA; (C.-K.K.); (D.W.); (B.A.P.W.); (B.R.O.)
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD 21701-1201, USA
| | - Kirk R. Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA; (C.-K.K.); (D.W.); (B.A.P.W.); (B.R.O.)
| |
Collapse
|