Schmid E, Pertzel TO, Nirschl H, Guthausen G. Characterization of Flow with a V-Shaped NMR Sensor.
SENSORS (BASEL, SWITZERLAND) 2024;
24:6163. [PMID:
39409203 PMCID:
PMC11479063 DOI:
10.3390/s24196163]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
Quality control in a production plant shows its maximum potential in the form of inline measurements. Defects and imperfections can be detected early and directly, and waste and costs can be reduced. Nuclear Magnetic Resonance offers a wide range of applications but requires dedicated adaptation to the respective process and material conditions. A V-shaped low-field NMR sensor was developed for non-invasive inline measurements on anode slurries in a battery production plant. In battery production, inline monitoring of the quality of anode slurries is demanded, offering the possibility of predictive control of the following process steps. Methods of low-field NMR to determine flow properties were adapted to the desired application. Further, magnetic resonance imaging measurements were made to determine the flow properties of model substances and anode slurries, thus providing verification. The sensor measurements show the ability to measure the flow behavior of, amongst other fluids, anode slurries in a form suitable for inline quality control in a battery production plant.
Collapse