1
|
Huang S, Righetti L, Claassen FW, Krishna A, Ma M, van Beek TA, Chen B, Zuilhof H, Salentijn GIJ. Ultrafast, Selective, and Highly Sensitive Nonchromatographic Analysis of Fourteen Cannabinoids in Cannabis Extracts, Δ8-Tetrahydrocannabinol Synthetic Mixtures, and Edibles by Cyclic Ion Mobility Spectrometry-Mass Spectrometry. Anal Chem 2024; 96:10170-10181. [PMID: 38862388 PMCID: PMC11209660 DOI: 10.1021/acs.analchem.3c05879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The diversity of cannabinoid isomers and complexity of Cannabis products pose significant challenges for analytical methodologies. In this study, we developed a method to analyze 14 different cannabinoid isomers in diverse samples within milliseconds by leveraging the unique adduct-forming behavior of silver ions in advanced cyclic ion mobility spectrometry-mass spectrometry. The developed method achieved the separation of isomers from four groups of cannabinoids: Δ3-tetrahydrocannabinol (THC) (1), Δ8-THC (2), Δ9-THC (3), cannabidiol (CBD) (4), Δ8-iso-THC (5), and Δ(4)8-iso-THC (6) (all MW = 314); 9α-hydroxyhexahydrocannabinol (7), 9β-hydroxyhexahydrocannabinol (8), and 8-hydroxy-iso-THC (9) (all MW = 332); tetrahydrocannabinolic acid (THCA) (10) and cannabidiolic acid (CBDA) (11) (both MW = 358); Δ8-tetrahydrocannabivarin (THCV) (12), Δ8-iso-THCV (13), and Δ9-THCV (14) (all MW = 286). Moreover, experimental and theoretical traveling wave collision cross section values in nitrogen (TWCCSN2) of cannabinoid-Ag(I) species were obtained for the first time with an average error between experimental and theoretical values of 2.6%. Furthermore, a workflow for the identification of cannabinoid isomers in Cannabis and Cannabis-derived samples was established based on three identification steps (m/z and isotope pattern of Ag(I) adducts, TWCCSN2, and MS/MS fragments). Afterward, calibration curves of three major cannabinoids were established with a linear range of 1-250 ng·ml-1 for Δ8-THC (2) (R2 = 0.9999), 0.1-25 ng·ml-1 for Δ9-THC (3) (R2 = 0.9987), and 0.04-10 ng·ml-1 for CBD (4) (R2 = 0.9986) as well as very low limits of detection (0.008-0.2 ng·ml-1). Finally, relative quantification of Δ8-THC (2), Δ9-THC (3), and CBD (4) in eight complex acid-treated CBD mixtures was achieved without chromatographic separation. The results showed good correspondence (R2 = 0.999) with those obtained by gas chromatography-flame ionization detection/mass spectrometry.
Collapse
Affiliation(s)
- Si Huang
- Key
Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory
of Chemical Biology & Traditional Chinese Medicine Research of
Ministry of Education, Hunan Normal University, No.36, Lushan Road, Changsha 410081, China
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The
Netherlands
| | - Laura Righetti
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The
Netherlands
- Wageningen
Food Safety Research (WFSR), Wageningen
University & Research, P.O. Box 230, Wageningen 6700 AE, The Netherlands
| | - Frank W. Claassen
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The
Netherlands
| | - Akash Krishna
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The
Netherlands
| | - Ming Ma
- Key
Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory
of Chemical Biology & Traditional Chinese Medicine Research of
Ministry of Education, Hunan Normal University, No.36, Lushan Road, Changsha 410081, China
| | - Teris A. van Beek
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The
Netherlands
| | - Bo Chen
- Key
Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory
of Chemical Biology & Traditional Chinese Medicine Research of
Ministry of Education, Hunan Normal University, No.36, Lushan Road, Changsha 410081, China
| | - Han Zuilhof
- Key
Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory
of Chemical Biology & Traditional Chinese Medicine Research of
Ministry of Education, Hunan Normal University, No.36, Lushan Road, Changsha 410081, China
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The
Netherlands
| | - Gert IJ. Salentijn
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The
Netherlands
- Wageningen
Food Safety Research (WFSR), Wageningen
University & Research, P.O. Box 230, Wageningen 6700 AE, The Netherlands
| |
Collapse
|
2
|
Pellizzari J, Soong R, Downey K, Biswas RG, Kock FC, Steiner K, Goerling B, Haber A, Decker V, Busse F, Simpson M, Simpson A. Slice through the water-Exploring the fundamental challenge of water suppression for benchtop NMR systems. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:463-473. [PMID: 38282484 DOI: 10.1002/mrc.5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Benchtop NMR provides improved accessibility in terms of cost, space, and technical expertise. In turn, this encourages new users into the field of NMR spectroscopy. Unfortunately, many interesting samples in education and research, from beer to whole blood, contain significant amounts of water that require suppression in 1H NMR in order to recover sample information. However, due to the significant reduction in chemical shift dispersion in benchtop NMR systems, the sample signals are much closer to the water resonance compared to those in a corresponding high-field NMR spectrum. Therefore, simply translating solvent suppression experiments intended for high-field NMR instruments to benchtop NMR systems without careful consideration can be problematic. In this study, the effectiveness of several popular water suppression schemes was evaluated for benchtop NMR applications. Emphasis is placed on pulse sequences with no, or few, adjustable parameters making them easy to implement. These fall into two main categories: (1) those based on Pre-SAT including Pre-SAT, PURGE, NOESY-PR, and g-NOESY-PR and (2) those based on binomial inversion including JRS and W5-WATERGATE. Among these schemes, solvent suppression sequences based on Pre-SAT offer a general approach for easy solvent suppression for samples with higher analyte concentrations (sucrose standard and Redbull™). However, for human urine, binomial-like sequences were required. In summary, it is demonstrated that highly efficient water suppression approaches can be implemented on benchtop NMR systems in a simple manner, despite the limited spectral dispersion, further illustrating the potential for widespread implementation of these approaches in education and research.
Collapse
Affiliation(s)
| | - Ronald Soong
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Katelyn Downey
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Flavio C Kock
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | | | | | | | | | - Myrna Simpson
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Andre Simpson
- University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Galvan D, de Aguiar LM, Bona E, Marini F, Killner MHM. Successful combination of benchtop nuclear magnetic resonance spectroscopy and chemometric tools: A review. Anal Chim Acta 2023; 1273:341495. [PMID: 37423658 DOI: 10.1016/j.aca.2023.341495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Low-field nuclear magnetic resonance (NMR) has three general modalities: spectroscopy, imaging, and relaxometry. In the last twelve years, the modality of spectroscopy, also known as benchtop NMR, compact NMR, or just low-field NMR, has undergone instrumental development due to new permanent magnetic materials and design. As a result, benchtop NMR has emerged as a powerful analytical tool for use in process analytical control (PAC). Nevertheless, the successful application of NMR devices as an analytical tool in several areas is intrinsically linked to its coupling with different chemometric methods. This review focuses on the evolution of benchtop NMR and chemometrics in chemical analysis, including applications in fuels, foods, pharmaceuticals, biochemicals, drugs, metabolomics, and polymers. The review also presents different low-resolution NMR methods for spectrum acquisition and chemometric techniques for calibration, classification, discrimination, data fusion, calibration transfer, multi-block and multi-way.
Collapse
Affiliation(s)
- Diego Galvan
- Chemistry Institute, Universidade Federal de Mato Grosso do Sul (UFMS), 79070-900, Campo Grande, MS, Brazil; Chemistry Departament, Universidade Estadual de Londrina (UEL), 86.057-970, Londrina, PR, Brazil.
| | | | - Evandro Bona
- Post-Graduation Program of Food Technology (PPGTA), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Campo Mourão, 87301-899, Campo Mourão, PR, Brazil; Post-Graduation Program of Chemistry (PPGQ), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Curitiba, 80230-901, Curitiba, PR, Brazil
| | - Federico Marini
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mário Henrique M Killner
- Chemistry Departament, Universidade Estadual de Londrina (UEL), 86.057-970, Londrina, PR, Brazil
| |
Collapse
|
4
|
Alonso-Moreno P, Rodriguez I, Izquierdo-Garcia JL. Benchtop NMR-Based Metabolomics: First Steps for Biomedical Application. Metabolites 2023; 13:614. [PMID: 37233655 PMCID: PMC10223723 DOI: 10.3390/metabo13050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Nuclear magnetic resonance (NMR)-based metabolomics is a valuable tool for identifying biomarkers and understanding the underlying metabolic changes associated with various diseases. However, the translation of metabolomics analysis to clinical practice has been limited by the high cost and large size of traditional high-resolution NMR spectrometers. Benchtop NMR, a compact and low-cost alternative, offers the potential to overcome these limitations and facilitate the wider use of NMR-based metabolomics in clinical settings. This review summarizes the current state of benchtop NMR for clinical applications where benchtop NMR has demonstrated the ability to reproducibly detect changes in metabolite levels associated with diseases such as type 2 diabetes and tuberculosis. Benchtop NMR has been used to identify metabolic biomarkers in a range of biofluids, including urine, blood plasma and saliva. However, further research is needed to optimize the use of benchtop NMR for clinical applications and to identify additional biomarkers that can be used to monitor and manage a range of diseases. Overall, benchtop NMR has the potential to revolutionize the way metabolomics is used in clinical practice, providing a more accessible and cost-effective way to study metabolism and identify biomarkers for disease diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Pilar Alonso-Moreno
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
| | - Ignacio Rodriguez
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Luis Izquierdo-Garcia
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Napolitano JG, Yang C, Conklin B, He Y, Ochoa JL. Toward the Development of Rapid, Automated Identification Tests for Neat Organic Liquids Using Benchtop NMR Instrumentation. Anal Chem 2022; 94:16095-16102. [DOI: 10.1021/acs.analchem.2c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- José G. Napolitano
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Cassie Yang
- Analytical Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Breanna Conklin
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yan He
- Analytical Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jessica L. Ochoa
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|