1
|
Arunkumar R, Kumaresan A, Sinha MK, Elango K, Ebenezer Samuel King JP, Nag P, Karuthadurai T, Baithalu RK, Mohanty TK, Kumar R, Datta TK. The cryopreservation process induces alterations in proteins associated with bull sperm quality: The equilibration process could be a probable critical control point. Front Endocrinol (Lausanne) 2022; 13:1064956. [PMID: 36568066 PMCID: PMC9787546 DOI: 10.3389/fendo.2022.1064956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
The present study quantitatively characterized the proteomic changes in bull spermatozoa induced by the cryopreservation process. We performed high-throughput comparative global proteomic profiling of freshly ejaculated (before cryopreservation), equilibrated (refrigerated storage; during cryopreservation), and frozen (ultralow temperature; after cryopreservation) bull spermatozoa. Using the liquid chromatography-mass spectrometry (LC-MS/MS) technique, a total of 1,692, 1,415, and 1,286 proteins were identified in fresh, equilibrated, and cryopreserved spermatozoa, respectively. When the proteome of fresh spermatozoa was compared with equilibrated spermatozoa, we found that 166 proteins were differentially expressed. When equilibrated spermatozoa were compared with cryopreserved spermatozoa, we found that 147 proteins were differentially expressed between them. Similarly, we found that 156 proteins were differentially expressed between fresh and cryopreserved spermatozoa. Among these proteins, the abundance of 105 proteins was lowered during the equilibration process itself, while the abundance of 43 proteins was lowered during ultralow temperature preservation. Remarkably, the equilibration process lowered the abundance of sperm proteins involved in energy metabolism, structural integrity, and DNA repair and increased the abundance of proteins associated with proteolysis and protein degradation. The abundance of sperm proteins associated with metabolism, cGMP-PKG (cyclic guanosine 3',5'-monophosphate-dependent protein kinase G) signaling, and regulation of the actin cytoskeleton was also altered during the equilibration process. Collectively, the present study showed that the equilibration step in the bull sperm cryopreservation process was the critical point for sperm proteome, during which a majority of proteomic alterations in sperm occurred. These findings are valuable for developing efficient protocols to minimize protein damage and to improve the quality and fertility of cryopreserved bull spermatozoa.
Collapse
Affiliation(s)
- Ramasamy Arunkumar
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
- *Correspondence: Arumugam Kumaresan, ;
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Thirumalaisamy Karuthadurai
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Rubina Kumari Baithalu
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Tushar Kumar Mohanty
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Indian Council for Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Indian Council for Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, India
| |
Collapse
|
2
|
Salgado-Lucio ML, Ramírez-Ramírez D, Jorge-Cruz CY, Roa-Espitia AL, Hernández-González EO. FAK regulates actin polymerization during sperm capacitation via the ERK2/GEF-H1/RhoA signaling pathway. J Cell Sci 2020; 133:jcs239186. [PMID: 32107290 DOI: 10.1242/jcs.239186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/08/2020] [Indexed: 12/18/2022] Open
Abstract
Actin polymerization is a crucial process during sperm capacitation. We have recently described the participation of FAK during actin polymerization in guinea pig spermatozoa. However, the mechanism by which FAK mediates these processes is unknown. Our previous data have shown that MAPK1 (hereafter referred to as ERK2) is activated during the first minutes of capacitation, and inhibition of ERK2 blocked actin polymerization and the acrosome reaction. In this current study, we found that FAK is involved in ERK2 activation - as FAK was phosphorylated at tyrosine residue 925 and bound to Grb2 - and that inhibition of FAK results in a significant decrease of ERK2 activation. We also confirmed the presence of Rho guanine nucleotide exchange factor 2 (ARHGEF2, hereafter referred to as GEF-H1), which is able to associate with RhoA during capacitation. RhoA activation and its participation in actin polymerization were also analyzed. Inhibition of FAK or ERK1/2 impeded GEF-H1 phosphorylation, RhoA activation, and the association between GEF-H1 and RhoA. Finally, we observed the presence of fibronectin on the sperm surface, its role in sperm-sperm interaction as well as participation of β-integrin in the activation of ERK2. Our results show that the signaling pathway downstream of fibronectin, via integrin, FAK, Grb2, MEK1/2, ERK2, GEF-H1 and RhoA regulates the actin polymerization associated with spermatozoa capacitation.
Collapse
Affiliation(s)
- Monica L Salgado-Lucio
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Danelia Ramírez-Ramírez
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Coral Y Jorge-Cruz
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Ana L Roa-Espitia
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Enrique O Hernández-González
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| |
Collapse
|
3
|
Ramírez‐Ramírez D, Salgado‐Lucio ML, Roa‐Espitia AL, Fierro R, González‐Márquez H, Cordero‐Martínez J, Hernández‐González EO. Rac1 is necessary for capacitation and acrosome reaction in guinea pig spermatozoa. J Cell Biochem 2019; 121:2864-2876. [DOI: 10.1002/jcb.29521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/10/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Danelia Ramírez‐Ramírez
- Doctorado en Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana‐Iztapalapa Ciudad de México México
| | - Monica L. Salgado‐Lucio
- Departamento de Biología CelularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional México City México
| | - Ana L. Roa‐Espitia
- Departamento de Biología CelularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional México City México
| | - Reyna Fierro
- Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐Iztapalapa Ciudad de México México
| | - Humberto González‐Márquez
- Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐Iztapalapa Ciudad de México México
| | - Joaquín Cordero‐Martínez
- Departamento de Bioquímica, Escuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional Ciudad de México México
| | - Enrique O. Hernández‐González
- Departamento de Biología CelularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional México City México
| |
Collapse
|
4
|
Angeles-Floriano T, Roa-Espitia AL, Baltiérrez-Hoyos R, Cordero-Martínez J, Elizondo G, Hernández-González EO. Absence of aryl hydrocarbon receptor alters CDC42 expression and prevents actin polymerization during capacitation. Mol Reprod Dev 2016; 83:1015-1026. [DOI: 10.1002/mrd.22736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Tania Angeles-Floriano
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| | - Ana L. Roa-Espitia
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| | - Rafael Baltiérrez-Hoyos
- Facultad de Medicina y Cirugía; Universidad Autónoma Benito Juárez de Oaxaca; Oaxaca; Cátedras CONACYT
| | - Joaquin Cordero-Martínez
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| | - Guillermo Elizondo
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| | - Enrique O. Hernández-González
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| |
Collapse
|
5
|
Roa-Espitia AL, Hernández-Rendón ER, Baltiérrez-Hoyos R, Muñoz-Gotera RJ, Cote-Vélez A, Jiménez I, González-Márquez H, Hernández-González EO. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation. Biol Open 2016; 5:1189-99. [PMID: 27402964 PMCID: PMC5051654 DOI: 10.1242/bio.017558] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. Summary: We describe the role of FAK and focal adhesion proteins in capacitation, acrosome reaction, polymerization and remodeling of actin cytoskeleton, and how inhibition of FAK affects sperm physiology.
Collapse
Affiliation(s)
- Ana L Roa-Espitia
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07360, México Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, México D.F. 09349, México
| | - Eva R Hernández-Rendón
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07360, México
| | - Rafael Baltiérrez-Hoyos
- Universidad Autónoma Benito Juárez de Oaxaca, Facultad de Medicina y Cirugía, Oaxaca, Oaxaca 68120, México
| | | | - Antonieta Cote-Vélez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México 62210, Cuernavaca, México
| | - Irma Jiménez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, México D.F. 09349, México
| | - Humberto González-Márquez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México D.F. 09349, México
| | - Enrique O Hernández-González
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07360, México
| |
Collapse
|
6
|
Role and organization of the actin cytoskeleton during cell-cell fusion. Semin Cell Dev Biol 2016; 60:121-126. [PMID: 27476112 DOI: 10.1016/j.semcdb.2016.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022]
Abstract
Cell-cell fusion is a ubiquitous process that underlies fertilization and development of eukaryotes. This process requires fusogenic machineries to promote plasma membrane merging, and also relies on the organization of dedicated sub-cortical cytoskeletal assemblies. This review describes the role of actin structures, so called actin fusion foci, essential for the fusion of two distinct cell types: Drosophila myoblast cells, which fuse to form myotubes, and sexually differentiated cells of the fission yeast Schizosaccharomyces pombe, which fuse to form a zygote. I describe the respective composition and organization of the two structures, discuss their proposed role in promoting plasma membrane apposition, and consider the universality of similar structures for cell-cell fusion.
Collapse
|
7
|
Delgado-Buenrostro NL, Mújica A, Chiquete-Felix N, Déciga-Alcaraz A, Medina-Reyes EI, Uribe-Carvajal S, Chirino YI. Role of Wasp and the small GTPases RhoA, RhoB, and Cdc42 during capacitation and acrosome reaction in spermatozoa of English guinea pigs. Mol Reprod Dev 2016; 83:927-937. [PMID: 27182927 DOI: 10.1002/mrd.22657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/07/2016] [Indexed: 11/08/2022]
Abstract
Cytoskeleton remodeling is necessary for capacitation and the acrosome reaction in spermatozoa. F-actin is located in the acrosome and equatorial region during capacitation, but is relocated in the post-acrosomal region during the acrosome reaction in spermatozoa from bull, rat, mice, and guinea pig. Actin polymerization and relocalization are generally regulated by small GTPases that activate Wasp protein, which coordinates with Arp2/3, profilin I, and profilin II to complete cytoskeletal remodeling. This sequence of events is not completely described in spermatozoa, though. Therefore, the aim of this study was to determine if Wasp interacts with small GTPases (RhoA, RhoB, and Cdc42) and proteins (Arp2/3, profilin I, and profilin II) that co-localize with F-actin during capacitation and the acrosome reaction in English guinea pig spermatozoa obtained from the vas deferens. The spermatozoa were capacitated in calcium-free medium, incubated with an activator or an inhibitor of GTPases, and then induced to acrosome react using calcium. The distribution patterns of F-actin were compared to the patterns of Wasp and its putative interaction partners: Wasp and RhoB, but not RhoA or Cdc42, localization overlap with F-actin during capacitation and the acrosome reaction. Activation of small GTPases localized RhoB to the post-acrosomal region whereas their inhibition prevented acrosome exocytosis. Arp2/3 and profilin II appear to interact with Wasp in the post-acrosomal region and flagellum, while profilin I and Wasp could be found in the equatorial region. Thus, Wasp and F-actin distribution overlap during capacitation and acrosome reaction, and small GTPases play an important role in cytoskeleton remodeling during these processes in spermatozoa. Mol. Reprod. Dev. 83: 927-937, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Norma L Delgado-Buenrostro
- Unidad de Biomedicina UBIMED, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, CP 54090.,Sección de Bioquímica y Farmacología Humana, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán, Estado de México, CP 54743
| | - Adela Mújica
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México, CP 07360
| | - Natalia Chiquete-Felix
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México, CP 04510
| | - Alejandro Déciga-Alcaraz
- Unidad de Biomedicina UBIMED, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, CP 54090.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CP 07360
| | - Estefany I Medina-Reyes
- Unidad de Biomedicina UBIMED, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, CP 54090.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CP 07360
| | - Salvador Uribe-Carvajal
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México, CP 04510
| | - Yolanda I Chirino
- Unidad de Biomedicina UBIMED, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, CP 54090.
| |
Collapse
|
8
|
Pastén K, Bastian Y, Roa-Espitia AL, Maldonado-García D, Mendoza-Hernández G, Ortiz-García CI, Mújica A, Hernández-González EO. ADAM15 participates in fertilization through a physical interaction with acrogranin. Reproduction 2014; 148:623-34. [DOI: 10.1530/rep-14-0179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mammalian fertilization is completed by direct interaction between sperm and egg. This process is primarily mediated by both adhesion and membrane-fusion proteins found on the gamete surface. ADAM1, 2, and 3 are members of the ADAMs protein family, and have been involved in sperm–egg binding. In this study, we demonstrate the proteolytic processing of ADAM15 during epididymal maturation of guinea pig spermatozoa to produce a mature form a size of 45 kDa. We find that the size of the mature ADAM15, 45 kDa, in cauda epididymal spermatozoa indicates that the pro-domain and metalloprotease domain are absent. In addition, using indirect immunofluorescence, ADAM15 was found throughout the acrosome, at the equatorial region and along the flagellum of guinea pig spermatozoa. After acrosome reaction, ADAM15 is lost from the acrosomal region and retained in the equatorial region and flagellum. In this study, we also report the first evidence of a complex between ADAM15 and acrogranin. By immunoprecipitation, we detected a protein band of 65 kDa which co-immunoprecipated together ADAM15. Analysis of the N-terminal sequence of this 65 kDa protein has revealed its identity as acrogranin. In addition, using cell-surface labeling, ADAM15 was found to be present on the cell surface. Assays of heterologous fertilization showed that the antibody against acrogranin inhibited the sperm–egg adhesion. Interestingly, ADAM15 and acrogranin were also found associated in two breast cancer cell lines. In conclusion, our results demonstrated that ADAM15 and acrogranin are present on and associated with the surface of guinea pig spermatozoa; besides both proteins may play a role during sperm–egg binding.
Collapse
|
9
|
Lee K, Wang C, Spate L, Murphy CN, Prather RS, Machaty Z. Gynogenetic Activation of Porcine Oocytes. Cell Reprogram 2014; 16:121-9. [DOI: 10.1089/cell.2013.0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201
- These authors contributed equally to this work
| | - Chunmin Wang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907
- These authors contributed equally to this work
| | - Lee Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201
| | - Clifton N. Murphy
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907
| |
Collapse
|
10
|
Baltiérrez-Hoyos R, Roa-Espitia AL, Hernández-González EO. The association between CDC42 and caveolin-1 is involved in the regulation of capacitation and acrosome reaction of guinea pig and mouse sperm. Reproduction 2012; 144:123-34. [DOI: 10.1530/rep-11-0433] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the mammalian sperm, the acrosome reaction (AR) is considered to be a regulated secretion that is an essential requirement for physiological fertilization. The AR is the all-or-nothing secretion system that allows for multiple membrane fusion events. It is a Ca2+-regulated exocytosis reaction that has also been shown to be regulated by several signaling pathways. CDC42 has a central role in the regulated exocytosis through the activation of SNARE proteins and actin polymerization. Furthermore, the lipid raft protein caveolin-1 (CAV1) functions as a scaffold and guanine nucleotide dissociation inhibitor protein for CDC42, which is inactivated when associated with CAV1. CDC42 and other RHO proteins have been shown to localize in the acrosome region of mammalian sperm; however, their relationship with the AR is unknown. Here, we present the first evidence that CDC42 and CAV1 could be involved in the regulation of capacitation and the AR. Our findings show that CDC42 is activated early during capacitation, reaching an activation maximum after 20 min of capacitation. Spontaneous and progesterone-induced ARs were inhibited when sperm were capacitated in presence of secramine A, a specific CDC42 inhibitor. CAV1 and CDC42 were co-immunoprecipitated from the membranes of noncapacitated sperm; this association was reduced in capacitated sperm, and our data suggest that the phosphorylation (Tyr14) of CAV1 by c-Src is involved in such reductions. We suggest that CDC42 activation is favored by the disruption of the CAV1–CDC42 interaction, allowing for its participation in the regulation of capacitation and the AR.
Collapse
|
11
|
Felipe-Pérez YE, Valencia J, Juárez-Mosqueda MDL, Pescador N, Roa-Espitia AL, Hernández-González EO. Cytoskeletal proteins F-actin and β-dystrobrevin are altered by the cryopreservation process in bull sperm. Cryobiology 2011; 64:103-9. [PMID: 22209823 DOI: 10.1016/j.cryobiol.2011.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
The cryopreservation process has an important impact on sperm structure and physiology. The negative effects have been mainly observed on the plasma membrane, which is directly stabilized by the cytoskeleton. Since cytoskeleton proteins are osmosensitive and thermosensitive, the aim of this study was to evaluate the damage caused to the bull sperm cytoskeleton by cryopreservation (freezing-thawing). Fresh and frozen-thawed bull semen samples were exposed to a treatment with the neutral detergent Brij 36-T. Electron microscopy evidenced important damages at the sperm perinuclear theca after the protein extraction protocol; the perinuclear theca was partially solubilized, the perinuclear theca substructure disappeared in the cryopreserved samples. Furthermore, the sperm head's shape was significantly altered on the cryopreserved samples. Fluorescence analysis showed a decrease of the intensity of actin and dystrobrevin on the frozen-thawed samples. Western blot assays revealed a stronger signal for actin and β-dystrobrevin in the frozen-thawed sperm samples than in the fresh ones. Our results suggest that the cryopreservation process highly alters the sperm cytoskeleton stability, causing its proteins to become more fragile and therefore more susceptible to be extracted.
Collapse
|
12
|
Bastián Y, Roa-Espitia AL, Mújica A, Hernández-González EO. Calpain modulates capacitation and acrosome reaction through cleavage of the spectrin cytoskeleton. Reproduction 2010; 140:673-84. [PMID: 20716611 DOI: 10.1530/rep-09-0545] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Research on fertilization in mammalian species has revealed that Ca(2+) is an important player in biochemical and physiological events enabling the sperm to penetrate the oocyte. Ca(2+) is a signal transducer that particularly mediates capacitation and acrosome reaction (AR). Before becoming fertilization competent, sperm must experience several molecular, biochemical, and physiological changes where Ca(2+) plays a pivotal role. Calpain-1 and calpain-2 are Ca(2+)-dependent proteases widely studied in mammalian sperm; they have been involved in capacitation and AR but little is known about their mechanism. In this work, we establish the association of calpastatin with calpain-1 and the changes undergone by this complex during capacitation in guinea pig sperm. We found that calpain-1 is relocated and translocated from cytoplasm to plasma membrane (PM) during capacitation, where it could cleave spectrin, one of the proteins of the PM-associated cytoskeleton, and facilitates AR. The aforementioned results were dependent on the calpastatin phosphorylation and the presence of extracellular Ca(2+). Our findings underline the contribution of the sperm cytoskeleton in the regulation of both capacitation and AR. In addition, our findings also reveal one of the mechanisms by which calpain and calcium exert its function in sperm.
Collapse
Affiliation(s)
- Yadira Bastián
- Deparment of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
13
|
Impact of marine drugs on cytoskeleton-mediated reproductive events. Mar Drugs 2010; 8:881-915. [PMID: 20479959 PMCID: PMC2866467 DOI: 10.3390/md8040881] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/02/2010] [Accepted: 03/23/2010] [Indexed: 12/30/2022] Open
Abstract
Marine organisms represent an important source of novel bioactive compounds, often showing unique modes of action. Such drugs may be useful tools to study complex processes such as reproduction; which is characterized by many crucial steps that start at gamete maturation and activation and virtually end at the first developmental stages. During these processes cytoskeletal elements such as microfilaments and microtubules play a key-role. In this review we describe: (i) the involvement of such structures in both cellular and in vitro processes; (ii) the toxins that target the cytoskeletal elements and dynamics; (iii) the main steps of reproduction and the marine drugs that interfere with these cytoskeleton-mediated processes. We show that marine drugs, acting on microfilaments and microtubules, exert a wide range of impacts on reproductive events including sperm maturation and motility, oocyte maturation, fertilization, and early embryo development.
Collapse
|
14
|
Bronson R. What the sperm says and the egg hears - a tale of two proteins and more. Am J Reprod Immunol 2009; 62:357-64. [PMID: 19895373 DOI: 10.1111/j.1600-0897.2009.00758.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
While considerable information exists regarding the early interactions of spermatozoon and egg that lead to successful fertilization, the molecular biology of events that result in the incorporation of the spermatozoon within the cortical ooplasm is largely undefined. There is circumstantial evidence suggesting that this process involves the interactions of specific oolemmal receptors and their ligands on sperm that bear similarities to mechanisms used in phagocytosis by macrophages. We have postulated that the egg may act as a 'non-professional phagocyte' during its association with the spermatozoon. This review surveys those events, provides an historical context, and creates a paradigm for further investigation.
Collapse
Affiliation(s)
- Richard Bronson
- Departments of Obstetrics & Gynecology and Pathology, Stony Brook University Medical Center, Stony Brook, NY 11794-8091, USA.
| |
Collapse
|
15
|
Colás C, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JÁ. Changes in Actin Distribution of Ram Spermatozoa under Different Experimental Conditions. Reprod Domest Anim 2009; 44:221-7. [DOI: 10.1111/j.1439-0531.2007.01033.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Chiquete-Felix N, Hernández JM, Méndez JA, Zepeda-Bastida A, Chagolla-López A, Mújica A. In guinea pig sperm, aldolase A forms a complex with actin, WAS, and Arp2/3 that plays a role in actin polymerization. Reproduction 2009; 137:669-78. [PMID: 19151127 DOI: 10.1530/rep-08-0353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glycolytic enzymes have, in addition to their role in energy production, other functions in the regulation of cellular processes. Aldolase A has been reported to be present in sperm, playing a key role in glycolysis; however, despite its reported interactions with actin and WAS, little is known about a non-glycolytic role of aldolase A in sperm. Here, we show that in guinea pig spermatozoa, aldolase A is tightly associated to cytoskeletal structures where it interacts with actin, WAS, and Arp2/3. We show that aldolase A spermatozoa treatment increases their polymerized actin levels. In addition, we show that there is a direct correlation between the levels of polymerized actin and the levels of aldolase A-actin interaction. Our results suggest that aldolase A functions as a bridge between filaments of actin and the actin-polymerizing machinery.
Collapse
Affiliation(s)
- Natalia Chiquete-Felix
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), PC07360 México DF, Mexico
| | | | | | | | | | | |
Collapse
|
17
|
Puppo A, Chun JT, Gragnaniello G, Garante E, Santella L. Alteration of the cortical actin cytoskeleton deregulates Ca2+ signaling, monospermic fertilization, and sperm entry. PLoS One 2008; 3:e3588. [PMID: 18974786 PMCID: PMC2570615 DOI: 10.1371/journal.pone.0003588] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 10/10/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND When preparing for fertilization, oocytes undergo meiotic maturation during which structural changes occur in the endoplasmic reticulum (ER) that lead to a more efficient calcium response. During meiotic maturation and subsequent fertilization, the actin cytoskeleton also undergoes dramatic restructuring. We have recently observed that rearrangements of the actin cytoskeleton induced by actin-depolymerizing agents, or by actin-binding proteins, strongly modulate intracellular calcium (Ca2+) signals during the maturation process. However, the significance of the dynamic changes in F-actin within the fertilized egg has been largely unclear. METHODOLOGY/PRINCIPAL FINDINGS We have measured changes in intracellular Ca2+ signals and F-actin structures during fertilization. We also report the unexpected observation that the conventional antagonist of the InsP(3) receptor, heparin, hyperpolymerizes the cortical actin cytoskeleton in postmeiotic eggs. Using heparin and other pharmacological agents that either hypo- or hyperpolymerize the cortical actin, we demonstrate that nearly all aspects of the fertilization process are profoundly affected by the dynamic restructuring of the egg cortical actin cytoskeleton. CONCLUSIONS/SIGNIFICANCE Our findings identify important roles for subplasmalemmal actin fibers in the process of sperm-egg interaction and in the subsequent events related to fertilization: the generation of Ca2+ signals, sperm penetration, cortical granule exocytosis, and the block to polyspermy.
Collapse
Affiliation(s)
- A. Puppo
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Jong T. Chun
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | | | - Ezio Garante
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Luigia Santella
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| |
Collapse
|
18
|
Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC SYSTEMS BIOLOGY 2008; 2:19. [PMID: 18294385 PMCID: PMC2291030 DOI: 10.1186/1752-0509-2-19] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 02/22/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Male infertility is a major problem for mammalian reproduction. However, molecular details including the underlying mechanisms of male fertility are still not known. A thorough understanding of these mechanisms is essential for obtaining consistently high reproductive efficiency and to ensure lower cost and time-loss by breeder. RESULTS Using high and low fertility bull spermatozoa, here we employed differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) and identified 125 putative biomarkers of fertility. We next used quantitative Systems Biology modeling and canonical protein interaction pathways and networks to show that high fertility spermatozoa differ from low fertility spermatozoa in four main ways. Compared to sperm from low fertility bulls, sperm from high fertility bulls have higher expression of proteins involved in: energy metabolism, cell communication, spermatogenesis, and cell motility. Our data also suggests a hypothesis that low fertility sperm DNA integrity may be compromised because cell cycle: G2/M DNA damage checkpoint regulation was most significant signaling pathway identified in low fertility spermatozoa. CONCLUSION This is the first comprehensive description of the bovine spermatozoa proteome. Comparative proteomic analysis of high fertility and low fertility bulls, in the context of protein interaction networks identified putative molecular markers associated with high fertility phenotype.
Collapse
Affiliation(s)
- Divyaswetha Peddinti
- Department of Basic Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Sperm motility is a must for natural fertilization to occur. During their travel through the epididymis, mammalian spermatozoa gradually acquire the ability to move. This is accomplished through a sliding movement of the outer doublet microtubules of the axoneme which is energized by the dynein ATPase. Within its complex structure, the mammalian sperm flagellum contains F-actin and thus, we decided to test in the guinea pig sperm flagellum the role of F-actin in motility. During maturation, capacitation, and the acrosome reaction, a gradual decrease of the relative concentration of F-actin was observed. Motility increased as spermatozoa became able to fertilize. Gelsolin, phalloidin, and KI inhibited sperm motility. Gelsolin canceled sperm motility within 20 min of treatment while 0.6 M KI had immediate effects. Phalloidin diminished hyperactive sperm motility slightly. All three compounds significantly increased the relative concentration of F-actin. Latrunculins are conventional drugs that destabilize the F-actin cytoskeleton. Latrunculin A (LAT A) did not affect sperm motility; but significantly increased F-actin relative concentration. The results suggested that in guinea pig spermatozoa, randomly severing F-actin filaments inhibits flagellar motility; while end filament alteration does not. Thus, specific filament regions seem to be important for sperm motility.
Collapse
Affiliation(s)
- Yenia Azamar
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), México DF, México
| | | | | |
Collapse
|
20
|
Sánchez-Gutiérrez M, Delgado-Buenrostro NL, Zárate-Grande M, Uribe S, Mújica A. In guinea pig spermatozoa, the procaine-promoted synchronous acrosome reaction results in highly fertile cells exhibiting normal F-actin distribution. Reprod Toxicol 2006; 21:208-15. [PMID: 16309886 DOI: 10.1016/j.reprotox.2005.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 08/19/2005] [Accepted: 08/26/2005] [Indexed: 01/04/2023]
Abstract
In guinea pig spermatozoa, procaine induces Ca(2+) independent hyperactivated motility suggestive of sperm capacitation. Nonetheless, in the presence of high extracellular Ca(2+), procaine increases cytoplasmic Ca(2+). We analyze the procaine effect on the acrosome reaction (AR) processes in guinea pig spermatozoa. Results indicated that: (i) in spermatozoa pre-incubated 5-30 min in MCM-PLG medium, procaine produced synchronous AR, (ii) the acrosome-reacted sperm number increased with the capacitation period before procaine treatment and with procaine concentration, (iii) acrosome reaction was blocked when Ca(2+) was omitted, (iv) plasma membrane-outer acrosomal membrane fusion started within 2 min after procaine treatment, (v) in acrosome-reacted spermatozoa, actin polymerization occurred and F-actin was located in the equatorial and post-acrosomal regions and (vi) procaine treatment resulted in highly fertile acrosome-reacted spermatozoa. This is the first report indicating that procaine promotes synchronic AR in mammalian spermatozoa. If procaine promotes premature AR of spermatozoa in vivo, it might be a factor for infertility in patients exposed to this local anesthetic.
Collapse
Affiliation(s)
- Manuel Sánchez-Gutiérrez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apdo. Postal 14740, 07000 México D.F., México
| | | | | | | | | |
Collapse
|
21
|
Delgado-Buenrostro NL, Hernández-González EO, Segura-Nieto M, Mújica A. Actin polymerization in the equatorial and postacrosomal regions of guinea pig spermatozoa during the acrosome reaction is regulated by G proteins. Mol Reprod Dev 2005; 70:198-210. [PMID: 15570614 DOI: 10.1002/mrd.20192] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The acrosome reaction (AR) is an exocytotic process of spermatozoa, and an absolute requirement for fertilization. During AR, actin polymerization is necessary in the equatorial and postacrosomal regions of guinea pig sperm for spermatozoa incorporation deep into the egg cytoplasm, but not for plasma membrane (PM) fusion nor the early steps of egg activation. To identify the mechanisms involved in this sperm actin polymerization, we searched for the protein members, known to be involved in a highly conserved model, that may apply to any cellular process in which de novo actin polymerization occurs from G protein activation. WASP, Arp 2/3, profilins I and II, and Cdc42, RhoA and RhoB GTPases were localized by indirect immunofluorescence (IIF) in guinea pig spermatozoa and their presence corroborated by Western blotting. WASP and profilin II were translocated to the postacrosomal region (Arp2/3 already were there) in long-term capacitated and acrosome-reacted spermatozoa, at the same time as actin polymerization occurred. These events were inhibited by GDP-beta-S and promoted by lysophosphatidic acid (LPA) and GTP-gamma-S, a small GTPase inhibitor and two activators, respectively. By immunoprecipitation, Cdc42-WASp association was identified in capacitated but not in noncapacitated gametes. Polymerized actin in the postacrosomal region is apparently anchored both to the postacrosomal perinuclear theca region and the overlying PM. Results suggest that GTPases are involved in sperm actin polymerization, in the postacrosomal region and the mechanism for polymerization might fit a previously proposed model (Mullins, 2000: Curr Opin Cell Biol 12:91-96).
Collapse
Affiliation(s)
- Norma Laura Delgado-Buenrostro
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07000 México D.F., México
| | | | | | | |
Collapse
|
22
|
Breitbart H, Cohen G, Rubinstein S. Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction 2005; 129:263-8. [PMID: 15749953 DOI: 10.1530/rep.1.00269] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In order to fertilize, the mammalian spermatozoa should reside in the female reproductive tract for several hours, during which they undergo a series of biochemical modifications collectively called capacitation. Only capacitated sperm can undergo the acrosome reaction after binding to the egg zona pellucida, a process which enables sperm to penetrate into the egg and fertilize it. Polymerization of globular (G)-actin to filamentous (F)-actin occurs during capacitation, depending on protein kinase A activation, protein tyrosine phosphorylation, and phospholipase D activation. F-actin formation is important for the translocation of phospholipase C from the cytosol to the sperm plasma membrane during capacitation. Prior to the occurrence of the acrosome reaction, the F-actin should undergo depolymerization, a necessary process which enables the outer acrosomal membrane and the overlying plasma membrane to come into close proximity and fuse. The binding of the capacitated sperm to the zona pellucida induces a fast increase in sperm intracellular calcium, activation of actin severing proteins which break down the actin fibers, and allows the acrosome reaction to take place.
Collapse
Affiliation(s)
- Haim Breitbart
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | |
Collapse
|
23
|
Cesari A, Sánchez JJ, Biancotti JC, Vazquez-Levin MH, Kaiser G, Palma GA, Alberio R, Vincenti AE, Fornés MW. Immunolocalization of bovine sperm protease BSp120 by light and electron microscopy during capacitation and the acrosome reaction: Its role in in vitro fertilization. Mol Reprod Dev 2004; 69:411-8. [PMID: 15457518 DOI: 10.1002/mrd.20100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mammalian fertilization involves various steps in which the participation of specific enzymes has been demonstrated by numerous studies. Acrosin is one of the most widely acrosomal protease in mammalian spermatozoa studied, including bovine; however, other proteases have also been described. A new trypsin-like serine protease named bovine serine protease of 120 kDa (BSp120) and its pre-cursor BSp66 (66 kDa) were identified in bovine spermatozoa. Cytological and ultrastructural immunolocalization studies on BSp120 were performed in live and fixed cells. Immunoflorescence assays with specific polyclonal antibodies revealed localization of BSp120 on the sperm head, with a signal homogeneously distributed over the acrosome resembling a horseshoe. After the acrosome reaction, sperm showed a patchy pattern in the acrosomal cap. Immune electron microscopy analysis indicated that BSp120 is located over the head plasma membrane of capacitated spermatozoa and acrosome reacting spermatozoa. To assess BSp120 function in sperm-oocyte interaction, in vitro fertilization studies were conducted. Oocytes were incubated with spermatozoa pre-treated with anti-BSp120, anti-guinea pig acrosin, and anti-BSp120 plus anti-guinea pig acrosin. Pre-treatment of bovine spermatozoa with antibodies towards each protein did not significantly modify fertilization rates. However, when both anti-acrosin and anti-BSp120 antibodies were simultaneously added, there was a significant decrease in the fertilization rate, suggesting that both enzymes may be required for fertilization. Altogether, the results from the present study described the localization of BSp120 over the acrosome of bovine sperm, and suggest its involvement in fertilization.
Collapse
Affiliation(s)
- Andreina Cesari
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sutovsky P, Manandhar G, Wu A, Oko R. Interactions of sperm perinuclear theca with the oocyte: implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc Res Tech 2003; 61:362-78. [PMID: 12811742 DOI: 10.1002/jemt.10350] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Perinuclear theca (PT) is the cytoskeletal coat of mammalian sperm nucleus that is removed from the sperm head at fertilization. PT harbors the sperm borne, oocyte-activating factor (SOAF), a yet-to-be-characterized substance responsible for triggering the signaling cascade of oocyte activation, thought to be dependent on intra-oocyte calcium release. The present article reviews the current knowledge on the biogenesis and molecular composition of sperm PT. Possible functions of sperm PT during natural and assisted fertilization, and in the initiation of embryonic development are discussed. Furthermore, evidence is provided that SOAF is transferred from the sperm PT to oocyte cytoplasm through the internalization and rapid solubilization of the post-acrosomal PT. It is shown that during natural fertilization the sperm PT dissolves in the oocyte cytoplasm concomitantly with sperm nuclear decondensation and the initiation of pronuclear development. SOAF activity is preserved in the differentially extracted sperm heads only if the integrity of PT is maintained. After intracytoplasmic sperm injection (ICSI), activation occurs only in those oocytes in which the injected spermatozoon displays complete or partial dissolution of PT. In the latter case, the residual PT of the sub-acrosomal and/or post-acrosomal sperm region may persist on the apical surface of the sperm nucleus/male pronucleus and may cause a delay or arrest of zygotic development. We propose that the sperm PT harbors SOAF in the post-acrosomal sheath, as this is the first part of the sperm cytosol to enter the oocyte cytoplasm and its disassembly appears sufficient to initiate the early events of oocyte activation. Dissolution of the sub-acrosomal part of the PT, on the other hand, appears necessary to insure complete DNA decondensation in the internalized sperm nucleus and initiate DNA synthesis of both pronuclei. The release of the SOAF from the sperm head into oocyte cytoplasm at fertilization ultimately leads to the activation of oocyte mechanism including the completion of the meiotic cell cycle, pronuclear development and anti-polyspermy defense.
Collapse
Affiliation(s)
- Peter Sutovsky
- Department of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-Columbia, Missouri 65211-5300, USA.
| | | | | | | |
Collapse
|