1
|
Cui W. Oocyte Spontaneous Activation: An Overlooked Cellular Event That Impairs Female Fertility in Mammals. Front Cell Dev Biol 2021; 9:648057. [PMID: 33763428 PMCID: PMC7982476 DOI: 10.3389/fcell.2021.648057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023] Open
Abstract
In mammals, including humans, mature oocytes are ovulated into the oviduct for fertilization. Normally, these oocytes are arrested at metaphase of the second meiosis (MII), and this arrest can be maintained for a certain period, which is essential for fertilization in vivo and oocyte manipulations in vitro, such as assisted reproduction in clinics and nuclear/spindle transfer in laboratories. However, in some species and under certain circumstances, exit from MII occurs spontaneously without any obvious stimulation or morphological signs, which is so-called oocyte spontaneous activation (OSA). This mini-review summarizes two types of OSA. In the first type (e.g., most rat strains), oocytes can maintain MII arrest in vivo, but once removed out, oocytes undergo OSA with sister chromatids separated and eventually scattered in the cytoplasm. Because the stimulation is minimal (oocyte collection itself), this OSA is incomplete and cannot force oocytes into interphase. Notably, once re-activated by sperm or chemicals, those scattered chromatids will form multiple pronuclei (MPN), which may recapitulate certain MPN and aneuploidy cases observed in fertility clinics. The second type of OSA occurs in ovarian oocytes (e.g., certain mouse strains and dromedary camel). Without ovulation or fertilization, these OSA-oocytes can initiate intrafollicular development, but these parthenotes cannot develop to term due to aberrant genomic imprinting. Instead, they either degrade or give rise to ovarian teratomas, which have also been reported in female patients. Last but not the least, genetic models displaying OSA phenotypes and the lessons we can learn from animal OSA for human reproduction are also discussed.
Collapse
Affiliation(s)
- Wei Cui
- Department of Veterinary and Animal Sciences, Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
2
|
Darbandi S, Darbandi M, Khorram Khorshid HR, Sadeghi MR, Agarwal A, Sengupta P, Al-Hasani S, Akhondi MM. Ooplasmic transfer in human oocytes: efficacy and concerns in assisted reproduction. Reprod Biol Endocrinol 2017; 15:77. [PMID: 28969648 PMCID: PMC5625659 DOI: 10.1186/s12958-017-0292-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ooplasmic transfer (OT) technique or cytoplasmic transfer is an emerging technique with relative success, having a significant status in assisted reproduction. This technique had effectively paved the way to about 30 healthy births worldwide. Though OT has long been invented, proper evaluation of the efficacy and risks associated with this critical technique has not been explored properly until today. This review thereby put emphasis upon the applications, efficacy and adverse effects of OT techniques in human. MAIN BODY Available reports published between January 1982 and August 2017 has been reviewed and the impact of OT on assisted reproduction was evaluated. The results consisted of an update on the efficacy and concerns of OT, the debate on mitochondrial heteroplasmy, apoptosis, and risk of genetic and epigenetic alteration. SHORT CONCLUSION The application of OT technique in humans demands more clarity and further development of this technique may successfully prove its utility as an effective treatment for oocyte incompetence.
Collapse
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH USA
| | - Pallav Sengupta
- Physiology Unit Faculty of Medicine Lincoln University College, Petaling Jaya, Malaysia
| | - Safaa Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany
| | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Prasad S, Tiwari M, Koch B, Chaube SK. Morphological, cellular and molecular changes during postovulatory egg aging in mammals. J Biomed Sci 2015; 22:36. [PMID: 25994054 PMCID: PMC4440248 DOI: 10.1186/s12929-015-0143-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/01/2015] [Indexed: 11/29/2022] Open
Abstract
Postovulatory aging is associated with several morphological, cellular and molecular changes that deteriorate egg quality either by inducing abortive spontaneous egg activation (SEA) or by egg apoptosis. The reduced egg quality results in poor fertilization rate, embryo quality and reproductive outcome. Although postovulatory aging-induced abortive SEA has been reported in several mammalian species, the molecular mechanism(s) underlying this process remains to be elucidated. The postovulatory aging-induced morphological and cellular changes are characterized by partial cortical granules exocytosis, zona pellucida hardening, exit from metaphase-II (M-II)arrest and initiation of extrusion of second polar body in aged eggs. The molecular changes include reduction of adenosine 3',5'- cyclic monophosphate (cAMP) level, increase of reactive oxygen species (ROS) and thereby cytosolic free calcium (Ca2+) level. Increased levels of cAMP and/or ROS trigger accumulation of Thr-14/Tyr-15 phosphorylated cyclin-dependent kinase 1 (Cdk1) on one hand and degradation of cyclin B1 through ubiquitin-mediated proteolysis on the other hand to destabilize maturation promoting factor (MPF). The destabilized MPF triggers postovulatory aging-induced abortive SEA and limits various assisted reproductive technologies (ARTs) outcome in several mammalian species. Use of certain drugs that can either increase cAMP or reduce ROS level would prevent postovulatory aging-induced deterioration in egg quality so that more number of good quality eggs can be made available to improve ART outcome in mammals including human.
Collapse
Affiliation(s)
- Shilpa Prasad
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, UP, India.
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, UP, India.
| | - Biplob Koch
- Genotoxicology and Cancer Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, UP, India.
| | - Shail K Chaube
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
4
|
Li S, Kang JD, Jin JX, Hong Y, Zhu HY, Jin L, Gao QS, Yan CG, Cui CD, Li WX, Yin XJ. Effect of demecolcine-assisted enucleation on the MPF level and cyclin B1 distribution in porcine oocytes. PLoS One 2014; 9:e91483. [PMID: 24626152 PMCID: PMC3953396 DOI: 10.1371/journal.pone.0091483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/11/2014] [Indexed: 11/19/2022] Open
Abstract
Demecolcine (DEM) treatment of oocytes induces formation of a membrane protrusion containing a mass of condensed maternal chromosomes, which can be removed with minimal damage prior to somatic cell nuclear transfer (SCNT). However, the effect of this method on the distribution of maturation-promoting factor (MPF) in porcine oocytes has not been reported. Here, the level of MPF and the distribution of cyclin B1 were assessed in porcine oocytes following DEM treatment. In addition, the efficiencies of DEM-assisted and mechanical enucleation were compared, as were the development (in vitro and in vivo) of these oocytes following SCNT. MPF was uniformly distributed in oocytes that had been treated with 0.4 μg/ml DEM for 1 h. Immunofluorescence microscopy showed that in untreated oocytes, cyclin B1, the regulatory subunit of MPF, accumulated around the spindle, and was lowly detected in the cytoplasm. DEM treatment disrupted spindle microtubules, induced chromosome condensation, and reduced the level of cyclin B1 in the nuclear region. Cyclin B1 was uniformly distributed in DEM-treated oocytes and the level of MPF was increased. The potential of embryos generated from DEM-treated oocytes to develop in vivo was significantly greater than that of embryos generated from mechanically enucleated oocytes. This is the first study to report the effects of DEM-assisted enucleation of porcine oocytes on the distribution of cyclin B1. MPF in mature oocytes is important for the development of reconstructed embryos and for efficient SCNT.
Collapse
Affiliation(s)
- Suo Li
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Jun-Xue Jin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Yu Hong
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Hai-Ying Zhu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Long Jin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Qing-Shan Gao
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Chang-Guo Yan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Cheng-Du Cui
- Department of veterinary medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Wen-Xue Li
- Department of veterinary medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Xi-Jun Yin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
- * E-mail:
| |
Collapse
|
5
|
Cui W, Zhang J, Lian HY, Wang HL, Miao DQ, Zhang CX, Luo MJ, Tan JH. Roles of MAPK and spindle assembly checkpoint in spontaneous activation and MIII arrest of rat oocytes. PLoS One 2012; 7:e32044. [PMID: 22384134 PMCID: PMC3288063 DOI: 10.1371/journal.pone.0032044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/18/2012] [Indexed: 11/18/2022] Open
Abstract
Rat oocytes are well known to undergo spontaneous activation (SA) after leaving the oviduct, but the SA is abortive with oocytes being arrested in metaphase III (MIII) instead of forming pronuclei. This study was designed to investigate the mechanism causing SA and MIII arrest. Whereas few oocytes collected from SD rats at 13 h after hCG injection that showed 100% of mitogen-activated protein kinase (MAPK) activities activated spontaneously, all oocytes recovered 19 h post hCG with MAPK decreased to below 75% underwent SA during in vitro culture. During SA, MAPK first declined to below 45% and then increased again to 80%; the maturation-promoting factor (MPF) activity fluctuated similarly but always began to change ahead of the MAPK activity. In SA oocytes with 75% of MAPK activities, microtubules were disturbed with irregularly pulled chromosomes dispersed over the spindle and the spindle assembly checkpoint (SAC) was activated. When MAPK decreased to 45%, the spindle disintegrated and chromosomes surrounded by microtubules were scattered in the ooplasm. SA oocytes entered MIII and formed several spindle-like structures by 6 h of culture when the MAPK activity re-increased to above 80%. While SA oocytes showed one Ca2+ rise, Sr2+-activated oocytes showed several. Together, the results suggested that SA stimuli triggered SA in rat oocytes by inducing a premature MAPK inactivation, which led to disturbance of spindle microtubules. The microtubule disturbance impaired pulling of chromosomes to the spindle poles, caused spindle disintegration and activated SAC. The increased SAC activity reactivated MPF and thus MAPK, leading to MIII arrest.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
- * E-mail:
| |
Collapse
|
6
|
Chebotareva T, Taylor J, Mullins JJ, Wilmut I. Rat eggs cannot wait: Spontaneous exit from meiotic metaphase-II arrest. Mol Reprod Dev 2011; 78:795-807. [PMID: 21910153 DOI: 10.1002/mrd.21385] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/15/2011] [Indexed: 11/06/2022]
Abstract
Mammalian eggs await fertilisation while arrested at the second metaphase stage of meiotic division. A network of signalling pathways enables the establishment and maintenance of this metaphase-II arrest. In the absence of fertilisation, mammalian eggs can spontaneously exit metaphase II when parthenogenetically stimulated, or sometimes without any obvious stimulation. Ovulated rat eggs abortively release from metaphase-II arrest once removed from egg donors. Spontaneously activated rat eggs extrude the second polar body and proceed to the so-called metaphase III-'like' stage, with clumps of condensed chromatin scattered in the egg cytoplasm. It is still unclear what makes rat eggs susceptible to spontaneous activation; however, a vague picture of the signalling pathways involved in the process of spontaneous activation is beginning to emerge. Such cell cycle instability is one of the major reasons why it is more difficult to establish nuclear transfer in the rat. This review examines the known predisposing factors and biochemical mechanisms involved in spontaneous activation. The strategies used to prevent spontaneous metaphase-II release in rat eggs will also be discussed.
Collapse
Affiliation(s)
- Tatiana Chebotareva
- MRC Centre for Regenerative Medicine, Edinburgh University, Edinburgh, Scotland, UK.
| | | | | | | |
Collapse
|
7
|
Jin YX, Cui XS, Yu XF, Han YJ, Kong IK, Kim NH. Alterations of spindle and microfilament assembly in aged cat oocytes. Reprod Domest Anim 2011; 45:865-71. [PMID: 21457360 DOI: 10.1111/j.1439-0531.2009.01400.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To obtain insights into the cytoplasmic maturation status of cat oocytes recovered from cat ovaries following hormone treatment, we first examined microtubule and microfilament assembly in cat oocytes recovered from hormone-treated ovaries at various stages of maturation. Additionally, we determined the alteration of spindle and microfilament assembly, as well as mitogen-activated protein kinase (MAPK) activity, in cat oocytes at 0, 6, 12 and 18 h of further maturation in vitro. We then looked at pronuclear formation and cleavage of these oocytes following parthenogenetic activation. Similar to other species, microtubules are present in germinal vesicle (GV) stage cat oocytes, and following GV breakdown, microtubules encompassed condensed chromatin particles to form the meiotic metaphase spindle. Microfilaments were located in the cortex and around the GV. A microfilament-rich area, in which the chromatin is located, was observed in the oocytes during meiotic maturation. Maturation rates in aged oocytes (cultured for 18 h) were increased when compared with that in relatively fresh oocytes (<12 h culture), and the number of oocytes with abnormal spindle shapes was also increased in aged oocytes. Furthermore, in aged oocytes, the incidence of the metaphase plate observed outside the thick microfilament domain was higher compared with that of young oocytes, and this seemed to result in an increase in the number of oocytes with two pronuclei and one polar body following activation. Western blot analysis revealed a decrease in MAPK activity in aged cat oocytes. Taken collectively, these results suggest that the optimum time for improved cytoplasmic maturation is <12 h in cat oocytes recovered from hormone-treated ovaries.
Collapse
Affiliation(s)
- Y-X Jin
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | | | | | | | | | | |
Collapse
|
8
|
Consiglio AL, Arrighi S, Cremonesi F. Time Course ofIn VitroMaturation of Compact Cumulus Horse Oocytes after Roscovitine-Induced Meiotic Inhibition: Effects on the Coordination Between Nuclear and Cytoplasmic Maturation. Reprod Domest Anim 2010; 45:e313-22. [DOI: 10.1111/j.1439-0531.2009.01565.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Popova E, Bader M, Krivokharchenko A. Efficient production of nuclear transferred rat embryos by modified methods of reconstruction. Mol Reprod Dev 2009; 76:208-16. [PMID: 18543283 DOI: 10.1002/mrd.20944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study we investigated spontaneous oocyte activation and developmental ability of rat embryos of the SD-OFA substrain. We also tried to improve the somatic cell nuclear transfer (SCNT) technique in the rat by optimizing methods for the production of reconstructed embryos. About 20% of oocytes extruded the second polar body after culture for 3 hr in vitro and 84% of oocytes were at the MII stage. MG132 blocked spontaneous activation but decreased efficiency of parthenogenetic activation. Pronuclear formation was more efficient in strontium-activated oocytes (66.1-80.9%) compared to roscovitine activation (24.1-54.5%). Survival rate after enucleation was significantly higher (89.4%) after slitting the zona pellucida and then pressing the oocyte with a holding pipette in medium without cytochalasin B (CB) compared to the conventional protocol using aspiration of the chromosomes after CB treatment (67.7%). Exposure of rat ova to UV light for 30 sec did not decrease their in vitro developmental capacity. Intracytoplasmic cumulus cell injection dramatically decreased survival rate of oocytes (42%). In contrast, 75.9% of oocytes could be successfully electrofused. Development to the 2-cell stage was reduced after SCNT (24.6% compared 94.6% in controls) and none from 244 reconstructed embryos developed in vitro beyond this stage. After overnight in vitro culture, 74.4% of the SCNT embryos survived and 56.1% formed pronuclei. The pregnancy rate of 33 recipients after the transfer of 695 of these cloned embryos was, however, very low (18.2%) and only six implantation sites could be detected (0.9%) without any live fetuses and offspring.
Collapse
Affiliation(s)
- Elena Popova
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | | | | |
Collapse
|
10
|
Mizumoto S, Kato Y, Tsunoda Y. The Developmental Potential of Parthenogenetic and Somatic Cell Nuclear-Transferred Rat Oocytes In Vitro. CLONING AND STEM CELLS 2008; 10:453-9. [DOI: 10.1089/clo.2008.0017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shigetoshi Mizumoto
- Laboratory of Animal Reproduction, College of Agriculture, Kinki University, Nara, 631-8505, Japan
| | - Yoko Kato
- Laboratory of Animal Reproduction, College of Agriculture, Kinki University, Nara, 631-8505, Japan
| | - Yukio Tsunoda
- Laboratory of Animal Reproduction, College of Agriculture, Kinki University, Nara, 631-8505, Japan
| |
Collapse
|
11
|
AI JS, WANG Q, LI M, SHI LH, OLA SI, XIONG B, YIN S, CHEN DY, SUN QY. Roles of Microtubules and Microfilaments in Spindle Movements During Rat Oocyte Meiosis. J Reprod Dev 2008; 54:391-6. [DOI: 10.1262/jrd.20034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jun-Shu AI
- State Key Laboratory of Reproductive Biology, Institute of Zoology
- Graduate School, Chinese Academy of Sciences
| | - Qiang WANG
- State Key Laboratory of Reproductive Biology, Institute of Zoology
- Graduate School, Chinese Academy of Sciences
| | - Mo LI
- State Key Laboratory of Reproductive Biology, Institute of Zoology
- Graduate School, Chinese Academy of Sciences
| | - Li-Hong SHI
- State Key Laboratory of Reproductive Biology, Institute of Zoology
- Graduate School, Chinese Academy of Sciences
| | - Safiriyu Idowu OLA
- State Key Laboratory of Reproductive Biology, Institute of Zoology
- Department of Animal Science, Obafemi Awolowo University
| | - Bo XIONG
- State Key Laboratory of Reproductive Biology, Institute of Zoology
- Graduate School, Chinese Academy of Sciences
| | - Shen YIN
- State Key Laboratory of Reproductive Biology, Institute of Zoology
- Graduate School, Chinese Academy of Sciences
| | - Da-Yuan CHEN
- State Key Laboratory of Reproductive Biology, Institute of Zoology
| | - Qing-Yuan SUN
- State Key Laboratory of Reproductive Biology, Institute of Zoology
| |
Collapse
|
12
|
Ross PJ, Yabuuchi A, Cibelli JB. Oocyte spontaneous activation in different rat strains. CLONING AND STEM CELLS 2007; 8:275-82. [PMID: 17196092 DOI: 10.1089/clo.2006.8.275] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oocyte spontaneous activation (OSA) has been reported to occur during in vitro culture of ovulated rat oocytes. The objective of this study was to compare the rate of oocyte spontaneous activation and the level of maturation promoting factor (MPF) activity in oocytes from different strains. Twelve strains were selected from two commercial sources. Females were superovulated and oocytes collected 17 h after hCG injection. Denuded oocytes were cultured in M16 medium under oil at 37 degrees C and 5% CO(2) in air. The proportion of activated oocytes was determined after 6 h of in vitro culture. Data were compared by analysis of variance (ANOVA), considering each animal as an experimental unit. MPF activity was determined in oocytes from the different strains at 0, 1.5, and 3 h after oocyte collection. The log ratio of the MPF activity at 1.5 and 3 h relative to 0 hours for each animal was analyzed by ANOVA. While significant (p < 0.01) differences were observed between strains in the rate of OSA, there were no differences between strains in the level of MPF during the time points measured (p > 0.3).
Collapse
Affiliation(s)
- P J Ross
- Cellular Reprogramming Laboratory, Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|
13
|
Lin TA, Tsay C, Chen CH, Tang PC, Ju JC. Nuclear and cytoskeletal dynamics during oocyte maturation and development of somatic cell cloned pig embryos injected with membrane disintegrated donor cells. Anim Reprod Sci 2006; 103:107-19. [PMID: 17204377 DOI: 10.1016/j.anireprosci.2006.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 11/28/2006] [Accepted: 12/04/2006] [Indexed: 11/27/2022]
Abstract
The objectives of this study were to characterize the nuclear and cytoskeletal changes of pig oocytes during in vitro maturation (IVM) and the development of the reconstructed embryos after injection with membrane intact or disintegrated donor cells. Cumulus-oocyte complexes (COCs) were collected from abattoir ovaries by follicle (2-8mm) aspiration. In Experiment 1, COCs were cultured in NCSU-23 medium for 0, 11, 22, 33, and 44 h. Oocytes were fixed at different time points for nuclear and cytoskeletal labeling. Forty-three percent and 75% oocytes progressed to MII stage at 33 and 44 h after IVM culture, respectively. Dynamic shift of spindle and cytoplasmic microtubules was evident. In Experiment 2, matured oocytes were injected with either the whole cumulus cell with or without intact cell membranes after enucleation. The reconstructed oocytes were fixed at 0, 2, or 4 h after cell injection for nuclear and cytoskeletal evaluation. When an intact cumulus cell was injected, the injected cell remained intact within 4h after injection. When a cell with disintegrated membrane was injected, 59-63% (n=146) of the injected cell underwent premature chromosome condensation (PCC). In Experiment 3, the reconstructed pig oocytes received membrane-disintegrated cumulus cells or fetal fibroblasts were cultured in PZM medium. The blastocyst rate of the fibroblast-injected embryos was 10%, which was lower than the non-cloned parthenotes (33%, P<0.05) but higher than the cumulus cell-injected embryos (2.7%). These results suggest that pig oocytes are subjected to nuclear and cytoskeletal reorganization during maturation. Pig oocytes injected with membrane-disintegrated fibroblast cells support better blastocyst development of the cloned embryos.
Collapse
Affiliation(s)
- Tzu-An Lin
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
14
|
Jin YX, Lee HS, Yin XJ, Cui XS, Kong IK, Kim NH. Chromatin, microtubule and microfilament configurations in the canine oocyte. Reprod Fertil Dev 2006; 18:849-56. [PMID: 17147933 DOI: 10.1071/rd06026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 08/08/2006] [Indexed: 11/23/2022] Open
Abstract
In the present study, we observed chromatin, microtubule and microfilament distribution in canine oocytes. The germinal vesicle (GV) chromatin of canine oocytes was classified into four configurations (GV-I, -II, -III and -IV) based on the degree of chromatin separation and condensation. Oocytes recovered from follicular phase ovaries had a greater amount (68%, P < 0.05) of GV-III or GV-IV chromatin than did those from non-follicular phase ovaries (35%). The majority (86.7%) of in vivo ovulated oocytes were at GV-IV. The rates of development to GV breakdown/metaphase I/metaphase II were higher in oocytes recovered from follicular ovaries than from non-follicular ovaries. Immunostaining results revealed cytoplasmic microtubules present in all GV-stage oocytes. Following GV breakdown, microtubular asters were produced from condensed chromatin. The asters appeared to be elongated, and encompassed condensed chromatin particles to form meiotic metaphase chromatin. Microfilaments were located in the cortex and around the GV. During meiotic maturation, a microfilament-rich area, in which the chromatin is allocated, was observed in the oocyte. Our results indicate that oocytes recovered from follicular ovaries were in an advanced stage of GV, and were more competent to complete maturation compared to those from non-follicular phase ovaries. Both microtubules and microfilaments are closely associated with reconstruction of chromatin during meiotic maturation in canine oocytes.
Collapse
Affiliation(s)
- Yong-Xun Jin
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | | | | | |
Collapse
|
15
|
Schatten H, Prather RS, Sun QY. The significance of mitochondria for embryo development in cloned farm animals. Mitochondrion 2005; 5:303-21. [PMID: 16150655 DOI: 10.1016/j.mito.2005.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 05/17/2005] [Accepted: 05/31/2005] [Indexed: 11/21/2022]
Abstract
The role of mitochondria in remodeling of the donor cell nucleus in cloned animals has gained increased attention, as mitochondria interact in direct or indirect ways with the donor cell nuclear DNA. Mitochondria comprise 1% of the genetic material that is contributed to the developing embryo by the recipient oocyte and provide the energy that is required for embryo development. In this review we compare mitochondria distribution in various species and the importance of mitochondria distribution for embryo development. We also compare the inheritance pattern of mitochondria in cloned embryos that remains unresolved, as the donor cell nucleus is typically transferred with surrounding cytoplasm including mitochondria which become destroyed in some but not all species. We review the role of mitochondria in cloned farm animals with emphasis on nucleo-cytoplasmic interactions and consequences for embryo development.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, School of Veterinary Medicine, University of Missouri-Columbia, 1600 E. Rollins Street, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
16
|
Goud AP, Goud PT, Diamond MP, Van Oostveldt P, Hughes MR. Microtubule turnover in ooplasm biopsy reflects ageing phenomena in the parent oocyte. Reprod Biomed Online 2005; 11:43-52. [PMID: 16102286 DOI: 10.1016/s1472-6483(10)61297-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oviductal oocytes retrieved from superovulated B6D2F1 mice at 13.5, 16 and 19 h after human chorionic gonadotrophin (HCG) (groups A, B and C respectively, n = 382) were micromanipulated to obtain 12-20 mum sized ooplasm biopsy fragments. Experiments were divided into three sets. Ooplasmic microtubule dynamics were studied in ooplasm biopsy specimens and parent oocytes (set 1) and ooplasm biopsy specimens (set 2), whilst zona pellucida dissolution time, cortical granule loss and spindle/chromatin morphology using confocal microscopy were also studied in parent oocytes (set 2). Oocytes withstood oocyte biopsy with a high survival rate (98.2%) and the biopsied oocytes underwent successful fertilization and development (set 3). An absolute one-to-one correlation was seen between the oocyte biopsy specimens and the parent oocytes in terms of ooplasmic microtubule dynamics (set 1), and increased ooplasmic microtubule dynamics in oocyte biopsy specimens paralleled ageing phenomena in the parent oocytes (set 2). Zona pellucida dissolution time was significantly lower in parent oocytes from group A versus groups B (P = 0.032), and C (P < 0.001). (Groups A, B, C include minimal, moderate, increased ooplasmic microtubule dynamics in oocyte biopsy specimens respectively.) Oocyte cortical granule loss and spindle/chromatin abnormalities were mainly seen in group C (P < 0.001). Oocyte biopsy can thus be applied to judge age-related changes in the parent oocytes.
Collapse
Affiliation(s)
- A P Goud
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
| | | | | | | | | |
Collapse
|
17
|
Goud AP, Goud PT, Van Oostveldt P, Diamond MP, Dhont M. Dynamic changes in microtubular cytoskeleton of human postmature oocytes revert after ooplasm transfer. Fertil Steril 2004; 81:323-31. [PMID: 14967368 DOI: 10.1016/j.fertnstert.2003.06.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Revised: 06/17/2003] [Accepted: 06/17/2003] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Study of the influence of ooplasm transfer on the microtubule dynamics in human postmature oocytes. DESIGN Prospective experimental study. SETTING Academic hospital-based fertility center. MATERIALS(S): Human in vitro matured (IVM) oocytes (n = 65). Experimental groups: In set 1, sibling oocytes were processed either within 2-3 hours ("young"; n = 16) or at 12-14 hours after maturation ("presumably postmature," or PPM; n = 14). In set 2, young and PPM oocytes (n = 6 and 10, respectively) were assigned to be ooplasm donors and recipients, respectively. In set 3, PPM oocytes were used as ooplasm donors (n = 2) and recipients (n = 4). Control groups: Metaphase II oocytes from superovulated golden hamsters in set 1; sibling oocytes of ooplasm donor young (n = 4) and PPM oocytes (n = 7) in set 2; and sibling PPM oocytes in set 3 (n = 2). INTERVENTION(S) Immunocytochemistry for alphatubulin with or without treatment with taxol (Paclitaxel, a microtubule-enhancing agent) in set 1; aspiration and microinjection of approximately 20 picolitres ooplasm from donor young and PPM oocytes into recipient PPM oocytes in sets 2 and 3, respectively. Taxol treatment and tubulin immunocytochemistry on ooplasm recipients and control young and PPM sibling oocytes. MAIN OUTCOME MEASURE(S) Morphology and pattern of the microtubules in the spindle and ooplasm as evaluated by confocal microscopy and three-dimensional image reconstructions. RESULT(S) In set 1, taxol-untreated young oocytes had normal spindle morphology and orientation to the oolemma with no microtubules in the ooplasm. Taxol-treated young oocytes revealed markedly broadened spindle poles and minimal or absent ooplasmic microtubules. Taxol-untreated PPM oocytes had variable spindle morphology and a notable increase in cortical ooplasmic microtubules. Taxol treatment of PPM oocytes resulted in a marked increase in ooplasmic microtubules in addition to a broadening of spindle poles and formation of polar asters. In set 2, control young and PPM oocytes had the same findings as the corresponding oocytes in set 1. However, all ooplasm recipient PPM oocytes showed a striking diminution in ooplasmic microtubules, despite the taxol treatment, compared with their sibling PPM control oocytes in set 2 and PPM ooplasm-injected PPM oocytes in set 3. CONCLUSION(S) Postmature oocytes exhibit a dynamic increase in ooplasmic microtubules. However, these changes revert after transfer of ooplasm from young oocytes.
Collapse
Affiliation(s)
- Anuradha P Goud
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA.
| | | | | | | | | |
Collapse
|
18
|
Fan HY, Tong C, Teng CB, Lian L, Li SW, Yang ZM, Chen DY, Schatten H, Sun QY. Characterization of Polo-like kinase-1 in rat oocytes and early embryos implies its functional roles in the regulation of meiotic maturation, fertilization, and cleavage. Mol Reprod Dev 2003; 65:318-29. [PMID: 12784254 DOI: 10.1002/mrd.10283] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polo-like kinase 1 (Plk1) is a family of serine/threonine protein kinases that play important regulatory roles during mitotic cell cycle progression. In this study, Plk1 expression, subcellular localization, and possible functions during rat oocyte meiotic maturation, fertilization, and embryonic cleavages were studied by using RT-PCR, Western blot, confocal microscopy, drug-treatments, and antibody microinjection. Both the mRNA and protein of this kinase were detected in rat maturing oocytes and developing embryos. Confocal microscopy revealed that Plk1 distributed abundantly in the nucleus at the germinal vesicle (GV) stage, was associated with spindle poles during the formation of M-phase spindle, and was translocated to the spindle mid-zone at anaphase. In fertilized eggs, Plk1 was strongly stained in the cytoplasm between the apposing male and female pronuclei, from where microtubules radiated. Throughout cytokinesis, Plk1 was localized to the division plane, both during oocyte meiosis and embryonic mitosis. The specific subcellular distribution of Plk1 was distorted after disrupting the M-phase spindle, while additional aggregation dots could be induced in the cytoplasm by taxol, suggesting its intimate association with active microtubule assembly. Plk1 antibody microinjection delayed the meiotic resumption and blocked the emission of polar bodies. In conclusion, Plk1 may be a multifunctional kinase that plays pivotal regulatory roles in microtubule assembly during rat oocyte meiotic maturation, fertilization, and early embryonic mitosis.
Collapse
Affiliation(s)
- Heng-Yu Fan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Krivokharchenko A, Popova E, Zaitseva I, Vil'ianovich L, Ganten D, Bader M. Development of parthenogenetic rat embryos. Biol Reprod 2003; 68:829-36. [PMID: 12604632 DOI: 10.1095/biolreprod.102.006494] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In an effort to establish cloning technology for the rat, we tested several methods (electric stimulation, treatment with ethanol or strontium) for the parthenogenetic activation of rat oocytes. We observed marked individual differences among rats of the outbred Wistar strain in their ability to yield activatable oocytes. These differences were independent of the activation protocol and may be due to a genetic predisposition that is crucial for the parthenogenetic activation of oocytes. The activation of oocytes was dependent upon the time between superovulation of the donor animal and the collection of the embryos. Aged oocytes (derived about 24 h after superovulation) were more prone to activation by each method than were younger oocytes, and some even underwent spontaneous activation without treatment and exhibited pronuclear formation and blastocyst development. All activation methods were effective in generating parthenogenetic rat embryos, and rat parthenotes developed until implantation. However, in general, short-term (15 min) and long-term (2 h) strontium treatment was superior to stimulation by ethanol or electric pulse for parthenogenetic activation. These results will be helpful in achieving successful cloning in the rat.
Collapse
|
20
|
Yin XJ, Tani T, Yonemura I, Kawakami M, Miyamoto K, Hasegawa R, Kato Y, Tsunoda Y. Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol Reprod 2002; 67:442-6. [PMID: 12135879 DOI: 10.1095/biolreprod67.2.442] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The present study demonstrated that brief treatment of in vitro-matured porcine oocytes with demecolcine results in a membrane protrusion that contains a condensed chromosome mass, which can be easily removed by aspiration. This simple, chemically assisted method for removing maternal chromosomes enabled the production of a large number of nuclear-transferred porcine eggs. The development of eggs whose chromosomes were removed by this procedure following transfer of somatic cell nuclei to the blastocyst stage was not significantly different among groups activated using different procedures (6% to 11%) and was also not different among donor cells of different origins (3% to 9%), except for cumulus cells (0.4%). After transfer of 180 to 341 nuclear-transferred eggs that received somatic cells to 6 recipients, 2 of the recipients produced 8 healthy cloned piglets from the heart cells of a female pig. The chemically assisted method for removing maternal chromosomes was also effective for bovine and rabbit eggs.
Collapse
Affiliation(s)
- Xi Jun Yin
- Laboratory of Animal Reproduction, College of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Evidence from donated human oocytes and embryos demonstrates that the spermatozoon contributes the 'centrosome', which is critical to fertilization, and that some cases of infertility in couples are related to defects in the pathways that reconstitute the zygotic centrosome. A greater understanding of these microtubule-mediated motility events that ensure normal sperm-oocyte interactions has been made easier by the use of non-human primate gametes. Our studies using rhesus monkey gametes have shown that the cytoskeletal events during fertilization by IVF and intracytoplasmic sperm injection (ICSI) are very similar to those of human fertilization, and that manipulations of non-human primate gametes may help to test the safety and improve current strategies for reproduction, as well as develop new techniques. ICSI results in abnormal nuclear remodelling, in part due to the persistence of VAMP (vesicle-associated membrane protein), the acrosome and the perinuclear theca on the sperm head, all of which are normally removed at, or close to, the oocyte cortex during natural and in-vitro fertilization. Progression through the first cell cycle in ICSI oocytes cannot be completed until these structures have been removed from the forming male pronucleus, demonstrating unique differences between ICSI and IVF. While ICSI is of enormous therapeutic value for the treatment of male infertility, fundamental research using clinically relevant animal models is only now unravelling the cellular and molecular events that permit fertilization by sperm microinjection.
Collapse
Affiliation(s)
- Laura Hewitson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh Development Centre of the Magee-Womens Research Institute, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
22
|
SUZUKI H, TAKASHIMA Y, TOYOKAWA K. Cytoskeletal Organization of Porcine Oocytes Aged and Activated Electrically or by Sperm. J Reprod Dev 2002. [DOI: 10.1262/jrd.48.293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hiroyuki SUZUKI
- Faculty of Agriculture and Life Sciences, Hirosaki University
| | - Yoko TAKASHIMA
- Faculty of Agriculture and Life Sciences, Hirosaki University
| | - Koji TOYOKAWA
- Faculty of Agriculture and Life Sciences, Hirosaki University
| |
Collapse
|
23
|
Jiang JY, Mizuno S, Mizutani E, Sasada H, Sato E. Parthenogenetic activation and subsequent development of rat oocytes in vitro. Mol Reprod Dev 2002; 61:120-5. [PMID: 11774383 DOI: 10.1002/mrd.1138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Studies were undertaken to determine whether electrical stimulation, or ethanol treatment alone or in combination with 6-dimethylaminopurine (6-DMAP) influenced the rate of parthenogenetic activation of rat oocytes. The percentages of activated oocytes with pronuclei (89-91%) and those developed to the two-cell stage (68-72%) were significantly higher after electrical stimulation with direct current (DC) at 100 V/mm, 99 microsec once or twice, than when other DC voltages (75, 150, and 200) were applied or when ethanol or 6-DMAP treatment was given alone. However, none of the activated oocytes developed beyond the four-cell stage. The percentages of activated oocytes with pronuclei (100%) that developed to the two-cell (100%), eight-cell (89%) and blastocyst stages (50%) were significantly higher when electrical stimulation was followed by treatment with 2 mM 6-DMAP for 4 hr than when other combined procedures were applied. In conclusion, the results of the present study clearly showed that combined treatment of electrical stimulation or ethanol with 6-DMAP induces parthenogenetic activation and subsequent development of rat oocytes in vitro.
Collapse
Affiliation(s)
- Jin-Yi Jiang
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| | | | | | | | | |
Collapse
|
24
|
Sun QY, Lai L, Wu GM, Park KW, Day BN, Prather RS, Schatten H. Microtubule assembly after treatment of pig oocytes with taxol: correlation with chromosomes, gamma-tubulin, and MAP kinase. Mol Reprod Dev 2001; 60:481-90. [PMID: 11746959 DOI: 10.1002/mrd.1113] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, taxol was used as a tool to study the correlation of microtubule assembly with chromosomes, gamma-tubulin and phosphorylated mitogen-activated protein (MAP) kinase in pig oocytes at different maturational stages. Taxol treatment did not affect meiotic resumption and chromosome condensation but inhibited/disrupted chromosome alignment at the metaphase plate and bipolar spindle formation and thus meiotic progression. Microtubules were co-localized with chromosomes and were found to emanate from the chromosomes in taxol-treated oocytes, suggesting that chromosomes may serve as a source of microtubule organization. In addition, the concentric emanation of microtubules within the chromosome-surrounded area in taxol-treated oocytes suggests that microtubule emanation from the chromosomes may be directed by other microtubule-organizing material. The formation of one large spindle or >/=2 spindles in oocytes after taxol removal shows that minus end microtubule-organizing material can be normally located on both sides of chromosomes only when the chromosomes are aligned on the metaphase plate. The co-localization of gamma-tubulin and phosphorylated MAP kinase with microtubule assembly in both control and taxol-treated oocytes suggests that these two proteins are associated microtubule-nucleating material in pig oocytes. However, Western blot analysis showed that neither cytoplasmic microtubule aster formation nor extensive microtubule assembly in the chromosome region induced by taxol was caused by super-activation of MAP kinase. Taxol also induced microtubule assembly depending on chromosome distribution in the first polar body. The results suggest that chromosomes are always co-localized with microtubules and that emanation of microtubules from the chromosomes may be regulated/directed by microtubule-organizing material including gamma-tubulin and phosphorylated MAP kinase in pig oocytes.
Collapse
Affiliation(s)
- Q Y Sun
- Department of Veterinary Pathobiology, W123 Veterinary Medicine Building, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Tremoleda JL, Schoevers EJ, Stout TA, Colenbrander B, Bevers MM. Organisation of the cytoskeleton during in vitro maturation of horse oocytes. Mol Reprod Dev 2001; 60:260-9. [PMID: 11553927 DOI: 10.1002/mrd.1086] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Meiotic maturation of mammalian oocytes is a complex process during which microfilaments and microtubules provide the framework for chromosomal reorganisation and cell division. The aim of this study was to use fluorescence and confocal laser scanning microscopy to examine changes in the distribution of these important cytoskeletal elements and their relationship to chromatin configuration during the maturation of horse oocytes in vitro. Oocytes were cultured in M199 supplemented with pFSH and eLH and, at 0, 12, 24, and 36 hr after the onset of culture, they were fixed for immunocytochemistry and stained with markers for microtubules (a monoclonal anti-alpha-tubulin antibody), microfilaments (AlexaFluor 488 Phalloidin) and DNA (TO-PRO(3)). At the germinal vesicle stage, oocyte chromatin was amorphous and poorly condensed and the microfilaments and microtubules were distributed relatively evenly throughout the ooplasm. After germinal vesicle breakdown, the microtubules were aggregated around the now condensed chromosomes and the microfilaments had become concentrated within the oocyte cortex. During metaphase I, microtubules were detected only in the meiotic spindle, as elongated asters encompassing the aligned chromosomes, and, as maturation progressed through anaphase-I and telophase-I, the spindle assumed a more eccentric position and gradually rotated to assist in the separation of the homologous chromosomes and in the subsequent formation of the first polar body. During metaphase II, the meiotic spindle was a symmetrical, barrel-shaped structure with two poles and with the chromosomes aligned along its midline. At this stage, microtubules were found intermingled with chromatin within the polar body and, although, the bulk of the microfilaments remained within the oocyte cortex, a rich domain was found overlying the spindle. Thus, during the in vitro maturation of horse oocytes both the microfilament and microtubular elements of the cytoskeleton were seen to reorganise dramatically in a fashion that appeared to enable chromosomal alignment and segregation.
Collapse
Affiliation(s)
- J L Tremoleda
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
Hayes E, Galea S, Verkuylen A, Pera M, Morrison J, Lacham-Kaplan O, Trounson A. Nuclear transfer of adult and genetically modified fetal cells of the rat. Physiol Genomics 2001; 5:193-204. [PMID: 11328965 DOI: 10.1152/physiolgenomics.2001.5.4.193] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examines the handling, activation, and micromanipulation of rat eggs in an attempt to produce live young using nuclear transfer (NT) of adult and genetically modified rat fetal cells. Mature rat eggs cultured in calcium-free medium showed reduced rates (24%) of chromosomal dispersion ("spontaneous activation" characteristic of this species) compared with eggs cultured in calcium-containing medium (47%), but failed to survive micromanipulation procedures. High rates of parthenogenetic cleavage were obtained with chemical activation using ethanol/cycloheximide (65%) compared with other standard chemical activation methods (4-28%). This type of activation was also effective in reestablishing cleavage capability (19-71%), in a time-dependent manner, of spontaneously activated eggs arrested at a second prophase-like state. At most, two of four tested micromanipulation procedures were effective in producing NT embryos capable of morula or blastocyst development (14-16%) in vivo following transfer to mouse oviducts. NT blastocysts produced from cumulus cells and transfected rat fetal fibroblasts appeared morphologically and karyotypically normal (2n = 42). Nocodazole-assisted metaphase enucleation and piezoelectric-assisted donor cell injection produced significant and equivocal effects on survival and cleavage rates of reconstructed embryos but failed to significantly improve in vivo morula/blastocyst development rates (16-28%) compared with unassisted micromanipulation (16%). Live births have not yet been obtained from early cleavage stage embryos (n = 269) transferred to pseudopregnant recipient rat oviducts. Improvements in reconstituted NT embryo culture and transfer are required for these methods to be an effective means of transgenic rat production.
Collapse
Affiliation(s)
- E Hayes
- Centre For Early Human Development, Monash Institute of Reproduction and Development, Monash University, Clayton, Victoria 3168, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
ATABAY EC, MARTINEZ DIAZ MA, DOCHI O, TAKAHASHI Y. Factors Affecting Enucleation Rates of Bovine and Porcine Oocytes After Removal of Cumulus Cells by Vortexing. J Reprod Dev 2001. [DOI: 10.1262/jrd.47.365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Edwin C. ATABAY
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Mario A. MARTINEZ DIAZ
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Osamu DOCHI
- Faculty of Dairy Science, Rakuno Gakuen University
| | - Yoshiyuki TAKAHASHI
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| |
Collapse
|
28
|
Jiang JQ, Yamashita M, Yoshikuni M, Fukada S, Nagahama Y. Organization of Cytoplasmic Microtubules during Maturation of Goldfish Oocytes. Zoolog Sci 1996. [DOI: 10.2108/zsj.13.899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Abstract
The objective of this study was to examine the changes in microtubule and microfilament assembly in aged porcine oocytes and to determine their developmental pattern after parthenogenetic activation. Porcine oocytes were cultured in Whitten's medium containing 10% follicular fluid with hormonal supplements (eCG and hCG) for 22 hr and 40 hr additional culture without hormonal supplements. At 40, 50, and 60 hr of culture, the oocytes were fixed for immunocytochemistry or activated by electrical pulse. In metaphase II stage oocytes, microtubules were detected only in the meiotic spindle. Two microfilament domains existed in the egg cortex, a thick and a thin microfilament domain. In aged oocytes (50 and 60 hr of culture), the incidence of metaphase II plates observed outside of the thick microfilament domain was higher (P < 0.05) than in young oocytes (40 hr of culture). After activation, a polar body was usually emitted from the chromatin at the microfilament rich domain or two pronuclei were formed outside of the microfilament rich domain. The percentage of activated oocytes with one female pronucleus was higher (P < 0.05) in oocytes at 40 hr of maturation than at 50 and 60 hr of culture. At 24 and 30 hr after stimulation the incidence of cleavage to the 3- to 4-cell stage was higher (P < 0.05) in aged oocytes (50 and 60 hr of maturation) than that in oocytes at 40 hr of culture. These results suggested that a role of microfilaments is to retain the chromatin at the proper position in the oocyte cortex, and that aging results in a disruption of the microfilaments such that atypical development results after parthenogenetic activation.
Collapse
Affiliation(s)
- N H Kim
- Department of Animal Sciences, University of Missouri-Columbia 65211, USA
| | | | | | | |
Collapse
|
30
|
Kim NH, Funahashi H, Prather RS, Schatten G, Day BN. Microtubule and microfilament dynamics in porcine oocytes during meiotic maturation. Mol Reprod Dev 1996; 43:248-55. [PMID: 8824923 DOI: 10.1002/(sici)1098-2795(199602)43:2<248::aid-mrd14>3.0.co;2-#] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microtubule and microfilament organization in porcine oocytes during maturation in vivo and in vitro was imaged by immunocytochemistry and laser scanning confocal microscopy. At the germinal vesicle stage, microtubules were not detected in the oocyte. After germinal vesicle breakdown, a small microtubule aster was observed near the condensed chromatin. During the prometaphase stage, microtubule asters were found in association with each chromatin mass. The asters then elongated and encompassed the chromatin at the metaphase-I stage. At anaphase-I and telophase-I microtubules were detected in the meiotic spindle. Microtubules were observed only in the second meiotic spindle at the metaphase-II stage. The meiotic spindle was a symmetric, barrel-shaped structure containing anastral broad poles, located peripherally and radially oriented. Taxol, a microtubule-stabilizing agent, did not induce microtubules in oocytes at the germinal vesicle stage. After germinal vesicle breakdown, numerous cytoplasmic foci of microtubules were formed in the entire oocyte when oocytes were incubated in the presence of taxol. Microfilaments were observed as a relatively thick uniform area around the cell cortex and were also found throughout the cytoplasm of oocytes at the germinal vesicle stage. After germinal vesicle breakdown, the microfilaments were concentrated close to the female chromatin. During prometaphase, microfilaments were chromatin moved to the peripheral position. At metaphase-I, two domains, a thick and a thin microfilament area, existed in the egg cortex. Chromosomes were located in the thick microfilament domain of the cortex. In summary, these results suggest that both microtubules and microfilaments are closely involved with chromosomal dynamics after germinal vesicle breakdown and during meiotic maturation in porcine oocytes.
Collapse
Affiliation(s)
- N H Kim
- Department of Animal Sciences, University of Missouri-Columbia 65211, USA
| | | | | | | | | |
Collapse
|
31
|
Navara CS, Wu GJ, Simerly C, Schatten G. Mammalian model systems for exploring cytoskeletal dynamics during fertilization. Curr Top Dev Biol 1996; 31:321-42. [PMID: 8746669 DOI: 10.1016/s0070-2153(08)60232-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- C S Navara
- Department of Zoology, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
32
|
Ben-Yosef D, Oron Y, Shalgi R. Low temperature and fertilization-induced Ca2+ changes in rat eggs. Mol Reprod Dev 1995; 42:122-9. [PMID: 8562046 DOI: 10.1002/mrd.1080420116] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In mammalian eggs, activation by sperm that leads to resumption of meiosis is characterized by an explosive transient increase in intracellular calcium ion concentration ([Ca2+]i), followed by [Ca2+]i oscillations. In addition to the spermatozoon, various treatments can induce parthenogenetic activation, accompanied by an elevation of [Ca2+]i. It has been reported that cooling can induce egg activation, yet the mechanism of this phenomenon has not been elucidated. In the present study we followed changes in egg [Ca2+]i (measured by Fura-2 fluorescence ratio imaging) during activation by cooling, using conditions that ensure a low rate of spontaneous activation. Our present findings demonstrate that cooling induces egg activation as manifested by [Ca2+]i transient(s) and second polar body extrusion. Seventy-eight of 104 eggs responded to cooling with increased [Ca2+]i. Thirty-five percent of the responding eggs displayed a single [Ca2+]i transient, while 65% exhibited at least two [Ca2+]i transients within the time window of the experiment (30-40 min). Twenty-two percent of these eggs displayed high-frequency oscillations (intervals of 3.5-5.9 min). In these eggs, the overall pattern of calcium dynamics was similar to that observed in eggs activated by sperm, as judged by the transient's intervals, duration, and a gradual increase in the amplitude of successive transients. The amplitudes of [Ca2+]i transients, however, were 2-3 times lower. We propose that cooling affects [Ca2+]i homeostasis to produce fertilization-like changes in [Ca2+]i, possibly associated with parthenogenetic activation. Moreover, great care should be exercised to prevent temperature changes during egg handling.
Collapse
Affiliation(s)
- D Ben-Yosef
- Department of Embryology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|