1
|
Breed B, Leigh C, Ahmer I. Morphological events at the time of oocyte maturation and sperm–egg interactions during fertilisation in a dasyurid marsupial. AUST J ZOOL 2022. [DOI: 10.1071/zo22030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In marsupials there have been several studies on oocyte maturation and sperm–egg interactions at the time of fertilisation, but controversy exists as to when and how some of the processes occur. Here we present a summary of relevant data from a species of dasyurid marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). The findings show that in oocytes of developing ovarian follicles cortical granules are produced with many of the granules sometimes initially congregating around the cytoplasmic vacuoles before migrating to the proximity of the oocyte cell membrane. During fertilisation the spermatozoon binds to the zona pellucida that surrounds the oocyte with its tail lying parallel to the long axis of the head. As the spermatozoon passes through the zona pellucida it is surrounded by the zona matrix and, when entering the egg cytoplasm, a localised area of elevated ooplasm occurs around the spermatozoon. Also, unlike a recent claim to the contrary, the head of the spermatozoon travels a considerable distance into the egg cytoplasm before chromatin decondensation occurs, an event that probably minimises the chances of chromatin disruption by the sperm tail at the time of its incorporation.
Collapse
|
2
|
Wrobel ER, Bentz AB, Lorenz WW, Gardner ST, Mendonça MT, Navara KJ. Corticosterone and testosterone treatment influence expression of gene pathways linked to meiotic segregation in preovulatory follicles of the domestic hen. PLoS One 2020; 15:e0232120. [PMID: 32407351 PMCID: PMC7224459 DOI: 10.1371/journal.pone.0232120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/07/2020] [Indexed: 01/25/2023] Open
Abstract
Decades of work indicate that female birds can control their offspring sex ratios in response to environmental and social cues. In laying hens, hormones administered immediately prior to sex chromosome segregation can exert sex ratio skews, indicating that these hormones may act directly on the germinal disc to influence which sex chromosome is retained in the oocyte and which is discarded into an unfertilizable polar body. We aimed to uncover the gene pathways involved in this process by testing whether treatments with testosterone or corticosterone that were previously shown to influence sex ratios elicit changes in the expression of genes and/or gene pathways involved in the process of meiotic segregation. We injected laying hens with testosterone, corticosterone, or control oil 5h prior to ovulation and collected germinal discs from the F1 preovulatory follicle in each hen 1.5h after injection. We used RNA-sequencing (RNA-seq) followed by DESeq2 and gene set enrichment analyses to identify genes and gene pathways that were differentially expressed between germinal discs of control and hormone-treated hens. Corticosterone treatment triggered downregulation of 13 individual genes, as well as enrichment of gene sets related to meiotic spindle organization and chromosome segregation, and additional gene sets that function in ion transport. Testosterone treatment triggered upregulation of one gene, and enrichment of one gene set that functions in nuclear chromosome segregation. This work indicates that corticosterone can be a potent regulator of meiotic processes and provides potential gene targets on which corticosterone and/or testosterone may act to influence offspring sex ratios in birds.
Collapse
Affiliation(s)
- Elizabeth R. Wrobel
- Department of Poultry Science, The University of Georgia, Athens, GA, United States of America
| | - Alexandra B. Bentz
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - W. Walter Lorenz
- Institute of Bioinformatics and Georgia Genomics and Bioinformatics Core, The University of Georgia, Athens, GA, United States of America
| | - Stephen T. Gardner
- Department of Biological Sciences, Auburn University, Auburn, AL, United States of America
| | - Mary T. Mendonça
- Department of Biological Sciences, Auburn University, Auburn, AL, United States of America
| | - Kristen J. Navara
- Department of Poultry Science, The University of Georgia, Athens, GA, United States of America
- * E-mail:
| |
Collapse
|
3
|
Culture of Marsupial Oocytes and Conceptuses. Methods Mol Biol 2020. [PMID: 31230288 DOI: 10.1007/978-1-4939-9566-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Marsupial oocytes and conceptuses provide special challenges to scientists wanting to develop reliable in vitro techniques. Yet these techniques are essential to the study of development. Such techniques also provide tools to help prevent further decline in marsupial biodiversity using assisted reproductive technology. Specific marsupial characters have made development of in vitro techniques difficult. Some of these are the high-energy requirements of cleavage and blastocyst formation and maintenance because of cell-zona adhesion; the essential nature of the shell coat for most of development; the prevalence of embryonic arrests in vivo and in vitro during cleavage and unilaminar blastocyst stages; and the fragility of blastocysts leading to precocious shell loss and developmental failure in vitro. The advantages of marsupial culture during development are that the gestation period is very short, that the implantation is superficial in many, and that the neonates are altricial. This chapter outlines solutions to some of these problems in a representative, polytocous, dasyurid marsupial, Sminthopsis macroura. It is a natural superovulator with the shortest gestation period of any mammal, which has been cultured to within 5 h of birth. The other representative marsupial, the monovular phalangerid Trichosurus vulpecula, has a very superficial implantation that allows vesicles to readily detach from the endometrium.
Collapse
|
4
|
Familari M, Au PCK, de Iongh RU, Cruz Y, Selwood L. Expression analysis of Cdx2 and Pou5f1 in a marsupial, the stripe-faced dunnart, during early development. Mol Reprod Dev 2016; 83:108-23. [PMID: 26613191 DOI: 10.1002/mrd.22597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/26/2015] [Indexed: 11/06/2022]
Abstract
The first lineage allocation during mouse development forms the trophectoderm and inner cell mass, in which Cdx2 and Pou5f1 display reciprocal expression. Yet Cdx2 is not required for trophectoderm specification in other mammals, such as the human, cow, pig, or in two marsupials, the tammar and opossum. The role of Cdx2 and Pou5f1 in the first lineage allocation of Sminthopsis macroura, the stripe-faced dunnart, is unknown. In this study, expression of Cdx2 and Pou5f1 during oogenesis, development from cleavage to blastocyst stages, and in the allocation of the first three lineages was analyzed for this dunnart. Cdx2 mRNA was present in late antral-stage oocytes, but not present again until Day 5.5. Pou5f1 mRNA was present from primary follicles to zygotes, and then expression resumed starting at the early unilaminar blastocyst stage. All cleavage stages and the pluriblast and trophoblast cells co-expressed CDX2 and POU5F1 proteins, which persisted until early stages of hypoblast formation. Hypoblast cells also show co-localisation of POU5F1 and CDX2 once they were allocated, and this persisted during their division and migration. Our studies suggest that CDX2, and possibly POU5F1, are maternal proteins, and that the first lineage to differentiate is the trophoblast, which differentiates to trophectoderm after shell loss one day before implantation. In the stripe-faced dunnart, cleavage cells, as well as trophoblast and pluriblast cells, are polarized, suggesting the continued presence of CDX2 in both lineages until late blastocyst stages may play a role in the formation and maintenance of polarity.
Collapse
Affiliation(s)
- Mary Familari
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Phil Chi Khang Au
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Robb U de Iongh
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Yolanda Cruz
- Department of Biology, Oberlin College, Oberlin, Ohio
| | - Lynne Selwood
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Salinas-Saavedra M, Vargas AO. Cortical cytasters: a highly conserved developmental trait of Bilateria with similarities to Ctenophora. EvoDevo 2011; 2:23. [PMID: 22133482 PMCID: PMC3248832 DOI: 10.1186/2041-9139-2-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/01/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cytasters (cytoplasmic asters) are centriole-based nucleation centers of microtubule polymerization that are observable in large numbers in the cortical cytoplasm of the egg and zygote of bilaterian organisms. In both protostome and deuterostome taxa, cytasters have been described to develop during oogenesis from vesicles of nuclear membrane that move to the cortical cytoplasm. They become associated with several cytoplasmic components, and participate in the reorganization of cortical cytoplasm after fertilization, patterning the antero-posterior and dorso-ventral body axes. PRESENTATION OF THE HYPOTHESIS The specific resemblances in the development of cytasters in both protostome and deuterostome taxa suggest that an independent evolutionary origin is unlikely. An assessment of published data confirms that cytasters are present in several protostome and deuterostome phyla, but are absent in the non-bilaterian phyla Cnidaria and Ctenophora. We hypothesize that cytasters evolved in the lineage leading to Bilateria and were already present in the most recent common ancestor shared by protostomes and deuterostomes. Thus, cytasters would be an ancient and highly conserved trait that is homologous across the different bilaterian phyla. The alternative possibility is homoplasy, that is cytasters have evolved independently in different lineages of Bilateria. TESTING THE HYPOTHESIS So far, available published information shows that appropriate observations have been made in eight different bilaterian phyla. All of them present cytasters. This is consistent with the hypothesis of homology and conservation. However, there are several important groups for which there are no currently available data. The hypothesis of homology predicts that cytasters should be present in these groups. Increasing the taxonomic sample using modern techniques uniformly will test for evolutionary patterns supporting homology, homoplasy, or secondary loss of cytasters. IMPLICATIONS OF THE HYPOTHESIS If cytasters are homologous and highly conserved across bilateria, their potential developmental and evolutionary relevance has been underestimated. The deep evolutionary origin of cytasters also becomes a legitimate topic of research. In Ctenophora, polyspermic fertilization occurs, with numerous sperm entering the egg. The centrosomes of sperm pronuclei associate with cytoplasmic components of the egg and reorganize the cortical cytoplasm, defining the oral-aboral axis. These resemblances lead us to suggest the possibility of a polyspermic ancestor in the lineage leading to Bilateria.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- Laboratory of Ontogeny and Phylogeny, Department of Biology, Faculty of Science, University of Chile. Las Palmeras, Ñuñoa, Casilla 653, Santiago, Chile
| | - Alexander O Vargas
- Laboratory of Ontogeny and Phylogeny, Department of Biology, Faculty of Science, University of Chile. Las Palmeras, Ñuñoa, Casilla 653, Santiago, Chile
| |
Collapse
|
6
|
Au PCK, Frankenberg S, Selwood L, Familari M. A novel marsupial pri-miRNA transcript has a putative role in gamete maintenance and defines a vertebrate miRNA cluster paralogous to the miR-15a/miR-16-1 cluster. Reproduction 2011; 142:539-50. [DOI: 10.1530/rep-11-0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Successful maintenance, survival and maturation of gametes rely on bidirectional communication between the gamete and its supporting cells. Before puberty, factors from the gamete and its supporting cells are necessary for spermatogonial stem cell and primordial follicle oocyte maintenance. Following gametogenesis, gametes rely on factors and nutrients secreted by cells of the reproductive tracts, the epididymis and/or oviduct, to complete maturation. Despite extensive studies on female and male reproduction, many of the molecular mechanisms of germ cell maintenance remain relatively unknown, particularly in marsupial species. We present the first study and characterisation of a novel primary miRNA transcript, pri-miR-16c, in the marsupial, the stripe-faced dunnart. Bioinformatic analysis showed that its predicted processed miRNA – miR-16c – is present in a wide range of vertebrates, but not eutherians. In situ hybridisation revealed dunnart pri-miR-16c expression in day 4 (primordial germ cells) and day 7 (oogonia) pouch young, in primary oocytes and follicle cells of primordial follicles but then only in follicle cells of primary, secondary and antral follicles in adult ovaries. In the adult testis, pri-miR-16c transcripts were present in the cytoplasm of spermatogonial cells. The oviduct and the epididymis both showed expression, but not any other somatic tissues examined or conceptuses during early embryonic development. This pattern of expression suggests that pri-miR-16c function may be associated with gamete maintenance, possibly through mechanisms involving RNA transfer, until the zygote enters the uterus at the pronuclear stage.
Collapse
|
7
|
Abstract
The two alleles at a heterozygous locus segregate during meiosis, sometimes at meiosis I and sometimes at meiosis II. The timing of segregation is determined by the pattern of crossing-over between a locus and its attached centromeres. Genes near centromeres can exploit this process by driving against spores from which the genes separated at meiosis I. Other genes, located distal to centromeres, can benefit from driving against spores from which they separated at meiosis II. Asymmetric female meiosis is particularly susceptible to such forms of drive. Selection on modifiers of recombination favors changes in the location of chiasmata that increase the proportion of tetrads of high average fitness by changing the timing of segregation. Such changes increase the frequency of driving alleles. This source of selection on recombination does not depend on effects on linkage disequilibrium. Recombinational responses to meiotic drive may contribute to sex differences in overall recombination and sex differences in the localization of chiasmata.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
8
|
Au PCK, Selwood L, Familari M. Cloning and characterization of a new gene from the PAT protein family, in a marsupial, the stripe-faced dunnart (Sminthopsis macroura). Mol Reprod Dev 2010; 77:373-83. [PMID: 20140966 DOI: 10.1002/mrd.21158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent studies of PAT proteins in Drosophila and Xenopus have revealed significant roles for this family of proteins in the polarized transport of lipid droplets and maternal determinants during early embryogenesis. In mammals, PAT proteins are known to function mainly in lipid metabolism, yet research has yet to establish a role for PAT proteins in mammalian embryogenesis. Oocytes and early cleavage stages in Sminthopsis macroura show obvious polarized cytoplasmic distribution of organelles, somewhat similar to Drosophila and Xenopus, suggesting that a PAT protein may also be involved in S. macroura embryonic development. In the present study, we identified a new marsupial gene for PAT family proteins, DPAT, from S. macroura. Expression analyses by RT-PCR and whole mount fluorescent in situ hybridization revealed that DPAT expression was specific to oocytes and cleavage stage conceptuses. Analysis of the localization of lipid droplets during S. macroura early embryonic development found a polarized distribution of lipid droplets at the two- and four-cell stage, and an asymmetric enrichment in blastomeres on one side of conceptuses from two- to eight-cell stage. Lipid droplets largely segregate to pluriblast cells at the 16-cell stage, suggesting a role in pluriblast lineage allocation.
Collapse
Affiliation(s)
- Phil Chi Khang Au
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
9
|
Au PCK, Nation A, Parrott M, Selwood L. Induced ovulation mimics the time-table of natural development in the stripe-faced dunnart, Sminthopsis macroura and results in the birth of fertile young. Reproduction 2010; 139:419-25. [DOI: 10.1530/rep-09-0203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Induced ovulation maximizes captive breeding success, increasing productivity and facilitating the contribution of otherwise infertile animals to the genetic pool. In marsupials, induced ovulation to produce fertile young is unknown. Here we present an induction protocol efficient in inducing non-cycling and non-reproductive females to cycle, mate, ovulate, and conceive. Ovulation was induced in Sminthopsis macroura using an initial injection of 0.06 IU equine serum gonadotropin (eSG)/g (time 0), followed on day 4 by 0.04 IU eSG/g. Using this induction regime, the timing of follicular and embryonic development mimics natural cycles and results in the birth of viable, fertile young. Response to induction is not significantly affected by animal age, making this protocol an effective conservation tool. We have established a time-table of development following induction, providing a source of precisely timed research material. This is the first induced ovulation protocol in any marsupial to result in demonstrated fertile offspring and to allow the reliable collection of known-age samples during both the follicular phase and the gestation period.
Collapse
|
10
|
Menkhorst E, Nation A, Cui S, Selwood L. Evolution of the shell coat and yolk in amniotes: a marsupial perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:625-38. [DOI: 10.1002/jez.b.21235] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Nation A, Selwood L. The production of mature oocytes from adult ovaries following primary follicle culture in a marsupial. Reproduction 2009; 138:247-55. [DOI: 10.1530/rep-09-0028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A model marsupial culture system has been developed whereby individual primary follicles, obtained from adult ovaries, can be grown in vitro to the antral stage and oocytes retrieved from these follicles can achieve nuclear maturation (metaphase II) in the presence of LH. Primary follicles isolated from adult Sminthopsis macroura ovaries were cultured individually in one of four systems: microdrops under oil, upright, inverted, or roller culture. After 6 days of culture, cumulus–oocyte complexes (COCs) were excised from early antral follicles and incubated for an additional 24 h to assess meiotic competence and the effects of LH and lithium on oocyte maturation. Histology and transmission electron microscopy established normal in vivo standards and verified oocyte and follicular integrity following culture. On day 6 of culture, follicle viability was significantly greater in the inverted system (73%) than in the other three systems (10–46%). The inverted system was the most effective in supporting development with follicles demonstrating progressive growth during culture and showing antral signs by day 4. Meiotic resumption during COC culture was facilitated by LH, but hindered by lithium. The ability to resume meiosis and progress to metaphase II was equivalent in oocytes retrieved following follicle culture and those matured in vivo. This study highlights the importance of oxygen and nutrient availability during marsupial follicle culture, and demonstrates for the first time that primary follicles isolated from adult mammalian ovaries can undergo normal growth and development in vitro, to produce mature, meiotically competent oocytes.
Collapse
|
12
|
Czarny NA, Garnham JI, Harris MS, Rodger JC. Comparison of the production, quality, and in vitro maturation capacity of oocytes from untreated cycling and intermediate phase equine serum gonadotropin-treated fat-tailed dunnarts (Sminthopsis crassicaudata). Reproduction 2009; 138:23-31. [DOI: 10.1530/rep-09-0064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study describes ovarian changes during the natural and stimulated reproductive cycle of breeding (≤12 month) and retired (>12 month) fat-tailed dunnarts, Sminthopsis crassicaudata. Increased urinary cornified epithelial cells and the influx of leukocytes defined day 0, at which time the naturally cycling females had already ovulated; at day 16 females had no antral follicles, but by day 20 antral follicles had begun to develop. There was no difference between naturally cycling breeding and retired females. Females were stimulated with 1 IU equine serum gonadotropin (eSG) during the intermediate phase on day 16 and killed 3, 4, or 5 days later. Stimulation resulted in a significant increase in the number of growing antral follicles but retired females demonstrated a reduced response. Upon collection from breeding females 4 days following eSG stimulation, 100% of oocytes were at the first polar body (PB1) stage, those collected from retired females were immature upon collection but within 48 h 98.2±1.9% were cultured to the PB1 stage. The rate of ovulation was high in breeding females 5 days following stimulation but retired females were less reliable, and in both groups all oocytes were degraded. This is the first study to describe a reliable technique, involving ovarian stimulation during the intermediate phase and segregation of age groups, allowing the collection of a large number of healthy PB1 stage oocytes from S. crassicaudata. This is important for the development of further assisted reproductive techniques for this species and threatened dasyurids.
Collapse
|
13
|
Czarny NA, Harris MS, Rodger JC. Dissociation and preservation of preantral follicles and immature oocytes from female dasyurid marsupials. Reprod Fertil Dev 2009; 21:640-8. [DOI: 10.1071/rd08303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/05/2009] [Indexed: 11/23/2022] Open
Abstract
The mammalian ovary contains numerous immature preantral follicles that are not dependent on endocrine support, unlike the more mature hormone-dependant antral follicles. Preantral follicles can be enzymatically dissociated to yield immature oocytes that survive sub-zero preservation better as they lack a temperature-sensitive meiotic spindle. These techniques are highly applicable to gamete banking, which is an urgent requirement for Australian carnivorous marsupials as several species have rapidly declining populations and risk extinction. The present study developed protocols for the transport, dissociation, preservation and culture of granulosa cell-oocyte complexes (GOC) from the ovaries of dasyurid marsupials. High viability of GOC following enzymatic dissociation is reported and it was demonstrated that GOC are of significantly better quality following refrigerated storage for 24 h compared with storage at room temperature. Oocytes from primary follicles were not damaged by cold shock or the toxicity of vitrification media and following vitrification in liquid nitrogen 69.42 ± 2.44% of oocytes were viable. However, the surrounding granulosa cells demonstrated significant damage post-thaw. These granulosa cells proliferated during a 48-h culture period resulting in significant improvements in GOC quality. The present study is a valuable step towards cryostorage of dasyurid gametes and represents fundamentally important methods by which we can contribute to the conservation of Australia’s native predators.
Collapse
|
14
|
Nation A, Cui S, Selwood L. Vesicle-associated protein 1: a novel ovarian immunocontraceptive target in the common brushtail possum, Trichosurus vulpecula. Reproduction 2008; 136:657-65. [PMID: 18713812 DOI: 10.1530/rep-08-0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ovarian-based immunological research is currently restricted to proteins of the zona pellucida. This study examined the immunocontraceptive potential of a novel vesicle-associated protein, VAP1, previously isolated from the vesicle-rich hemisphere of the brushtail possum oocyte. Seven female possums were immunized against recombinant glutathione S-transferase-VAP1 fusion protein. Control animals (n=3) received antigen-free vaccinations. Following immunization, regular blood sampling determined the level and duration of immune response. Animals were monitored daily, pre- and post-immunization, to determine estrous cycling activity and the percentage of reproductive cycles yielding viable young. The reproductive tracts and somatic organs of VAP1-immunized (n=7), control-immunized (n=3) and non-immunized (n=5) animals were collected and examined by histology and transmission electron microscopy. VAP1 immunization caused a strong and sustained immune response. Elevated levels of VAP1 antibody binding were detected in sera following initial injections, and immune titers rose as boosters were administered. Immunization had no adverse effect upon animal behavior or body condition. Immunized females demonstrated no major change in annual estrous cycling activity; however, the percentage of reproductive cycles resulting in pouch young decreased significantly (P<0.05) by 40%. Histological and ultrastructural analyses revealed an abundance of lipid-like degradation bodies within the ooplasm of developing oocytes and the cytoplasm of failing uterine zygotes. Active macrophage invasion of enlarged endometrial glands was observed in the uteri of two females. Reproductive tract changes are discussed in relation to observed fertility decline. The results of this study indicate that VAP1 has exciting potential as an immunocontraceptive target for possum control in New Zealand.
Collapse
Affiliation(s)
- A Nation
- Department of Zoology, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| | | | | |
Collapse
|
15
|
Rutkowska J, Badyaev AV. Review. Meiotic drive and sex determination: molecular and cytological mechanisms of sex ratio adjustment in birds. Philos Trans R Soc Lond B Biol Sci 2008; 363:1675-86. [PMID: 18048292 PMCID: PMC2606724 DOI: 10.1098/rstb.2007.0006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Differences in relative fitness of male and female offspring across ecological and social environments should favour the evolution of sex-determining mechanisms that enable adjustment of brood sex ratio to the context of breeding. Despite the expectation that genetic sex determination should not produce consistent bias in primary sex ratios, extensive and adaptive modifications of offspring sex ratio in relation to social and physiological conditions during reproduction are often documented. Such discordance emphasizes the need for empirical investigation of the proximate mechanisms for modifying primary sex ratios, and suggests epigenetic effects on sex-determining mechanisms as the most likely candidates. Birds, in particular, are thought to have an unusually direct opportunity to modify offspring sex ratio because avian females are heterogametic and because the sex-determining division in avian meiosis occurs prior to ovulation and fertilization. However, despite evidence of strong epigenetic effects on sex determination in pre-ovulatory avian oocytes, the mechanisms behind such effects remain elusive. Our review of molecular and cytological mechanisms of avian meiosis uncovers a multitude of potential targets for selection on biased segregation of sex chromosomes, which may reflect the diversity of mechanisms and levels on which such selection operates in birds. Our findings indicate that pronounced differences between sex chromosomes in size, shape, size of protein bodies, alignment at the meiotic plate, microtubule attachment and epigenetic markings should commonly produce biased segregation of sex chromosomes as the default state, with secondary evolution of compensatory mechanisms necessary to maintain unbiased meiosis. We suggest that it is the epigenetic effects that modify such compensatory mechanisms that enable context-dependent and precise adjustment of primary sex ratio in birds. Furthermore, we highlight the features of avian meiosis that can be influenced by maternal hormones in response to environmental stimuli and may account for the precise and adaptive patterns of offspring sex ratio adjustment observed in some species.
Collapse
Affiliation(s)
| | - Alexander V Badyaev
- Department of Ecology and Evolutionary Biology, University of ArizonaTucson, AZ 85721, USA
| |
Collapse
|
16
|
Selwood L, Johnson MH. Trophoblast and hypoblast in the monotreme, marsupial and eutherian mammal: evolution and origins. Bioessays 2006; 28:128-45. [PMID: 16435291 DOI: 10.1002/bies.20360] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pregastrula stage mammalian conceptus consists of both embryonic and non-embryonic components. The latter forms the bulk of the tissues, provides nutrition for the developing embryo and also contributes developmental signals that influence events within the embryo itself. Understanding the origins and relationships between the embryonic and extraembryonic cell lineages is thus central to understanding development in mammals. Despite the apparent gross differences in early developmental strategy and form, the conceptuses of eutherian, marsupial and monotreme mammals show some remarkable similarities in the lineage allocation to trophoblast and hypoblast and in the emergent properties of the two cell types. We suggest that the gross differences can be explained by two relatively small evolutionary timing changes affecting cell adhesion patterns and the polarisation of developmentally significant information. These changes result in the conversion of a unilaminar blastocyst to a morula form composed of blastomeres with increased regulatory capacity.
Collapse
Affiliation(s)
- Lynne Selwood
- Department of Zoology, University of Melbourne, Vic, Australia
| | | |
Collapse
|
17
|
Behringer RR, Eakin GS, Renfree MB. Mammalian diversity: gametes, embryos and reproduction. Reprod Fertil Dev 2006; 18:99-107. [PMID: 16478607 DOI: 10.1071/rd05137] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 01/14/2005] [Indexed: 11/23/2022] Open
Abstract
The class Mammalia is composed of approximately 4800 extant species. These mammalian species are divided into three subclasses that include the monotremes, marsupials and eutherians. Monotremes are remarkable because these mammals are born from eggs laid outside of the mother's body. Marsupial mammals have relatively short gestation periods and give birth to highly altricial young that continue a significant amount of 'fetal' development after birth, supported by a highly sophisticated lactation. Less than 10% of mammalian species are monotremes or marsupials, so the great majority of mammals are grouped into the subclass Eutheria, including mouse and human. Mammals exhibit great variety in morphology, physiology and reproduction. In the present article, we highlight some of this remarkable diversity relative to the mouse, one of the most widely used mammalian model organisms, and human. This diversity creates challenges and opportunities for gamete and embryo collection, culture and transfer technologies.
Collapse
Affiliation(s)
- Richard R Behringer
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
18
|
Selwood L, Cui S. Establishing long-term colonies of marsupials to provide models for studying developmental mechanisms and their application to fertility control. AUST J ZOOL 2006. [DOI: 10.1071/zo05052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To study marsupial developmental mechanisms and their application to fertility control, it is necessary to develop reliable procedures for breeding, colony maintenance, reproductive monitoring for obtaining known-age embryos and, if possible, an induced ovulation protocol. These procedures also provide means to enhance conservation of endangered species. Such procedures are examined in the stripe-faced dunnart, an excellent model for developmental analysis, and the common brush-tail possum, an agricultural and ecological pest species in New Zealand that has become a model for fertility control in marsupials. A long-term colony of the stripe-faced dunnart has been in existence for 21 years, and the procedures for its maintenance and continued survival are outlined, and include minimal reproductive contributions from wild-caught animals, and development of an appropriate timetable of development and induced-ovulation protocols. Common brushtail possum colonies are relatively frequent but have regular input from wild-caught animals. Procedures that minimise competition for prized resources and allow successful group housing of possums are outlined. For both species the available development timetables, in vitro techniques and induced ovulation protocols are essential tools for the study of developmental mechanisms and fertility control, respectively, and also have considerable implications for conservation of these and other species.
Collapse
|
19
|
Cui S, Nikolovski S, Nanayakkara K, Selwood L. VAP1, with cystatin C motif, an oocyte protein encoded by a novel ovarian-specific gene during oogenesis in the common brushtail possum (Trichosurus vulpecula). Mol Reprod Dev 2005; 71:19-28. [PMID: 15736124 DOI: 10.1002/mrd.20175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the brushtail possum oocyte, vesicles accumulate in a polarized fashion at the vegetal pole and cytoplasm rich in mitochondria and containing the germinal vesicle comprise the animal pole. During cleavage to early blastocyst stages, animal pole cytoplasm locates to the cells of the embryonic hemisphere (pluriblast) and vegetal pole vesicular cytoplasm to cells of the abembryonic hemisphere (trophoblast). Previously identified 16 amino acid residues, associated with the vesicle-rich cytoplasm were used for molecular cloning and characterization of a vesicle associated protein, VAP1. The degenerate primer was used in a 3'RACE for vap1 gene cloning. The cDNA encoding VAP1 was 516 bp in length with no significant homologies and coded for 172 amino acid residues for the mature protein. The N-terminal domain of VAP1 showed a structural homology to the cysteine protease inhibitor, Cystatin. Gene expression studies during oogenesis revealed that vap1 had an ovary-specific, possibly oocyte-specific expression, which occurs during follicle formation and growth and in adult ovaries. Recombinant VAP1 fusion protein generated polyclonal antibodies in the mouse and in the brushtail possum.
Collapse
Affiliation(s)
- Shuliang Cui
- Department of Zoology, The University of Melbourne, Royal Parade, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
20
|
Maleszewski M, Selwood L. Induced parthenogenetic activation of oocytes of the marsupial Sminthopsis macroura. Reprod Fertil Dev 2004; 16:599-604. [PMID: 15740681 DOI: 10.1071/rd03054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 04/26/2004] [Indexed: 11/23/2022] Open
Abstract
Maturation of marsupial oocytes in vitro, an important step in the analysis of early developmental events, has a low success rate and results from the artificial activation of oocytes, which may not include nuclear maturation. In Sminthopsis macroura, 24-h culture of advanced antral follicles in medium containing 10 μg mL−1 porcine pituitary luteinising hormone (LH) yielded 60% of mature polarised oocytes with the first polar body; follicles cultured in medium without LH yielded only immature oocytes. Parthenogenetic activation of follicular, oviducal or uterine oocytes occurred when a two-step protocol was used. Sixty-one oocytes, exposed to 10 μm calcium ionophore A23187 for 10 min followed by 10 μg mL−1 cycloheximide (protein synthesis inhibitor) for 5 h and then cultured for 20–24 h, were scored for signs of activation, namely extrusion of the second polar body and formation of the pronucleus. In each of 43 oocytes (70%), the extruded second polar body was present. Sixteen oocytes were analysed on slides after fixation and staining and, in 13 oocytes (81%) in this group, the female pronucleus was visible. No activation occurred following incubation of oocytes in medium containing Sr2+ for 5 h (n = 14), 8% ethyl alcohol solution for 8 or 12 min (n = 13) or 10 μm calcium ionophore A23187 (n = 13) for 10–20 min followed by culture for 20–24 h.
Collapse
Affiliation(s)
- Marek Maleszewski
- Department of Embryology, Institute of Zoology, Warsaw University, Miecznikowa 1, Warszawa, Poland.
| | | |
Collapse
|
21
|
Hickford D, Selwood L. Peri-gastrulation development of the dasyurid marsupial Sminthopsis macroura (stripe-faced dunnart) in vitro and evidence for patterning of the epiblast prior to gastrulation. Mol Reprod Dev 2003; 65:402-19. [PMID: 12840814 DOI: 10.1002/mrd.10315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Marsupials are potentially excellent models for the study of gastrulation because of their superficial embryonic area (EA), post-gastrulation implantation and their potential to provide information about the evolution of gastrulation. Very few studies have examined this developmental period in marsupials. Using an established developmental timetable, peri-gastrula stage Sminthopsis macroura blastocysts were collected and described in detail by observations on live blastocysts and by the use of histological and immunohistochemical techniques on fixed blastocysts. Gastrulation in S. macroura shares several aspects common to that of both eutherian mammals and birds, but in terms of tissue arrangement and conceptus form, is more similar to the chick than other mammals. Two methods of culturing EA explants flat without their shell were devised. The techniques will markedly increase the number of possible experimental manipulations, which previously were limited by the presence of blastocyst investments. Exposure of fractions of explants of round, morphologically uniform pre-gastrula stage EA to growth factors or signaling molecules implicated in vertebrate gastrulation suggests that like the chick and mouse, the marsupial epiblast is patterned prior to gastrulation. Of all factors tested, basic fibroblast growth factor (bFGF) had the most prominent effect, promoting cell differentiation, and possible mesoderm formation. Data from explant culture suggests that similar to the chick and mouse, limited specification precedes the onset of gastrulation.
Collapse
Affiliation(s)
- Danielle Hickford
- School of Zoology, La Trobe University, Bundoora, Victoria, Australia
| | | |
Collapse
|
22
|
Zeller, Freyer. Early ontogeny and placentation of the grey short-tailed opossum, Monodelphis domestica (Didelphidae: Marsupialia): contribution to the reconstruction of the marsupial morphotype. J ZOOL SYST EVOL RES 2001. [DOI: 10.1046/j.1439-0469.2001.00167.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Frankenberg S, Selwood L. An ultrastructural study of the role of an extracellular matrix during normal cleavage in a marsupial, the brushtail possum. Mol Reprod Dev 1998; 50:420-33. [PMID: 9669526 DOI: 10.1002/(sici)1098-2795(199808)50:4<420::aid-mrd6>3.0.co;2-k] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In marsupials, the mechanisms of lineage allocation into pluriblast and trophoblast are related to conceptus polarity and polarized discharge of extracellular matrix (ECM). The brushtail possum, Trichosurus vulpecula, a major pest species in New Zealand, is being intensively studied to develop an immunocontraceptive control method. Of 23 specimens examined, 11 were examined by electron microscopy to study the presence and role of the ECM in lineage allocation in the possum. A number of polarized features in the zygote identified the future embryonic and abembryonic poles. Pronuclei, in a broad band of mitochondrion-rich cortical cytoplasm, lay in the embryonic hemisphere, and numerous electron-lucent vesicles characterized the abembryonic cytoplasm. These vesicles seemed to contribute to the ECM. During cleavage, cells lay near the zona in the embryonic hemisphere, and ECM accumulated chiefly in the abembryonic hemisphere. Cell-zona adhesion facilitated by microvillous and club processes occurred at the early 4-cell stage, and cell-cell adhesion commenced at the late 4-cell stage. The first two cleavages were meridional, equal, and accompanied by elimination into the cleavage cavity of much of the electron-lucent vesicular material in the form of several membrane-bound yolk masses. The third cleavage was unequal, with both meridional and latitudinal planes. The first differences between trophoblast and pluriblast lineages appeared at the 8-cell stage. Later cleavage planes were latitudinal or oblique. Conceptus polarity, polarized discharge of ECM, and localized cell-zona adhesion were related to the first lineage allocation in the possum.
Collapse
Affiliation(s)
- S Frankenberg
- School of Zoology, La Trobe University, Victoria, Australia
| | | |
Collapse
|
24
|
Li CJ, Fan BQ. Changes in the 3-dimensional distribution of mitochondria during meiotic divisions of mouse oocytes. Theriogenology 1997; 48:33-41. [PMID: 16728105 DOI: 10.1016/s0093-691x(97)00189-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1996] [Accepted: 02/28/1997] [Indexed: 11/18/2022]
Abstract
Mitochondrial reorganization during meiotic maturation and parthenogenetic activation was studied in mouse oocytes using a laser scanning confocal microscope and a transmission electron microscope. Mitochondria were mainly distributed perinuclearly in the germinal vesicle (GV) stage oocytes and were dispersed throughout ooplasm after germinal vesicle breakdown (GVBD), except for a slightly higher occurrence in one hemisphere of oocytes, from which the first polar body (PbI) would become extruded. Mitochondria reaggregated around the metaphae II (MII) spindle and pronuclear region after alcohol activatation at the MII stage. The mitochondrial distribution may correspond to the Ca(2+) changes during meiotic maturation and parthenogenetic activation.
Collapse
Affiliation(s)
- C J Li
- Biology Department of Nanjing Normal University, Nanjing 210097, China
| | | |
Collapse
|