1
|
Rempuia V, Gurusubramanian G, Roy VK. Intra-testicular visfatin inhibition disrupts androgen and estrogen signalling in the mouse testis. Reprod Biol 2024; 24:100956. [PMID: 39342686 DOI: 10.1016/j.repbio.2024.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Visfatin is expressed in the testis of chicken, humans and rodents; however, direct role of visfatin in the adult testis has not been studied. We investigated testicular responses after intra-testicular injection of FK866. The effects of visfatin inhibition were accessed at 24 hrs and 1 week post FK866 treatment. The testicular histoarchitecture were degenerated after 24 hrs of FK866 treatment along with supressed testosterone and proliferating markers and resumption in these parameters showed after 1 week. The expression of AR and ERα were down-regulated after 1 week of FK866 treatment. The expression of BCl2 was down-regulated along with a slight elevation of caspase3 after 24 hrs; however, both proteins still showed suppressed expression after 1 week. Furthermore, ERβ expression, 3βHSD, and 17βHSD were down-regulated in both groups compared to the control. Despite the down-regulation of some factors, the testicular proliferation and histoarchitecture showed resumption in the testis after 1 week of FK866 treatment. This could be due to increased testosterone secretion by suppressing aromatase expression. In conclusion, our result is the first report on the direct role of visfatin in the adult testis. Visfatin has a stimulatory role in testosterone synthesis and proliferation in the testis. Moreover, some deregulated factors in the testis after 1 week of FK866 treatment, despite normal histoarchitecture treatment, could be a compensatory mechanism after visfatin inhibitions.
Collapse
Affiliation(s)
- Vanlal Rempuia
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.
| |
Collapse
|
2
|
Hess RA, Park CJ, Soto S, Reinacher L, Oh JE, Bunnell M, Ko CJ. Male animal sterilization: history, current practices, and potential methods for replacing castration. Front Vet Sci 2024; 11:1409386. [PMID: 39027909 PMCID: PMC11255590 DOI: 10.3389/fvets.2024.1409386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Sterilization and castration have been synonyms for thousands of years. Making an animal sterile meant to render them incapable of producing offspring. Castration or the physical removal of the testes was discovered to be the most simple but reliable method for managing reproduction and sexual behavior in the male. Today, there continues to be global utilization of castration in domestic animals. More than six hundred million pigs are castrated every year, and surgical removal of testes in dogs and cats is a routine practice in veterinary medicine. However, modern biological research has extended the meaning of sterilization to include methods that spare testis removal and involve a variety of options, from chemical castration and immunocastration to various methods of vasectomy. This review begins with the history of sterilization, showing a direct link between its practice in man and animals. Then, it traces the evolution of concepts for inducing sterility, where research has overlapped with basic studies of reproductive hormones and the discovery of testicular toxicants, some of which serve as sterilizing agents in rodent pests. Finally, the most recent efforts to use the immune system and gene editing to block hormonal stimulation of testis function are discussed. As we respond to the crisis of animal overpopulation and strive for better animal welfare, these novel methods provide optimism for replacing surgical castration in some species.
Collapse
Affiliation(s)
- Rex A. Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | - Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | | | | | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - CheMyong J. Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| |
Collapse
|
3
|
Kumar SL, Mohanty A, Kumari A, Etikuppam AK, Kumar S R, Athar M, Kumar P K, Beniwal R, Potula MM, Gandham RK, Rao HBDP. Balanced spatiotemporal arrangements of histone H3 and H4 posttranslational modifications are necessary for meiotic prophase I chromosome organization. J Cell Physiol 2024; 239:e31201. [PMID: 38284481 DOI: 10.1002/jcp.31201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Dynamic nuclear architecture and chromatin organizations are the key features of the mid-prophase I in mammalian meiosis. The chromatin undergoes major changes, including meiosis-specific spatiotemporal arrangements and remodeling, the establishment of chromatin loop-axis structure, pairing, and crossing over between homologous chromosomes, any deficiencies in these events may induce genome instability, subsequently leading to failure to produce gametes and infertility. Despite the significance of chromatin structure, little is known about the location of chromatin marks and the necessity of their balance during meiosis prophase I. Here, we show a thorough cytological study of the surface-spread meiotic chromosomes of mouse spermatocytes for H3K9,14,18,23,27,36, H4K12,16 acetylation, and H3K4,9,27,36 methylation. Active acetylation and methylation marks on H3 and H4, such as H3K9ac, H3K14ac, H3K18ac, H3K36ac, H3K56ac, H4K12ac, H4K16ac, and H3K36me3 exhibited pan-nuclear localization away from heterochromatin. In comparison, repressive marks like H3K9me3 and H3K27me3 are localized to heterochromatin. Further, taking advantage of the delivery of small-molecule chemical inhibitors methotrexate (heterochromatin enhancer), heterochromatin inhibitor, anacardic acid (histone acetyltransferase inhibitor), trichostatin A (histone deacetylase inhibitor), IOX1 (JmjC demethylases inhibitor), and AZ505 (methyltransferase inhibitor) in seminiferous tubules through the rete testis route, revealed that alteration in histone modifications enhanced the centromere mislocalization, chromosome breakage, altered meiotic recombination and reduced sperm count. Specifically, IOX1 and AZ505 treatment shows severe meiotic phenotypes, including altering chromosome axis length and chromatin loop size via transcriptional regulation of meiosis-specific genes. Our findings highlight the importance of balanced chromatin modifications in meiotic prophase I chromosome organization and instability.
Collapse
Affiliation(s)
- S Lava Kumar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Aradhana Mohanty
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Anjali Kumari
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Ajith Kumar Etikuppam
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Ranjith Kumar S
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Mohd Athar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Kiran Kumar P
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Rohit Beniwal
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | | | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India
| | - H B D Prasada Rao
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Jeremy M, Gurusubramanian G, Kharwar RK, Roy VK. Evaluation of a single dose of intra-testicular insulin treatment in heat-stressed mice model. Andrologia 2022; 54:e14603. [PMID: 36156807 DOI: 10.1111/and.14603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/25/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Insulin plays important role in testicular functions such as germ cell proliferation and steroidogenesis, despite its conventional role as a hypoglycaemic agent. It is also well known that testicular activity is severely get affected by heat stress and heat stress induces testicular pathogenesis. The effect of insulin on heat-induced testicular impairment has not been investigated. Thus, it is hypothesized that insulin might modulate testicular activity in a heat-stressed model. Experimental mice were separated into 4 groups; the first group was the normal control (CN), and the second group was subjected to heat stress (HS) by submerging the lower body part in a thermostatically controlled water bath maintained at 43°C for 15 min. The third and fourth groups were treated with a single dose of intra-testicular insulin (0.6 IU/mice) before and after heat stress. Animal tissue samples were collected after 14 days of heat treatment. Insulin treatment did not improve the sperm parameters; however, both insulin pre and post-treatment improved the markers of spermatogenesis such as Johnsen score, germinal epithelium height and the number of stages VII/VIII. The histoarchitecture of testis also showed amelioration from heat-induced pathogenesis in the insulin-treated groups. Insulin treatment has also increased the proliferation of germ cells (increased PCNA and GCN), survival (Bcl2), and decreased apoptosis (active caspase-3). Furthermore, insulin treatment decreased MDA levels, without pronounced effects on the activities of antioxidant enzymes. Heat stress also decreased the circulating testosterone and oestrogen levels, and insulin treatment significantly increased oestrogen levels only. Although testosterone showed an increasing trend, it was insignificant. The expression of aromatase, AR, ER-α, and ER-β was down regulated by heat-stress and insulin treatment up regulated these markers. In conclusion, our results showed the amelioration of heat-induced testicular impairment by pre and post-intra-testicular insulin treatments. Insulin-associated improvements in the pre-and post-treatment groups suggested a preventive mechanism of insulin against heat stress in the testis.
Collapse
|
5
|
O'Donnell L, Rebourcet D, Dagley LF, Sgaier R, Infusini G, O'Shaughnessy PJ, Chalmel F, Fietz D, Weidner W, Legrand JMD, Hobbs RM, McLachlan RI, Webb AI, Pilatz A, Diemer T, Smith LB, Stanton PG. Sperm proteins and cancer-testis antigens are released by the seminiferous tubules in mice and men. FASEB J 2021; 35:e21397. [PMID: 33565176 PMCID: PMC7898903 DOI: 10.1096/fj.202002484r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
Sperm develop from puberty in the seminiferous tubules, inside the blood-testis barrier to prevent their recognition as "non-self" by the immune system, and it is widely assumed that human sperm-specific proteins cannot access the circulatory or immune systems. Sperm-specific proteins aberrantly expressed in cancer, known as cancer-testis antigens (CTAs), are often pursued as cancer biomarkers and therapeutic targets based on the assumption they are neoantigens absent from the circulation in healthy men. Here, we identify a wide range of germ cell-derived and sperm-specific proteins, including multiple CTAs, that are selectively deposited by the Sertoli cells of the adult mouse and human seminiferous tubules into testicular interstitial fluid (TIF) that is "outside" the blood-testis barrier. From TIF, the proteins can access the circulatory- and immune systems. Disruption of spermatogenesis decreases the abundance of these proteins in mouse TIF, and a sperm-specific CTA is significantly decreased in TIF from infertile men, suggesting that exposure of certain CTAs to the immune system could depend on fertility status. The results provide a rationale for the development of blood-based tests useful in the management of male infertility and indicate CTA candidates for cancer immunotherapy and biomarker development that could show sex-specific and male-fertility-related responses.
Collapse
Affiliation(s)
- Liza O'Donnell
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.,Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Diane Rebourcet
- Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Laura F Dagley
- Walter and Eliza Hall Institute, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Raouda Sgaier
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.,Department of Urology, Pediatric Urology and Andrology, Medical Faculty, Justus-Liebig-University Giessen, UKGM GmbH, Giessen, Germany
| | - Giuseppe Infusini
- Walter and Eliza Hall Institute, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Peter J O'Shaughnessy
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Frederic Chalmel
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, University Rennes, Rennes, France
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wolfgang Weidner
- Department of Urology, Pediatric Urology and Andrology, Medical Faculty, Justus-Liebig-University Giessen, UKGM GmbH, Giessen, Germany
| | - Julien M D Legrand
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robert I McLachlan
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Andrew I Webb
- Walter and Eliza Hall Institute, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, Medical Faculty, Justus-Liebig-University Giessen, UKGM GmbH, Giessen, Germany
| | - Thorsten Diemer
- Department of Urology, Pediatric Urology and Andrology, Medical Faculty, Justus-Liebig-University Giessen, UKGM GmbH, Giessen, Germany
| | - Lee B Smith
- Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.,MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Peter G Stanton
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
6
|
Boonthum C, Namdee K, Khongkow M, Temisak S, Chatdarong K, Sajomsang W, Ponglowhapan S, Yata T. Gonadotropin-releasing hormone-modified chitosan as a safe and efficient gene delivery vector for spermatogonia cells. Reprod Domest Anim 2018; 53 Suppl 3:23-28. [DOI: 10.1111/rda.13346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Chatwalee Boonthum
- Department of Obstetrics, Gynaecology and Reproduction; Research Unit of Obstetrics and Reproduction in Animals; Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
| | - Katawut Namdee
- National Nanotechnology Centre (NANOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| | - Sasithont Temisak
- Bio Analysis Group, Chemical Metrology and Biometry Department; National Institute of Metrology (NIMT); Pathumthani Thailand
| | - Kaywalee Chatdarong
- Department of Obstetrics, Gynaecology and Reproduction; Research Unit of Obstetrics and Reproduction in Animals; Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
| | - Warayuth Sajomsang
- National Nanotechnology Centre (NANOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| | - Suppawiwat Ponglowhapan
- Department of Obstetrics, Gynaecology and Reproduction; Research Unit of Obstetrics and Reproduction in Animals; Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
| | - Teerapong Yata
- National Nanotechnology Centre (NANOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| |
Collapse
|
7
|
Esposito C, Escolino M, Castagnetti M, Cerulo M, Settimi A, Cortese G, Turrà F, Iannazzone M, Izzo S, Servillo G. Two decades of experience with laparoscopic varicocele repair in children: Standardizing the technique. J Pediatr Urol 2018; 14:10.e1-10.e7. [PMID: 28807743 DOI: 10.1016/j.jpurol.2017.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/28/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Controversy still exists about the indications and the gold standard approach for varicocele treatment in pediatric population. OBJECTIVE The authors report their 23 years of experience in laparoscopic varicocele repair in the pediatric population. STUDY DESIGN We retrospectively evaluated the data of 345 consecutive patients who underwent laparoscopic left varicocelectomy from January 1993 to December 2015. Average patient age was 12.5 years (range 8-17). Seven out of 345 patients (2%) had a recurrent varicocele, and five out of 345 patients (1.4%) had a varicocele on a single testis. In 335/345 patients (97.1%) we performed a Palomo procedure, and in 10/345 patients (2.9%) an artery-sparing Palomo procedure. After 2010, in 105/345 patients (30.4%) we performed a lymphatic sparing procedure using isosulfan blue injection preoperatively. RESULTS All procedures were completed in laparoscopy (Figure), without conversions or intraoperative complications. The average operative time was 17 min (range 14-45) for the Palomo procedure and 26 min (range 18-50) for artery-sparing Palomo. In 45/345 patients (13%) we performed additional procedures. We recorded 4/345 (1.3%) recurrences/persistences in patients undergoing Palomo, while we recorded 1/10 (10%) recurrence/persistence after artery-sparing Palomo. On 230 Palomo procedures performed in the pre-isosulfan blue era, we recorded 25 cases of hydrocele (10.8%), 13 of these were treated with transcrotal puncture and 12 required surgical operation. The last 105 patients undergoing isosulfan blue injection had no postoperative hydrocele. We also reported 10 other complications (I grade Clavien-Dindo) such as umbilical granuloma or instrumental problems. DISCUSSION Analyzing the international literature of the last 25 years, most papers focused on the minimally invasive treatment of pediatric varicocele. There are several reasons to perform laparoscopic repair of pediatric varicocele. First of all, it is technically easy to perform, the average operative time is very short, and it has excellent outcome in regard to varicocele persistence/recurrence. In addition it has a very low complication rate, and in particular adopting the intradartoic/intratesticular isosulfan blue injection before surgery we recorded no postoperative hydrocele. CONCLUSION On the basis of our 23 years of experience with varicocele repair, we clearly believe that laparoscopic Palomo lymphatic sparing varicocelectomy should be considered the standard of care for the treatment of pediatric patients with varicocele. Laparoscopic varicocelectomy is technically easy and quick to perform, painless, and scarless, with a recurrence rate of about 1%. The use of a preoperative injection of isosulfan blue completely eliminates postoperative hydrocele formation.
Collapse
Affiliation(s)
- Ciro Esposito
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.
| | - Maria Escolino
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | | | - Mariapina Cerulo
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Alessandro Settimi
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Giuseppe Cortese
- Department of Anesthesiology, Federico II University of Naples, Naples, Italy
| | - Francesco Turrà
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Marta Iannazzone
- Department of Anesthesiology, Federico II University of Naples, Naples, Italy
| | - Serena Izzo
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Giuseppe Servillo
- Department of Anesthesiology, Federico II University of Naples, Naples, Italy
| |
Collapse
|
8
|
Sekerci CA, Tanidir Y, Sener TE, Sener G, Cevik O, Yarat A, Alev-Tuzuner B, Cetinel S, Kervancioglu E, Sahan A, Akbal C. Effects of platelet-rich plasma against experimental ischemia/reperfusion injury in rat testis. J Pediatr Urol 2017; 13:317.e1-317.e9. [PMID: 28215833 DOI: 10.1016/j.jpurol.2016.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Testicular torsion is a common problem and, to date, there is no agent to preserve testicular function following detorsion. Platelet-rich plasma (PRP), with its rich growth factor composition, has proven beneficial in regenerative therapy. It is believed that PRP has not been studied in testis for ischemia/reperfusion (I/R) injury. OBJECTIVE This study investigated the effect of PRP in an I/R rat model 1 month after detorsion. STUDY DESIGN Of 24 adult male Sprague-Dawley rats, 18 were randomly assigned into three groups, with six in each: control, I/R and I/R + PRP. The PRP was prepared from the remaining six. Each group underwent right orchiectomy. Ischemia was performed by rotating the left testis 720° and fixing with a nylon suture for 4 h. Reperfusion occurred 4 h later by removing the suture, and PRP was administered at a dose of 10 μl (2000 × 109/l) into the left testis via the intraparenchymal route. Animals were sacrificed at the fourth week, and testes were taken for malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), myeloperoxidase (MPO), transforming growth factor β (TGF-β), and caspase-3 measurements. RESULTS Ischemia/reperfusion caused a significant increase in MDA, MPO and caspase-3 activity, and significant decrease in GSH levels and SOD activity. The PRP treatment helped correct the alterations in SOD, caspase-3, and MPO activities and MDA levels. However, the mean MDA level and MPO activity were not totally restored compared with the controls. Serum testosterone levels of the I/R group were significantly lower compared with the control and I/R + PRP groups. TGF-β and caspase-3 protein expressions were significantly higher in the I/R group compared with the control group and were low with PRP administration compared with I/R groups (summary Table). DISCUSSION The findings of the present study suggest that PRP, by inhibiting neutrophil infiltration and oxidative stress and increasing antioxidant defense, exerts protective effects on testicular tissues against I/R. This study had some limitations: a scoring system was not used in the assessment of spermatogenesis in the histopathological findings and specific testis cell types were not histologically assessed. CONCLUSIONS In light of the biochemical, histological and, especially, hormonal findings, intraparenchymal PRP injection may have a protective effect in testicular tissue against I/R injury.
Collapse
Affiliation(s)
- C A Sekerci
- Department of Urology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Y Tanidir
- Department of Urology, School of Medicine, Marmara University, Istanbul, Turkey
| | - T E Sener
- Department of Urology, School of Medicine, Marmara University, Istanbul, Turkey
| | - G Sener
- Department of Pharmacology, School of Pharmacy, Marmara University, Istanbul, Turkey
| | - O Cevik
- Department of Biochemistry, School of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - A Yarat
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - B Alev-Tuzuner
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - S Cetinel
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - E Kervancioglu
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - A Sahan
- Department of Urology, School of Medicine, Marmara University, Istanbul, Turkey
| | - C Akbal
- Department of Urology, School of Medicine, Marmara University, Istanbul, Turkey.
| |
Collapse
|
9
|
Biosterilant effects of Bacillus thuringiensis kurstaki HD-73 extract on male Wistar albino rats. Theriogenology 2017; 88:73-83. [DOI: 10.1016/j.theriogenology.2016.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 11/20/2022]
|
10
|
Sumii K, Miyake H, Enatsu N, Chiba K, Fujisawa M. Characterization of urocortin as an anti-apoptotic protein in experimental ischemia-reperfusion model of the rat testis. Biochem Biophys Res Commun 2016; 479:387-392. [PMID: 27659706 DOI: 10.1016/j.bbrc.2016.09.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022]
Abstract
The objective of this study was to investigate the role of urocortin in testicular apoptosis using an experimental ischemia-reperfusion rat model. To evaluate the change in urocortin expression and apoptotic status in the testes following ischemia-reperfusion, the left testes of rats were rotated clockwise by 720° for 1 h, and were then harvested at 0, 1, 3, 6 and 24 h after detorsion (n = 5 in each group). A time-dependent increase in the expression levels of urocortin was noted until 6 h after reperfusion, but the expression of urocortin was markedly decreased 24 h after reperfusion. However, a TUNEL assay showed that the proportion of germ cells undergoing apoptosis significantly increased 24 h after reperfusion compared with that of 6 h after reperfusion. To clarify whether or not urocortin directly regulates the testicular apoptosis induced by ischemia-reperfusion, either astressin, an antagonist of urocortin, or normal saline was injected into the rat testes 15 min before detorsion, followed by the testicular torsion. The testes were then removed 3 h after detorsion (n = 5 in each group). The testicular injection of astressin significantly increased the proportion of TUNEL-positive germ cells, and significantly decreased expression of Bcl-2 and Bcl-xL. In addition, the level of phosphorylated ERK 1/2, but not that of phosphorylated Akt, was significantly reduced by the intratesticular administration of astressin. These findings suggest that urocortin may play a cytoprotective role in the germ cells in response to ischemia-reperfusion injury through the activation of major anti-apoptotic proteins, as well as by the mitogen-activated protein kinase signaling pathway activation.
Collapse
Affiliation(s)
- Kenta Sumii
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Noritoshi Enatsu
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Koji Chiba
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
11
|
Zhang Y, Cao Y, Wang F, Song M, Rui X, Li Y, Li C. 4-Nitrophenol induces activation of Nrf2 antioxidant pathway and apoptosis of the germ cells in rat testes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13035-13046. [PMID: 26996915 DOI: 10.1007/s11356-016-6470-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
The potential of 4-nitrophenol (PNP) to affect testicular function of rats was assessed by intratesticular injection (IT). The protective effects of phytosterin (PS) on PNP-induced injury were assessed. Rats were sacrificed on days 1, 3, and 7 after IT of PNP (0.1 M, 50 μl). PNP induced hemorrhage in intertubular areas and denudation of germinal epithelium. The expression of caspase-3 and sperm abnormalities were significantly increased (P < 0.05). The concentrations of testosterone in serum were significantly increased (P < 0.05) on the 1st and 3rd day. PNP induced oxidative stress in testes, which manifested increased SOD, CAT, GSH-Px activities, and increases in MDA, GSH, H2O2 concentrations (P < 0.05). The Nrf2 antioxidant pathway was activated as indicated by increased expression of Nrf2, HO-1, and GCLC mRNA (P < 0.05). Moreover, supplementation with PS resulted in an amelioration of PNP-induced oxidative damage. These results suggest that PNP induced activation of Nrf2 antioxidant pathway and apoptosis of the germ cells.
Collapse
Affiliation(s)
- Yonghui Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yun Cao
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Fei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Meiyan Song
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Xiaoli Rui
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Yansen Li
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - ChunMei Li
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
12
|
Slc15a1 is involved in the transport of synthetic F5-peptide into the seminiferous epithelium in adult rat testes. Sci Rep 2015; 5:16271. [PMID: 26537751 PMCID: PMC4633691 DOI: 10.1038/srep16271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/13/2015] [Indexed: 01/09/2023] Open
Abstract
Spermiation and BTB restructuring, two critical cellular events that occur across seminiferous epithelium in mammalian testis during spermatogenesis, are tightly coordinated by biologically active peptides released from laminin chains. Our earlier study reported that F5-peptide, synthesized based on a stretch of 50 amino acids within laminin-γ3 domain IV, could reversibly induce the impairment of spermatogenesis, disruption of BTB integrity, and germ cell loss, and thus is a promising male contraceptive. However, how F5-peptide when administered intratesticularly enters seminiferous tubules and exerts effects beyond BTB is currently unknown. Here we demonstrated that Slc15a1, a peptide transporter also known as Pept1, was predominantly present in peritubular myoid cells, interstitial Leydig cells, vascular endothelial cells and germ cells, while absent in Sertoli cells or BTB site. The steady-state protein level of Slc15a1 in adult rat testis was not affected by F5-peptide treatment. Knockdown of Slc15a1 by in vivo RNAi in rat testis was shown to prevent F5-peptide induced disruptive effects on spermatogenesis. This study suggests that Slc15a1 is involved in the transport of synthetic F5-peptide into seminiferous epithelium, and thus Slc15a1 is a novel target in testis that could be genetically modified to improve the bioavailability of F5-peptide as a prospective male contraceptive.
Collapse
|
13
|
Lyon KRP, Bosseboeuf E, Vogl AW. An Alternative Model of Tubulobulbar Complex Internalization During Junction Remodeling in the Seminiferous Epithelium of the Rat Testis. Biol Reprod 2015; 93:12. [PMID: 26040670 DOI: 10.1095/biolreprod.115.128942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
Tubulobulbar complexes (TBCs) are elongate subcellular machines responsible for internalizing intercellular junctions during sperm release. Each complex consists of a double-membrane tubular core terminating in a clathrin-coated pit. The core is surrounded by a network of actin filaments, and a distinct swelling or bulb, which lacks an association with actin, develops in the distal third of the structure. The bulb eventually buds from the complex and enters endocytic compartments of the Sertoli cell. The relationship of the actin cuff to the formation and budding of the bulb is not known. To gain insight into this relationship, we perturbed the actin networks of TBCs with cytochalasin D. When isolated testes were perfused with a physiological buffer containing cytochalasin D, apical TBCs at stage VII of spermatogenesis were associated with lower levels of actin compared to controls. At the ultrastructural level, the actin networks in cytochalasin D-treated testes appeared patchy, and ectopic bulbs and swollen tubular regions occurred. When normal untreated samples at early stage VII were analyzed, large elongate bulbs and short tubular sections were observed. Together, these results suggest a new model for TBC vesiculation in which the actin network begins to disassemble and the tubular region begins to swell into a bulb. As actin disassembly continues, the coated pit and most of the tubular region are incorporated into the enlarging bulb. The remaining short neck of the bulb near the base of the complex undergoes scission, and the bulb is internalized.
Collapse
Affiliation(s)
- Kevin R P Lyon
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Emy Bosseboeuf
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada Unité de Formation Biologie Santé, Université de Poitiers, France
| | - A Wayne Vogl
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
14
|
Gungor-Ordueri NE, Celik-Ozenci C, Cheng CY. Fascin 1 is an actin filament-bundling protein that regulates ectoplasmic specialization dynamics in the rat testis. Am J Physiol Endocrinol Metab 2014; 307:E738-53. [PMID: 25159326 PMCID: PMC4216949 DOI: 10.1152/ajpendo.00113.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the testis, spermatids are polarized cells, with their heads pointing toward the basement membrane during maturation. This polarity is crucial to pack the maximal number of spermatids in the seminiferous epithelium so that millions of sperms can be produced daily. A loss of spermatid polarity is detected after rodents are exposed to toxicants (e.g., cadmium) or nonhormonal male contraceptives (e.g., adjudin), which is associated with a disruption on the expression and/or localization of polarity proteins. In the rat testis, fascin 1, an actin-bundling protein found in mammalian cells, was expressed by Sertoli and germ cells. Fascin 1 was a component of the ectoplasmic specialization (ES), a testis-specific anchoring junction known to confer spermatid adhesion and polarity. Its expression in the seminiferous epithelium was stage specific. Fascin 1 was localized to the basal ES at the Sertoli cell-cell interface of the blood-testis barrier in all stages of the epithelial cycle, except it diminished considerably at late stage VIII. Fascin 1 was highly expressed at the apical ES at stage VII-early stage VIII and restricted to the step 19 spermatids. Its knockdown by RNAi that silenced fascin 1 by ~70% in Sertoli cells cultured in vitro was found to perturb the tight junction-permeability barrier via a disruption of F-actin organization. Knockdown of fascin 1 in vivo by ~60-70% induced defects in spermatid polarity, which was mediated by a mislocalization and/or downregulation of actin-bundling proteins Eps8 and palladin, thereby impeding F-actin organization and disrupting spermatid polarity. In summary, these findings provide insightful information on spermatid polarity regulation.
Collapse
Affiliation(s)
- N Ece Gungor-Ordueri
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York; and
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York; and
| |
Collapse
|
15
|
Gungor-Ordueri NE, Tang EI, Celik-Ozenci C, Cheng CY. Ezrin is an actin binding protein that regulates sertoli cell and spermatid adhesion during spermatogenesis. Endocrinology 2014; 155:3981-95. [PMID: 25051438 PMCID: PMC4164919 DOI: 10.1210/en.2014-1163] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During spermatogenesis, the transport of spermatids and the release of sperms at spermiation and the remodeling of the blood-testis barrier (BTB) in the seminiferous epithelium of rat testes require rapid reorganization of the actin-based cytoskeleton. However, the mechanism(s) and the regulatory molecule(s) remain unexplored. Herein we report findings that unfold the functional significance of ezrin in the organization of the testis-specific adherens junction at the spermatid-Sertoli cell interface called apical ectoplasmic specialization (ES) in the adluminal compartment and the Sertoli cell-cell interface known as basal ES at the BTB. Ezrin is expressed at the basal ES/BTB in all stages, except from late VIII to IX, of the epithelial cycle. Its knockdown by RNA interference (RNAi) in vitro perturbs the Sertoli cell tight junction-permeability barrier via a disruption of the actin microfilaments in Sertoli cells, which in turn impeded basal ES protein (eg, N-cadherin) distribution, perturbing the BTB function. These findings were confirmed by a knockdown study in vivo. However, the expression of ezrin at the apical ES is restricted to stage VIII of the cycle and limited only between step 19 spermatids and Sertoli cells. A knockdown of ezrin in vivo by RNAi was found to impede spermatid transport, causing defects in spermiation in which spermatids were embedded deep inside the epithelium, and associated with a loss of spermatid polarity. Also, ezrin was associated with residual bodies and phagosomes, and its knockdown by RNAi in the testis also impeded the transport of residual bodies/phagosomes from the apical to the basal compartment. In summary, ezrin is involved in regulating actin microfilament organization at the ES in rat testes.
Collapse
Affiliation(s)
- N Ece Gungor-Ordueri
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (N.E.G.-O., E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and Department of Histology and Embryology (C.C.-O.), Faculty of Medicine, Akdeniz University, 070200 Antalya, Turkey
| | | | | | | |
Collapse
|
16
|
Pérez CV, Pellizzari EH, Cigorraga SB, Galardo MN, Naito M, Lustig L, Jacobo PV. IL17A impairs blood-testis barrier integrity and induces testicular inflammation. Cell Tissue Res 2014; 358:885-98. [PMID: 25231257 DOI: 10.1007/s00441-014-1995-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
Experimental autoimmune orchitis is a useful model for studying testicular inflammation and germ/immune cell interactions. Th17 cells and their hallmark cytokine IL17A were reported to be involved in the development of autoimmune orchitis. The aim of the present work is to investigate the pathogenic role of IL17A in rat testis. In vitro experiments were performed in order to analyze effects of IL17A on Sertoli cell tight junctions. The addition of IL17A to normal rat Sertoli cell cultures induced a significant decline in transepithelial electrical resistance and a reduction of occludin expression and redistribution of occludin and claudin 11, altering the Sertoli cell tight junction barrier. Intratesticular injection of 1 μg of recombinant rat IL17A to Sprague-Dawley rats induced increased blood-testis barrier permeability, as shown by the presence of biotin tracer in the seminiferous tubule adluminal compartment, and delocalization of occludin and claudin 11. Results showed that IL17A induced focal inflammatory cell infiltration in the interstitium and germ cell sloughing in adjacent seminiferous tubules. Moreover, an increase in TUNEL+ apoptotic germ cells was also observed. Inflammatory ED1+ macrophages were the main population infiltrating the interstitium following IL17A injection. This correlated with an increase in mRNA expression of the monocyte chemoattractant protein Ccl2, its receptor Ccr2 and the vascular cell adhesion molecule Vcam1. Overall results suggest a relevant role of IL17A in the development of testicular inflammation, facilitating the recruitment of immune cells to the testicular interstitium and inducing impairment of blood-testis barrier function.
Collapse
Affiliation(s)
- Cecilia Valeria Pérez
- Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina,
| | | | | | | | | | | | | |
Collapse
|
17
|
Haverfield JT, Meachem SJ, Nicholls PK, Rainczuk KE, Simpson ER, Stanton PG. Differential permeability of the blood-testis barrier during reinitiation of spermatogenesis in adult male rats. Endocrinology 2014; 155:1131-44. [PMID: 24424039 DOI: 10.1210/en.2013-1878] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The blood-testis barrier (BTB) sequesters meiotic spermatocytes and differentiating spermatids away from the vascular environment. We aimed to assess whether meiosis and postmeiotic differentiation could occur when the BTB is permeable. Using a model of meiotic suppression and reinitiation, BTB function was assessed using permeability tracers of small, medium, and large (0.6-, 70-, and 150-kDa) sizes to emulate blood- and lymphatic-borne factors that could cross the BTB. Adult rats (n = 9/group) received the GnRH antagonist acyline (10 wk) to suppress gonadotropins, followed by testosterone (24cm Silastic implant), for 2, 4, 7, 10, 15, and 35 days. In acyline-suppressed testes, all tracers permeated the seminiferous epithelium. As spermatocytes up to diplotene stage XIII reappeared, both the 0.6- and 70-kDa tracers, but not 150 kDa, permeated around these cells. Intriguingly, the 0.6- and 70-kDa tracers were excluded from pachytene spermatocytes at stages VII and VIII but not in subsequent stages. The BTB became progressively impermeable to the 0.6- and 70-kDa tracers as stages IV-VII round spermatids reappeared in the epithelium. This coincided with the appearance of the tight junction protein, claudin-12, in Sertoli cells and at the BTB. We conclude that meiosis can occur when the BTB is permeable to factors up to 70 kDa during the reinitiation of spermatogenesis. Moreover, BTB closure corresponds with the presence of particular pachytene spermatocytes and round spermatids. This research has implications for understanding the effects of BTB dynamics in normal spermatogenesis and also potentially in states where spermatogenesis is suppressed, such as male hormonal contraception or infertility.
Collapse
Affiliation(s)
- Jenna T Haverfield
- Prince Henry's Institute (J.T.H., S.J.M., P.K.N., K.E.R., E.R.S., P.G.S.), Monash Medical Centre, Clayton, VIC 3168, Australia; and Departments of Anatomy and Developmental Biology (J.T.H., S.J.M.) and Biochemistry and Molecular Biology (P.K.N., E.R.S., P.G.S.), Monash University, Clayton, VIC 3800, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Wan HT, Mruk DD, Li SYT, Mok KW, Lee WM, Wong CKC, Cheng CY. p-FAK-Tyr(397) regulates spermatid adhesion in the rat testis via its effects on F-actin organization at the ectoplasmic specialization. Am J Physiol Endocrinol Metab 2013; 305:E687-99. [PMID: 23880313 PMCID: PMC4073987 DOI: 10.1152/ajpendo.00254.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During spermatogenesis, the molecular mechanism that confers spermatid adhesion to the Sertoli cell at the apical ectoplasmic specialization (apical ES), a testis-specific F-actin-rich adherens junction, in the rat testis remains elusive. Herein, the activated form of focal adhesion kinase (FAK), p-FAK-Tyr(397), a component of the apical ES that was expressed predominantly and stage specifically in stage VII-early stage VIII tubules, was found to be a crucial apical ES regulator. Using an FAK-Y397E phosphomimetic mutant cloned in a mammalian expression vector for its transfection vs. FAK and vector alone in adult rat testes in vivo, its overexpression was found to cause defects in spermiation. These defects in spermiation were manifested by entrapment of spermatids in the seminiferous epithelium in late stage VIII-X tubules and were mediated by a disruption on the spatiotemporal expression and/or mislocalization of actin regulatory protein actin-related protein 3, which induces branched actin polymerization, epidermal growth factor receptor pathway substrate 8 (an actin barbed end capping and bundling protein), and palladin (an actin cross-linking and bundling protein). This thus perturbed changes of F-actin organization at the apical ES to facilitate spermiation, which also led to a concomitant alteration in the distribution and upregulation of adhesion proteins nectin-2 and nectin-3 at the apical ES. As such, nectin-2 and -3 remained at the apical ES to anchor step 19 spermatids on to the epithelium, delaying spermiation. These findings illustrate a mechanistic pathway mediated by p-FAK-Tyr(397) that regulates spermatid adhesion at the apical ES in vivo.
Collapse
Affiliation(s)
- Hin-Ting Wan
- 1The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York;
| | - Dolores D. Mruk
- 1The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York;
| | - Stephen Y. T. Li
- 1The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York;
| | - Ka-Wai Mok
- 1The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York;
| | - Will M. Lee
- 2School of Biological of Sciences, University of Hong Kong, Hong Kong, China; and
| | - Chris K. C. Wong
- 3Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - C. Yan Cheng
- 1The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York;
| |
Collapse
|
19
|
A peptide derived from laminin-γ3 reversibly impairs spermatogenesis in rats. Nat Commun 2013; 3:1185. [PMID: 23149730 PMCID: PMC3538133 DOI: 10.1038/ncomms2171] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/26/2012] [Indexed: 01/06/2023] Open
Abstract
Cellular events that occur across the seminiferous epithelium of the mammalian testis during spermatogenesis are tightly coordinated by biologically active peptides released from laminin chains. Laminin-γ3 domain IV (Lam γ3 DIV) is released at the apical ectoplasmic specialization (ES) during spermiation and mediates restructuring of the blood-testis barrier (BTB), which facilitates the transit of preleptotene spermatocytes. Here we determine the biologically active domain in Lam γ3 DIV, which we designate F5-peptide, and show that overexpression of this domain, or the use of a synthetic F5-peptide, in Sertoli cells with an established functional BTB reversibly perturbs BTB integrity in vitro and in rat testis in vivo. This effect is mediated via changes in protein distribution at the Sertoli and Sertoli-germ cell-cell interface and by phosphorylation of focal adhesion kinase at Tyr407. The consequences are perturbed organization of actin filaments in Sertoli cells, disruption of the BTB and spermatid loss. The impairment of spermatogenesis suggests that this laminin peptide fragment may serve as a contraceptive in male rats.
Collapse
|
20
|
Jacobo PV, Fass M, Pérez CV, Jarazo-Dietrich S, Lustig L, Theas MS. Involvement of soluble Fas Ligand in germ cell apoptosis in testis of rats undergoing autoimmune orchitis. Cytokine 2012; 60:385-92. [PMID: 22892327 DOI: 10.1016/j.cyto.2012.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 07/05/2012] [Accepted: 07/14/2012] [Indexed: 12/21/2022]
Abstract
Experimental autoimmune orchitis (EAO) is a model of chronic inflammation and infertility useful for studying immune and germ cell (GC) interactions. EAO is characterized by severe damage of seminiferous tubules (STs) with GCs that undergo apoptosis and sloughing. Based on previous results showing that Fas-Fas Ligand (L) system is one of the main mediators of apoptosis in EAO, in the present work we studied the involvement of Fas and the soluble form of FasL (sFasL) in GC death induction. EAO was induced in rats by immunization with testis homogenate and adjuvants; control (C) rats were injected with adjuvants; a group of non-immunized normal (N) rats was also studied. Activation of Fas employing an anti-Fas antibody decreased viability (trypan blue exclusion test) and induced apoptosis (TUNEL) of GCs from STs of N and EAO rats, an effect more pronounced on GCs from EAO STs. By Western blot we detected an increase in sFasL content in the testicular fluid of rats with severe EAO compared to N and C rats. By intratesticular injection of FasL conjugated to Strep-Tag molecule (FasL-Strep, BioTAGnology) and its immunofluorescent localization, we demonstrated that sFasL is able to enter the adluminal compartment of the STs. Moreover, FasL-Strep induced GC apoptosis in testicular fragments of N rats. By flow cytometry, we detected an increase in the number of membrane FasL-expressing CD4+ and CD8+ T cells in testis during EAO development but no expression of FasL by macrophages. Our results demonstrate that sFasL is locally produced in the chronically inflamed testis and that this molecule is able to enter the adluminal compartment of STs and induce apoptosis of Fas-bearing GCs.
Collapse
Affiliation(s)
- Patricia Verónica Jacobo
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
21
|
Primo-Vessels as New Flow Paths for Intratesticular Injected Dye in Rats. J Acupunct Meridian Stud 2010; 3:81-8. [DOI: 10.1016/s2005-2901(10)60016-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/14/2010] [Indexed: 11/20/2022] Open
|
22
|
Lue Y, Swerdloff R, Liu Q, Mehta H, Hikim AS, Lee KW, Jia Y, Hwang D, Cobb LJ, Cohen P, Wang C. Opposing roles of insulin-like growth factor binding protein 3 and humanin in the regulation of testicular germ cell apoptosis. Endocrinology 2010; 151:350-7. [PMID: 19952275 DOI: 10.1210/en.2009-0577] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Modulating germ cell death and survival have significant therapeutic potential for male infertility and contraception. We have shown previously that IGF binding protein 3 (IGFBP3) gene expression is up-regulated in human testis when germ cell apoptosis is induced by intratesticular hormonal deprivation created by testosterone administration. Humanin (HN) is a binding partner of IGFBP3, and both are expressed in rat testes. We therefore hypothesized that IGFBP3, a proapoptotic factor, and HN, an antiapoptotic factor, are important regulators of male germ cell apoptosis. Whereas baseline apoptosis in the testis was equivalent between Igfbp3 knockout and wild-type mice, treatment with GnRH antagonist (GnRH-A) for 2 wk induced germ cell apoptosis in wild type, which was dramatically reduced in Igfbp3 knockout mice. To investigate the direct effects of IGFBP3 and HN on germ cell apoptosis, intratesticular administration of IGFBP3 for 5 d in rats induced a 4.2- and 3.8-fold increase in apoptosis at stages VII-VIII and XIV-I of the seminiferous epithelium cycle, respectively. GnRH-A treatment for 5 d increased apoptosis, mainly at stages VII-VIII. Addition of IGFBP3 to GnRH-A treatment enhanced apoptosis to 39.3-fold at stages VII-VIII, which was higher than either treatment alone. Intratesticular injection of HN significantly decreased GnRH-A-induced apoptosis at stages XIV-I but not stages VII-VIII. We conclude that IGFBP3 and HN play key roles in the coordinated regulation of testicular germ cell homeostasis. Perturbation of this interaction is important in enhancing or preventing germ cell death, providing new targets for future therapies.
Collapse
Affiliation(s)
- YanHe Lue
- Division of Endocrinology, Department of Medicine, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lie PPY, Mruk DD, Lee WM, Cheng CY. Epidermal growth factor receptor pathway substrate 8 (Eps8) is a novel regulator of cell adhesion and the blood-testis barrier integrity in the seminiferous epithelium. FASEB J 2009; 23:2555-67. [PMID: 19293393 DOI: 10.1096/fj.06-070573] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the seminiferous epithelium, Eps8 is localized to actin-based cell junctions at the blood-testis barrier (BTB) and the apical ectoplasmic specialization (ES) in stage V-VI tubules but is considerably diminished in stage VIII tubules. Eps8 down-regulation coincides with the time of BTB restructuring and apical ES disassembly, implicating the role of Eps8 in cell adhesion. Its involvement in Sertoli-germ cell adhesion was substantiated in studies using an in vivo animal model by treating rats with 1-(2,4-dichlorobenzy)-1H-indazole-3-carbohydrazide (adjudin) to induce anchoring junction restructuring, during which Eps8 disappeared at the apical ES before germ cell departure. In Sertoli cell cultures with established permeability barrier mimicking the BTB in vivo, the knockdown of Eps8 by RNAi led to F-actin disorganization and the mislocalization of the tight junction proteins occludin and ZO-1, suggesting the function of Eps8 in maintaining BTB integrity. In vivo knockdown of Eps8 in the testis caused germ cell sloughing and BTB damage, concomitant with occludin mislocalization, further validating that Eps8 is a novel regulator of cell adhesion and BTB integrity in the seminiferous epithelium.
Collapse
Affiliation(s)
- Pearl P Y Lie
- Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, USA
| | | | | | | |
Collapse
|
24
|
Xia W, Mruk DD, Cheng CY. C-type natriuretic peptide regulates blood-testis barrier dynamics in adult rat testes. Proc Natl Acad Sci U S A 2007; 104:3841-6. [PMID: 17360440 PMCID: PMC1820671 DOI: 10.1073/pnas.0610100104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In adult rat testes, the blood-testis barrier (BTB) in the seminiferous epithelium must "open" (or "disassemble") to accommodate the migration of preleptotene spermatocytes from the basal to the adluminal compartment that occurs at stage VIII of the epithelial cycle. However, the molecule(s) and/or mechanism(s) that regulate this event are unknown. In this report, C-type natriuretic peptide (CNP) was shown to be a regulator of BTB dynamics. Although Sertoli and germ cells contributed to the pool of CNP in the seminiferous epithelium, its receptor, natriuretic peptide receptor B, resided almost exclusively in Sertoli cells. CNP also expressed stage-specifically and localized predominantly at the BTB in the seminiferous epithelium at stage VIII of the epithelial cycle. A synthetic CNP-22 peptide, when added to Sertoli cell cultures, was shown to perturb Sertoli cell tight junction in vitro, causing disappearance of BTB-associated proteins (JAM-A, occludin, N-cadherin, and beta-catenin) from the cell-cell interface. This inhibitory effect of CNP on the tight junction was confirmed by transient overexpression of CNP in these cells, which was mediated, at least in part, by accelerating the internalization of BTB integral membrane proteins. To validate these in vitro findings, CNP-22 was administered to testes at a dose of 0.35 or 3.5 mug per testis, which was shown to perturb the BTB integrity In vivo when the barrier function was assessed by monitoring the diffusion of a small molecular probe across the BTB. In summary, CNP secreted by Sertoli and germ cells into the BTB microenvironment regulates BTB dynamics during spermatogenesis.
Collapse
Affiliation(s)
- Weiliang Xia
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10021
| | - Dolores D. Mruk
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10021
| | - C. Yan Cheng
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10021
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Xia W, Mruk DD, Lee WM, Cheng CY. Differential interactions between transforming growth factor-beta3/TbetaR1, TAB1, and CD2AP disrupt blood-testis barrier and Sertoli-germ cell adhesion. J Biol Chem 2006; 281:16799-813. [PMID: 16617054 DOI: 10.1074/jbc.m601618200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biochemical basis that regulates the timely and selective opening of the blood-testis barrier (BTB) to migrating preleptotene/leptotene spermatocytes at stage VIII of the epithelial cycle in adult rat testes is virtually unknown. Recent studies have shown that cytokines (e.g. transforming growth factor (TGF)-beta3) may play a crucial role in this event. However, much of this information relies on the use of toxicants (e.g. CdCl(2)), making it difficult to relay these findings to normal testicular physiology. Here we report that overexpression of TGF-beta3 in primary Sertoli cells cultured in vitro indeed perturbed the tight junction (TJ) barrier with a concomitant decline in the production of BTB constituent proteins as follows: occludin, N-cadherin, and ZO-1. Additionally, local administration of TGF-beta3 to testes in vivo was shown to reversibly perturb the BTB integrity and Sertoli-germ cell adhesion via the p38 MAPK and ERK signaling pathways. Most importantly, the simultaneous activation of p38 and ERK signaling pathways is dependent on the association of the TGF-beta3-TbetaR1 complex with adaptors TAB1 and CD2AP because if TbetaR1 was associated preferentially with CD2AP, only Sertoli-germ cell adhesion was perturbed without compromising the BTB. Collectively, these data illustrate that local production of TGF-beta3, and perhaps other TGF-betas and cytokines, by Sertoli and germ cells into the microenvironment at the BTB during spermatogenesis transiently perturbs the BTB and Sertoli-germ cell adhesion to facilitate germ cell migration when the activated TbetaRI interacts with adaptors TAB1 and CD2AP. However, TGF-beta3 selectively disrupts Sertoli-germ cell adhesion in the seminiferous epithelium to facilitate germ cell migration without compromising BTB when TbetaRI interacts only with adaptor CD2AP.
Collapse
Affiliation(s)
- Weiliang Xia
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
26
|
Cheng CY, Mruk DD. Cell Junction Dynamics in the Testis: Sertoli-Germ Cell Interactions and Male Contraceptive Development. Physiol Rev 2002; 82:825-74. [PMID: 12270945 DOI: 10.1152/physrev.00009.2002] [Citation(s) in RCA: 428] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spermatogenesis is an intriguing but complicated biological process. However, many studies since the 1960s have focused either on the hormonal events of the hypothalamus-pituitary-testicular axis or morphological events that take place in the seminiferous epithelium. Recent advances in biochemistry, cell biology, and molecular biology have shifted attention to understanding some of the key events that regulate spermatogenesis, such as germ cell apoptosis, cell cycle regulation, Sertoli-germ cell communication, and junction dynamics. In this review, we discuss the physiology and biology of junction dynamics in the testis, in particular how these events affect interactions of Sertoli and germ cells in the seminiferous epithelium behind the blood-testis barrier. We also discuss how these events regulate the opening and closing of the blood-testis barrier to permit the timely passage of preleptotene and leptotene spermatocytes across the blood-testis barrier. This is physiologically important since developing germ cells must translocate across the blood-testis barrier as well as traverse the seminiferous epithelium during their development. We also discuss several available in vitro and in vivo models that can be used to study Sertoli-germ cell anchoring junctions and Sertoli-Sertoli tight junctions. An in-depth survey in this subject has also identified several potential targets to be tackled to perturb spermatogenesis, which will likely lead to the development of novel male contraceptives.
Collapse
Affiliation(s)
- C Yan Cheng
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
27
|
Takamiya K, Yamamoto A, Furukawa K, Zhao J, Fukumoto S, Yamashiro S, Okada M, Haraguchi M, Shin M, Kishikawa M, Shiku H, Aizawa S, Furukawa K. Complex gangliosides are essential in spermatogenesis of mice: possible roles in the transport of testosterone. Proc Natl Acad Sci U S A 1998; 95:12147-52. [PMID: 9770454 PMCID: PMC22799 DOI: 10.1073/pnas.95.21.12147] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1998] [Indexed: 11/18/2022] Open
Abstract
Mice, homozygous for disrupted ganglioside GM2/GD2 synthase (EC 2.4. 1.94) gene and lacking all complex gangliosides, do not display any major neurologic abnormalities. Further examination of these mutant mice, however, revealed that the males were sterile and aspermatogenic. In the seminiferous tubules of the mutant mice, a number of multinuclear giant cells and vacuolated Sertoli cells were observed. The levels of testosterone in the serum of these mice were very low, although testosterone production equaled that produced in wild-type mice. Testosterone was found to be accumulated in interstitial Leydig cells, and intratesticularly injected testosterone was poorly drained in seminiferous fluid in the mutant mice. These results suggested that complex gangliosides are essential in the transport of testosterone to the seminiferous tubules and bloodstream from Leydig cells. Our results provide insights into roles of gangliosides in vivo.
Collapse
Affiliation(s)
- K Takamiya
- Department of Oncology, Scientific Data Center for the Atomic Bomb Disaster, Nagasaki University School of Medicine, Nagasaki 852, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sprando RL, Collins TF, Black TN, Rorie J, Ames MJ, O'Donnell M. Testing the potential of sodium fluoride to affect spermatogenesis in the rat. Food Chem Toxicol 1997; 35:881-90. [PMID: 9409628 DOI: 10.1016/s0278-6915(97)88938-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The potential of sodium fluoride (NaF) to affect spermatogenesis and endocrine function was assessed in P and F1 generation male rats. Male and female experimental rats received sodium fluoride in their drinking water at one of four concentrations (25, 100, 175, 250 ppm). P generation male and female rats were exposed to sodium fluoride in their drinking water for 10 wk and then males were mated to females within the same treatment groups. Reproductive tissues were collected from P generation male rats after approximately 14 wk of treatment. Pregnant females (P) were exposed to sodium fluoride via their drinking water through gestation and lactation. F1 generation weanling male rats remained within the same treatment groups as their parents. F1 generation male rats were exposed to sodium fluoride in their drinking water for 14 wk, at which time reproductive tissues were collected. Dose-related effects were not observed within the P and F1 treatment groups in testis weights, prostate/seminal vesicle weights, non-reproductive organ weights, testicular spermatid counts, sperm production per gram of testis per day, sperm production per gram of testis, LH, FSH or serum testosterone concentrations. Histological changes were not observed in testicular tissues from either the P or F1 generation. We conclude that prolonged exposure to sodium fluoride in drinking water at the doses administered in this study does not adversely affect spermatogenesis or endocrine function in the P and F1 generation male rats.
Collapse
Affiliation(s)
- R L Sprando
- Division of Toxicological Research, Center for Food Safety Applied Nutrition, Food and Drug Administration, Beltsville, MD 20708, USA
| | | | | | | | | | | |
Collapse
|
29
|
Sprando RL, Black TN, Ames MJ, Rorie JI, Collins TF. Effect of intratesticular injection of sodium fluoride on spermatogenesis. Food Chem Toxicol 1996; 34:377-84. [PMID: 8641664 DOI: 10.1016/0278-6915(96)84542-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The potential of sodium fluoride to affect spermatogenesis in the rat was assessed by intratesticular injection. Experimental rats' left testis was injected with sodium fluoride (50, 175 and 250 ppm) in vehicle (0.9% physiological saline); control testes were injected with vehicle. The right testis served as a non-injected control. Testicular tissues collected 'at' and 'distal to' the injection site and from the non-injected control testes were evaluated microscopically 24 hr and 1, 2 and 3 wk post-injection. Testicular tissues obtained at and distal to the injection site in all fluoride-injected groups resembled tissues collected from corresponding areas in the controls. Seminiferous tubule damage observed in both the vehicle-injected control testes and the fluoride-injected testes but not in the non-injected testes was attributed to injection trauma. Polymorphonuclear leucocyte infiltration was observed 24 hr post injection only at the injection site in the vehicle- and fluoride-injected groups. Leydig cells were unaffected. Leucocyte infiltration with seminiferous tubule damage was not considered to be a fluoride treatment-related effect because it was observed in both vehicle- and fluoride-injected testes. The results demonstrate that the rat is not adversely affected by direct exposure to fluoride at levels 200 times greater than those under normal conditions.
Collapse
Affiliation(s)
- R L Sprando
- Division of Toxicological Research, Food and Drug Administration, Beltsville, MD 20708, USA
| | | | | | | | | |
Collapse
|
30
|
Obata T, Ikehira H, Ueshima Y, Kato H, Koga M, Yoshida K. Noninvasive analysis of water movement in rat testis using deuterium magnetic resonance imaging. Magn Reson Imaging 1996; 14:115-9. [PMID: 8656984 DOI: 10.1016/0730-725x(95)02038-u] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To measure water movement in the testis without the effects from the blood-testis barrier, we performed in vivo deuterium magnetic resonance imaging (2H MRI) of rats administered with deuterated saline. Alcohol was injected into one testis of each animal and the other was administered with normal saline as a control. Dynamic 2H MRI was obtained at 2 T by FLASH pulse sequence (TR, 300 ms; TE, 10 ms; alpha = 90 degrees) using a surface coil (3 cm in diameter). The variation in 2H signal intensity between the two testes as a function of time after deuterated saline injection was examined every 1.1 min up to 20 min. The signal intensity in the testis receiving the alcohol treatment was lower than that in the normal control. Thus, deuterium MRI can be used to analyze functional disorders of the testis.
Collapse
Affiliation(s)
- T Obata
- Division of Clinical Research and Radiation Health, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Sliwa L. Effects of selected hormones on the motility of spermatozoa in the mouse vas deferens. ARCHIVES OF ANDROLOGY 1994; 33:145-9. [PMID: 7857164 DOI: 10.3109/01485019408987817] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acting in vivo, adrenalin and noradrenalin cause a statistically significant and permanent decrease in the motility of mouse spermatozoa remaining in the vas deferens. Intratesticular injection of vasopressin, oxytocin, insulin, and glucagon results in a decrease in spermatozoa motility in vas deferens, removal the spermatozoa to PBS in vitro, and an increase in percentage of motile spermatozoa on incubation medium. Thyroxine, calcytonin, and TRH did not affect motility of mouse spermatozoa in vivo.
Collapse
Affiliation(s)
- L Sliwa
- Department of Biology, Collegium Medicum of Jagiellonian University, Kraków, Poland
| |
Collapse
|
32
|
Farghali H, Williams DS, Simplaceanu E, Ho C, Van Thiel DH. An evaluation of the integrity of the blood-testis barrier by magnetic resonance imaging. Magn Reson Med 1991; 22:81-7. [PMID: 1798397 DOI: 10.1002/mrm.1910220109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This present investigation was initiated to noninvasively evaluate the usefulness of intravenous gadopentetate dimeglumine (Gd-PTDM)-enhanced magnetic resonance imaging (MRI) in assessing the integrity of the blood-testis barrier (BTB). The intensity of different image slices was measured in pre- and post-Gd-PTDM images in rats receiving cytochalasin D or alcohol treatment. It was found that MRI can be used to assess the integrity of the BTB and may be a useful tool in the evaluation of potentially toxic agents that affect the testis, particularly those that affect the BTB.
Collapse
Affiliation(s)
- H Farghali
- Department of Surgery, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | | | | | | | |
Collapse
|
33
|
Schlegel PN, Wright WW, Chang TS. Characterization and localization of in vivo phospholipid methylation in the hamster testis. J Urol 1989; 141:1483-7. [PMID: 2724449 DOI: 10.1016/s0022-5347(17)41352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although previous studies have demonstrated that phospholipid methylation occurs in the testis and may be involved in Leydig cell function, phospholipid methylation in spermatogenic cells has not been characterized. In this study we describe the occurrence, time course, and localization of phospholipid methylation in the hamster testis following intratesticular injection of radioactive methyl precursor. Adult and pubertal (seven day old) hamsters were injected intratesticularly with [3H-methyl]-methionine and sacrificed 10 min. to 31 hours thereafter. The testes were then removed and homogenized or dispersed into cell suspensions. Spermatogenic cell and Leydig cell enriched preparations were isolated from the dispersed cell preparations using elutriation and Percoll gradient centrifugation and assayed for methylated phospholipids and proteins. These experiments demonstrated that 1) phospholipid methylation occurs in the hamster testis at a level seven-fold greater than protein methylation, 2) the incorporation of radioactivity associated with phospholipid methylation is progressive over time, and 3) in vivo, spermatogenic cell preparations enriched with pachytene spermatocytes have an almost four-fold higher level of measurable phospholipid methylation when compared to whole testis preparations. Taken together, these results suggest that phospholipid methylation may play an important stage-specific role in spermatogenesis.
Collapse
Affiliation(s)
- P N Schlegel
- James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, Md 21205
| | | | | |
Collapse
|
34
|
Slott VL, Linder RE, Strader LF, Perreault SD. Unilateral depletion of testicular glutathione levels in the rat following intratesticular injections of diethylmaleate and buthionine sulfoximine. Toxicol Appl Pharmacol 1989; 98:369-73. [PMID: 2711398 DOI: 10.1016/0041-008x(89)90241-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A method was developed to selectively deplete glutathione (GSH) in a single rat testis. Using intratesticular injections of a mixture of two GSH-depleting agents, diethylmaleate and buthionine sulfoximine, testicular GSH levels were decreased to 33-54% of control 2 hr after injection and remained suppressed for 24 hr. GSH levels in the contralateral testis and liver were not affected by this treatment. Comparisons between GSH-depleted and vehicle-injected (contralateral) testes, evaluated 2 weeks later, showed that although testis and epididymal weights and cauda epididymal sperm reserves were slightly reduced (to greater than or equal to 90% of controls), no changes were seen in testicular spermatid counts or in the morphology or motility of cauda epididymal sperm. An increase in histologically abnormal tubules localized to the injection site occurred in some GSH-depleted testes; however, the proportion of normal tubules containing step 19 spermatids was not affected. Thus, intratesticular injections of GSH-depleting agents selectively lowered GSH levels in the treated testis, with minimal adverse effects. This protocol can now be applied to investigate specific roles of GSH in the testes, particularly with regard to the possible modulation of the effects of testicular toxicants.
Collapse
Affiliation(s)
- V L Slott
- Cellular and Reproductive Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | | | | | | |
Collapse
|
35
|
Abstract
The process of spermiation and sperm transport was studied using specific inhibitors of cytoskeletal elements. Within 12-24 hr after the intratesticular injection of taxol, a compound that acts to stabilize microtubules and inhibit microtubule-related processes, an unusually large number of microtubules was seen within the body of the Sertoli cell. At the same time, transport of elements within the seminiferous epithelium was affected. At the end of stage VI of the cycle, step 19 spermatids were maintained in the deep recesses of the Sertoli cell and not transported to the rim of the seminiferous tubule lumen. At stage VIII, residual bodies remained at, or near, the rim of the tubule and were not transported to the base of the tubule. They underwent only partial degradation at this site, indicating that there may have been two phases involved in their dissolution--one autophagic and one phagocytic, but the latter did not occur since the residual bodies were not transported to Sertoli lysosomes at the base of the tubule. The observations suggest that microtubules are involved in transport processes within the seminiferous epithelium. Within 1-12 hr after the intratesticular injection of 500 microM cytochalasin D, a compound which interferes with actin-related processes, normal appearing tubulobulbar complexes were not present. The tubular portion (distal tube) of the complex did not initiate development. It was assumed that filaments (which were identified as such using NBD-phallacidin and the S-1 fragment of myosin) played an important role in the development of this portion of the complex. Cells did not eliminate cytoplasm normally, as evidenced by an enlarged cytoplasmic droplet, further emphasizing the published role for tubulobulbar complexes in cytoplasmic elimination. Although sperm were released normally from stage VIII tubules, many remained within the tubular lumen and did not traverse the duct system. Cytochalasin did not inhibit fluid secretion by the Sertoli cell, as demonstrated by efferent duct ligation, but did alter myoid cell actin cytoskeletal organization, suggesting that myoid cell contractility is primarily responsible for transport of sperm. Overall, the observations suggest that cytoskeletal activity of the Sertoli cell is important for several aspects of the spermiation process as well as sperm transport.
Collapse
Affiliation(s)
- L D Russell
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale 62901-6512
| | | | | |
Collapse
|
36
|
Weber JE, Turner TT, Tung KS, Russell LD. Effects of cytochalasin D on the integrity of the Sertoli cell (blood-testis) barrier. THE AMERICAN JOURNAL OF ANATOMY 1988; 182:130-47. [PMID: 3400621 DOI: 10.1002/aja.1001820204] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ectoplasmic specializations (ES) containing packed actin microfilaments are associated with the numerous parallel rows of occluding junctions which form the Sertoli cell (blood-testis) barrier. To determine if ES regulate the structure of the occluding junctions and/or barrier permeability, we experimentally disrupted ES microfilaments in vivo with intratesticularly injected cytochalasin D (CD). Electron microscopic observations of seminiferous tubules from CD-treated (150-500 microM CD; 0.5-12 hr) animals indicated that ES was absent from regions where the Sertoli cell barrier is located. Seminiferous epithelial sheets from uninjected or vehicle-injected animals (1 DMSO: 1 saline) stained with NBD-phallacidin demonstrated the presence of patterned ES actin surrounding the basolateral regions of adjacent Sertoli cells. After exposure to CD, epithelial sheets exhibited increasingly patchy fluorescence indicating progressive F-actin disruption. Freeze-fracture replicas of CD-injected testes revealed numerous focal alterations in the region of occluding junctions which included disorganization of the parallel arrangement of junctional rows, the presence of free-ending rows, clustering of intramembranous particles (IMPs) between rows, reduction in the number of rows, and loss of IMPs on both the P-face and E-face. Tracer experiments, following CD exposure, were conducted to test the integrity of occluding junctions: lanthanum hydroxide, dextrose, or filipin was added, in separate experiments, to the fixative during perfusion-fixation. In another study, serum containing an antibody against adluminal germ cells was injected intratesticularly, and frozen sections were processed for immunofluorescence study. A final study consisted of simultaneous intratesticular infusions of CD and radiolabelled inulin with subsequent intraluminal and peritubular fluid sampling. In animals which were injected with CD, lanthanum was found to enter the adluminal compartment; fixative made hypertonic by addition of dextrose caused germ cells within the adluminal compartment to shrink and produce exaggerated intercellular spaces; filipin-cholesterol perturbations were present between some Sertoli cell junctional rows and on spermatid plasma membranes; and IgG was detected within the adluminal compartment of many seminiferous tubules. None of these adluminal manifestations was noted in control animals or those which received vehicle. Quantitatively, in the in vivo micropuncture experiments, significantly more radiolabelled inulin entered the lumen of seminiferous tubules from CD-treated animals than from those exposed to vehicle.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J E Weber
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale 62901-6512
| | | | | | | |
Collapse
|
37
|
Hikim AP, Bartke AJ, Russell LD. The seasonal breeding hamster as a model to study structure-function relationships in the testis. Tissue Cell 1988; 20:63-78. [PMID: 3388415 DOI: 10.1016/0040-8166(88)90008-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The present study was undertaken to document morphological changes in the testis of the seasonally breeding golden hamster, an animal model which has been studied extensively from an endocrine standpoint but for which morphological data is inadequate. Germ cells, Sertoli cells and Leydig cells were studied during active and regressed state of gonadal activity by exposing the animals to long (16L:8D) and short photoperiods (6L:18D), respectively. Testis of the hamster exposed to short photoperiods displayed more than a ten-fold reduction in weight and decreased seminiferous tubule diameter. The seminiferous tubules contained primarily Sertoli cell and spermatogonia but also occasional spermatocytes and round spermatids. Leydig cells were decreased in size, a change which appeared to be primarily due to a decrease in cytoplasmic volume. The Leydig cell endoplasmic reticulum which was atypically saccular displayed both rough and smooth components and was decreased during short photoperiods. Mitochondria generally appeared larger and showed considerable structural heterogeneity. Short photoperiod-induced changes in the Sertoli cells included a marked reduction in cell height and an apparent reduction in cell volume, absence of lateral processes, presence of small, almost spheroidal nuclei with inconspicuous nucleoli, an increase in the amount of lipid and decreases in the amount of smooth endoplasmic reticulum and glycogen. The striking differences in the testicular structure between the active and regressed state of gonadal activity follows photoperiod-induced changes in endocrine parameters and suggests that the hamster would be an ideal model to study structure-function relationships in the testis, and especially those related to the Sertoli cell.
Collapse
Affiliation(s)
- A P Hikim
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale 62901-6512
| | | | | |
Collapse
|