1
|
Du S, Wang Y, Yang X, Liu X, Deng K, Chen M, Yan X, Lu F, Shi D. Beneficial effects of fibroblast growth factor 10 supplementation during in vitro maturation of buffalo cumulus-oocyte complexes. Theriogenology 2023; 201:126-137. [PMID: 36893617 DOI: 10.1016/j.theriogenology.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Fibroblast growth factor 10 (FGF10) is an important regulator of the mammalian cumulus-oocyte complex that plays a crucial role in oocyte maturation. In this study, we investigated the effects of FGF10 supplementation on the in vitro maturation (IVM) of buffalo oocytes and its related mechanisms. During IVM, the maturation medium was supplemented with a range of concentrations of FGF10 (0, 0.5, 5, and 50 ng/mL) and the resulting effects were corroborated using aceto-orcein staining, TUNEL apoptosis assay, detection of Cdc2/Cdk1 kinase in oocytes, and real-time quantitative PCR. In matured oocytes, the 5 ng/mL-FGF10 treatment resulted in a significantly increased nuclear maturation rate, which increased the activity of maturation-promoting factor (MPF) and enhanced buffalo oocyte maturation. Furthermore, it treatment significantly inhibited the apoptosis of cumulus cells, while simultaneously promoting its proliferation and expansion. This treatment also increased the absorption of glucose in cumulus cells. Thus, our results indicate that adding an appropriate concentration of FGF10 to a maturation medium during IVM can be beneficial to the maturation of buffalo oocytes and improve the potential of embryo development.
Collapse
Affiliation(s)
- Shanshan Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China; Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanxin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiaofen Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiaohua Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Kai Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Mengjia Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xi Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China.
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China.
| |
Collapse
|
2
|
Xi G, Wang W, Fazlani SA, Yao F, Yang M, Hao J, An L, Tian J. C-type natriuretic peptide enhances mouse preantral follicle growth. Reproduction 2020; 157:445-455. [PMID: 30817314 DOI: 10.1530/rep-18-0470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/25/2019] [Indexed: 01/03/2023]
Abstract
Compared to ovarian antral follicle development, the mechanism underlying preantral follicle growth has not been well documented. Although C-type natriuretic peptide (CNP) involvement in preantral folliculogenesis has been explored, its detailed role has not been fully defined. Here, we used mouse preantral follicles and granulosa cells (GCs) as a model for investigating the dynamic expression of CNP and natriuretic peptide receptor 2 (NPR2) during preantral folliculogenesis, the regulatory role of oocyte-derived growth factors (ODGFs) in natriuretic peptide type C (Nppc) and Npr2 expression, and the effect of CNP on preantral GC viability. Both mRNA and protein levels of Nppc and Npr2 were gradually activated during preantral folliculogenesis. CNP supplementation in culture medium significantly promoted the growth of in vitro-cultured preantral follicles and enhanced the viability of cultured GCs in a follicle-stimulating hormone (FSH)-independent manner. Using adult and prepubertal mice as an in vivo model, CNP pre-treatment via intraperitoneal injection before conventional superovulation also had a beneficial effect on promoting the ovulation rate. Furthermore, ODGFs enhanced Nppc and Npr2 expression in the in vitro-cultured preantral follicles and GCs. Mechanistic study demonstrated that the regulation of WNT signaling and estrogen synthesis may be implicated in the promoting role of CNP in preantral folliculogenesis. This study not only proves that CNP is a critical regulator of preantral follicle growth, but also provides new insight in understanding the crosstalk between oocytes and somatic cells during early folliculogenesis.
Collapse
Affiliation(s)
- Guangyin Xi
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Wenjing Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Sarfaraz A Fazlani
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China.,Lasbela University of Agriculture, Water and Marine Science, Lasbela, Balochistan, Pakistan
| | - Fusheng Yao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Mingyao Yang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Jing Hao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Mishra S, Thakur N, Somal A, Parmar M, Reshma R, Rajesh G, Yadav V, Bharti M, Bharati J, Paul A, Chouhan V, Sharma G, Singh G, Sarkar M. Expression and localization of fibroblast growth factor (FGF) family in buffalo ovarian follicle during different stages of development and modulatory role of FGF2 on steroidogenesis and survival of cultured buffalo granulosa cells. Res Vet Sci 2016; 108:98-111. [DOI: 10.1016/j.rvsc.2016.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 07/09/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
|
4
|
Silva JRV, van den Hurk R, Figueiredo JR. Ovarian follicle development in vitro and oocyte competence: advances and challenges for farm animals. Domest Anim Endocrinol 2016; 55:123-35. [PMID: 26836404 DOI: 10.1016/j.domaniend.2015.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/14/2015] [Accepted: 12/31/2015] [Indexed: 10/22/2022]
Abstract
During the last 2 decades, research on in vitro preantral follicle growth and oocyte maturation has delivered fascinating advances concerning the knowledge of processes regulating follicle growth and the developmental competence of oocytes. These advances include (1) information about the role of several hormones and growth factors on in vitro activation of primordial follicles; (2) increased understanding of the intracellular pathway involved in the initiation of primordial follicle growth; (3) the growth of primary and secondary follicles up to antral stages; and (4) production of embryos from oocytes from in vitro grown preantral follicles. This review article describes these advances, especially in regard farm animals, and discusses the reasons that limit embryo production from oocytes derived from preantral follicles cultured in vitro.
Collapse
Affiliation(s)
- J R V Silva
- Biotechnology Nucleus of Sobral, Federal University of Ceara, Sobral, CE 62042-280, Brazil.
| | - R van den Hurk
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 80151, The Netherlands
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, CE 62700-000, Brazil
| |
Collapse
|
5
|
Pomini Pinto RF, Fontes PK, Loureiro B, Sousa Castilho AC, Sousa Ticianelli J, Montanari Razza E, Satrapa RA, Buratini J, Moraes Barros C. Effects of FGF10 on Bovine Oocyte Meiosis Progression, Apoptosis, Embryo Development and Relative Abundance of Developmentally Important GenesIn Vitro. Reprod Domest Anim 2014; 50:84-90. [DOI: 10.1111/rda.12452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/09/2014] [Indexed: 11/29/2022]
Affiliation(s)
- RF Pomini Pinto
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - PK Fontes
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - B Loureiro
- Laboratory of Animal Reproductive Physiology; University of Vila Velha (UVV); Vila Velha ES Brazil
| | - AC Sousa Castilho
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - J Sousa Ticianelli
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - E Montanari Razza
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - RA Satrapa
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - J Buratini
- Department of Phisiology; Institute of Biosciences; São Paulo State University; Botucatu SP Brazil
| | - C Moraes Barros
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| |
Collapse
|
6
|
Araújo VR, Gastal MO, Figueiredo JR, Gastal EL. In vitro culture of bovine preantral follicles: a review. Reprod Biol Endocrinol 2014; 12:78. [PMID: 25117631 PMCID: PMC4148547 DOI: 10.1186/1477-7827-12-78] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/08/2014] [Indexed: 11/11/2022] Open
Abstract
Preantral follicles are the majority of the ovarian follicle population and their use as a source of homogeneous oocytes for bovine reproductive biotechnologies could result in a substantial advance in this field. However, while in other species embryos and offspring have been produced, in bovine species the results have been limited to the follicular activation of small (primordial) preantral follicles and formation of early antral follicles from large (secondary) preantral follicles after in vitro culture. Therefore, this review will highlight the basic aspects of bovine folliculogenesis by focusing on preantral follicles, the methods of harvesting preantral follicles, the main results from in vitro follicular culture during the last 20 years, and the potential candidate substances (basic supplements, growth factors, and hormones) for improving the efficiency of in vitro follicle growth.
Collapse
Affiliation(s)
- Valdevane R Araújo
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL 62901 USA
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, CE 60740-903 Brazil
| | - Melba O Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL 62901 USA
| | - José R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, CE 60740-903 Brazil
| | - Eduardo L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL 62901 USA
| |
Collapse
|
7
|
Emori C, Sugiura K. Role of oocyte-derived paracrine factors in follicular development. Anim Sci J 2014; 85:627-33. [PMID: 24717179 PMCID: PMC4271669 DOI: 10.1111/asj.12200] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/19/2013] [Indexed: 12/30/2022]
Abstract
Mammalian oocytes secrete transforming growth factor β (TGF-β) superfamily proteins, such as growth differentiation factor 9 (GDF9), bone morphogenetic protein 6 (BMP6) and BMP15, and fibroblast growth factors (FGFs). These oocyte-derived paracrine factors (ODPFs) play essential roles in regulating the differentiation and function of somatic granulosa cells as well as the development of ovarian follicles. In addition to the importance of individual ODPFs, emerging evidence suggests that the interaction of ODPF signals with other intra-follicular signals, such as estrogen, is critical for folliculogenesis. In this review, we will discuss the current understanding of the role of ODPFs in follicular development with an emphasis on their interaction with estrogen signaling in regulation of the differentiation and function of granulosa cells.
Collapse
Affiliation(s)
- Chihiro Emori
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
8
|
Chaves RN, de Matos MHT, Buratini J, de Figueiredo JR. The fibroblast growth factor family: involvement in the regulation of folliculogenesis. Reprod Fertil Dev 2013; 24:905-15. [PMID: 22935151 DOI: 10.1071/rd11318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/07/2012] [Indexed: 01/26/2023] Open
Abstract
Several growth factors have been identified as local regulators of follicle development and ovulation. Fibroblast growth factor (FGF) family members are potent mitogens and are involved in cell differentiation, cell migration and angiogenesis in many tissues and organs. In addition to FGF-2, which is the most-studied FGF, other important members are FGF-1, -5, -7, -8, -9 and -10. A number of studies have indicated that FGFs play important roles in regulating the initiation of primordial follicle growth, oocyte and follicle survival, granulosa and theca cell proliferation and differentiation, corpus luteum formation, steroidogenesis and angiogenesis. The purpose of this review is to highlight the importance of the FGFs on mammalian female reproduction, providing a better understanding of the roles of this family in ovarian physiology and female fertility.
Collapse
Affiliation(s)
- Roberta Nogueira Chaves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, Fortaleza, 60740-903, CE, Brazil.
| | | | | | | |
Collapse
|
9
|
Santos-Biase W, Biase F, Buratini J, Balieiro J, Watanabe Y, Accorsi M, Ferreira C, Stranieri P, Caetano A, Meirelles F. Single nucleotide polymorphisms in the bovine genome are associated with the number of oocytes collected during ovum pick up. Anim Reprod Sci 2012; 134:141-9. [DOI: 10.1016/j.anireprosci.2012.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/31/2012] [Accepted: 08/04/2012] [Indexed: 11/25/2022]
|
10
|
Jiang Z, Price CA. Differential actions of fibroblast growth factors on intracellular pathways and target gene expression in bovine ovarian granulosa cells. Reproduction 2012; 144:625-32. [PMID: 22956519 DOI: 10.1530/rep-12-0199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Several fibroblast growth factors (FGFs), including FGF1, FGF4 and FGF10, alter ovarian granulosa cell function. These ligands exhibit different patterns of receptor activation, and their mechanisms of action on granulosa cells remain unknown. The objective of this study was to identify the major pathways and target genes activated by FGF1, FGF4 and FGF10 in primary oestrogenic granulosa cells cultured under serum-free conditions. FGF1 and FGF4 increased levels of mRNA encoding Sprouty family members, SPRY2 and SPRY4, and the orphan nuclear receptors NR4A1 and NR4A3. Both FGF1 and FGF4 decreased levels of mRNA encoding SPRY3 and the pro-apoptotic factor BAX. FGF1 but not FGF4 stimulated expression of the cell cycle regulator, GADD45B. In contrast, FGF10 altered the expression of none of these genes. Western blot demonstrated that FGF4 activated ERK1/2 and Akt signalling rapidly and transiently, whereas FGF10 elicited a modest and delayed activation of ERK1/2. These data show that FGF1 and FGF4 activate typical FGF signalling pathways in granulosa cells, whereas FGF10 activates atypical pathways.
Collapse
Affiliation(s)
- Zhongliang Jiang
- College of Animal Science and Technology, Northwestern A&F University, Yangling, ShaanXi, China
| | | |
Collapse
|
11
|
Miyoshi T, Otsuka F, Nakamura E, Inagaki K, Ogura-Ochi K, Tsukamoto N, Takeda M, Makino H. Regulatory role of kit ligand-c-kit interaction and oocyte factors in steroidogenesis by rat granulosa cells. Mol Cell Endocrinol 2012; 358:18-26. [PMID: 22366471 DOI: 10.1016/j.mce.2012.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 01/12/2012] [Accepted: 02/10/2012] [Indexed: 02/03/2023]
Abstract
Although kit ligand (KL)-c-kit interaction is known to be critical for oogenesis and folliculogenesis, its role in ovarian steroidogenesis has yet to be elucidated. We studied the impact of KL-c-kit interaction in regulation of steroidogenesis using rat oocyte/granulosa cell co-culture. In the presence of oocytes, soluble KL suppressed FSH-induced estradiol production and aromatase mRNA expression without affecting FSH-induced progesterone production. The KL effect on steroidogenesis was interrupted by an anti-c-kit neutralizing antibody, suggesting that KL-c-kit interaction is involved in suppression of estrogen by granulosa cells through oocyte c-kit action. The cAMP-PKA pathway activity was not directly involved in the estrogen regulation by KL-c-kit action. It was of note that KL treatment increased the expression levels of oocyte-derived FGF-8, GDF-9 and BMP-6, while it reduced the expression levels of oocyte-derived BMP-15 in the oocyte-granulosa cell co-culture. Given the findings that FGF-8, but not GDF-9, BMP-6 or -15, suppressed FSH-induced estrogen production by granulosa cells, oocyte-derived FGF-8 is linked to suppression of FSH-induced estrogen production through the KL-c-kit interaction. Furthermore, the suppression of FSH-induced estrogen production by KL in the co-culture was reversed by a FGF receptor kinase inhibitor and the effect of the inhibitor was enhanced in combination with extracellular-domain protein of BMPRII, which interferes with BMP-15 and GDF-9 activities. Thus, the actions of endogenous oocyte factors including FGF-8 and BMP-15/GDF-9 were involved in the KL activity that inhibited FSH-induced estradiol production. Collectively, the results indicate that KL-c-kit interaction plays a role in estrogenic regulation through oocyte-granulosa cell communication.
Collapse
Affiliation(s)
- Tomoko Miyoshi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Otsuka F, Inagaki K. Unique bioactivities of bone morphogenetic proteins in regulation of reproductive endocrine functions. Reprod Med Biol 2011; 10:131-142. [PMID: 29662354 DOI: 10.1007/s12522-011-0082-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 03/29/2011] [Indexed: 01/28/2023] Open
Abstract
Remarkable progress has been made in understanding the mechanism by which growth factors and oocytes can regulate the development and function of granulosa cells. Insufficiency of two oocyte-specific growth factors, growth differentiation factor-9 and bone morphogenetic protein (BMP)-15, cause female infertility. Expression of mRNA and/or protein for the BMP system components, including ligands, receptors and intracellular signal transduction factors, was demonstrated in cell components of growing preantral follicles, and biofunctional experiments have further revealed many important roles of the BMP system in regulation of reproductive function. In this review, recent advances in studies on biological actions of BMPs in ovarian folliculogenesis and in related endocrine tissues are discussed.
Collapse
Affiliation(s)
- Fumio Otsuka
- Endocrine Center of Okayama University Hospital 2-5-1 Shikata-cho, Kitaku 700-8558 Okayama Japan
| | - Kenichi Inagaki
- Endocrine Center of Okayama University Hospital 2-5-1 Shikata-cho, Kitaku 700-8558 Okayama Japan
| |
Collapse
|
13
|
Otsuka F, McTavish KJ, Shimasaki S. Integral role of GDF-9 and BMP-15 in ovarian function. Mol Reprod Dev 2011; 78:9-21. [PMID: 21226076 DOI: 10.1002/mrd.21265] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022]
Abstract
The oocyte plays an important role in regulating and promoting follicle growth, and thereby its own development, by the production of oocyte growth factors that predominantly act on supporting granulosa cells via paracrine signaling. Genetic studies in mice demonstrated critical roles of two key oocyte-derived growth factors belonging to the transforming growth factor-β (TGF-β) superfamily, growth and differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15), in ovarian function. The identification of Bmp15 and Gdf9 gene mutations as the causal mechanism underlying the highly prolific or infertile nature of several sheep strains in a dosage-sensitive manner also highlighted the crucial role these two genes play in ovarian function. Similarly, large numbers of mutations in the GDF9 and BMP15 genes have been identified in women with premature ovarian failure and in mothers of dizygotic twins. The purpose of this article is to review the genetic studies of GDF-9 and BMP-15 mutations identified in women and sheep, as well as describing the various knockout and overexpressing mouse models, and to summarize the molecular and biological functions that underlie the crucial role of these two oocyte factors in female fertility.
Collapse
Affiliation(s)
- Fumio Otsuka
- Endocrine Center of Okayama University Hospital, Okayama, Japan.
| | | | | |
Collapse
|
14
|
Buratini J, Price CA. Follicular somatic cell factors and follicle development. Reprod Fertil Dev 2011; 23:32-9. [DOI: 10.1071/rd10224] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Considerable attention is currently paid to oocyte-derived secreted factors that act upon cumulus and granulosa cells. Also important for follicle development are somatic cell-derived secreted factors. This is illustrated by the ability of granulosa cell-derived Kit ligand (KITL) to promote primordial follicle activation, and the loss of follicle development that accompanies KITL gene disruption. This review summarises our current understanding of somatic cell factors during both preantral and antral follicle growth, involving not only signalling from granulosa cells to the oocyte, but also signalling between granulosa and theca cells. Principal granulosa cell-derived factors include activin, anti-Müllerian hormone (AMH), bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs). Theca cells also secrete BMPs and FGFs. The interplay between these factors is equally important for follicle growth as the activity of oocyte-derived factors.
Collapse
|
15
|
Zhang K, Hansen PJ, Ealy AD. Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro. Reproduction 2010; 140:815-26. [PMID: 20876224 DOI: 10.1530/rep-10-0190] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability of oocytes to resume meiosis, become fertilized, and generate viable pregnancies is controlled during folliculogenesis by several endocrine and paracrine factors. The aim of this work is to determine whether fibroblast growth factor 10 (FGF10) is an oocyte competent factor. Transcripts for each of the four FGF receptor types (FGFR) were present in cumulus and oocytes after their extraction from the follicles. FGFR1 transcripts predominated in cumulus cells whereas FGFR2 was most abundant in oocytes. Exposing the cumulus-oocyte complexes to FGF10 during in vitro maturation did not affect cleavage rates, but increases (P<0.05) in the percentage of embryos at the 8-16-cell stage on day 3 and at the blastocyst stage on day 7, which were evident in FGF10-supplemented oocytes. The progression of oocytes through meiosis and cumulus expansion was increased (P<0.05) by FGF10. The importance of the endogenous sources of FGFs was examined by adding anti-FGF10 IgG during oocyte maturation. Blocking endogenous FGF10 activity decreased (P<0.05) the percentage of oocytes developing into blastocysts and limited (P<0.05) cumulus expansion. Expression profiles of putative cumulus and oocyte competency markers were examined for their involvement in FGF10-mediated responses. FGF10 influenced the expression of CTSB and SPRY2 in cumulus cells and BMP15 in oocytes. In summary, this work provides new insight into the importance of FGFRs and locally derived FGF10 during oocyte maturation in cattle. Its subsequent impact on in vitro embryo development implicates it as a noteworthy oocyte competent factor.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, PO Box 110910, Gainesville, Florida 32611-0910, USA
| | | | | |
Collapse
|
16
|
Miyoshi T, Otsuka F, Yamashita M, Inagaki K, Nakamura E, Tsukamoto N, Takeda M, Suzuki J, Makino H. Functional relationship between fibroblast growth factor-8 and bone morphogenetic proteins in regulating steroidogenesis by rat granulosa cells. Mol Cell Endocrinol 2010; 325:84-92. [PMID: 20434519 DOI: 10.1016/j.mce.2010.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic proteins (BMPs) have been recognized as crucial molecules in regulating ovarian physiology, with different BMPs having differential actions in FSH-induced estradiol production. To identify the roles of oocyte factors that modulate steroidogenesis controlled by BMPs, we here investigated the effects of FGF-8 in rat granulosa/oocyte co-cultures. FGF-8 potently suppressed FSH-induced estradiol production, but did not affect cAMP-induced estradiol produced by rat granulosa cells. FGF-8 had no effects on progesterone and cAMP production induced by FSH and forskolin. The inhibitory effects of FGF-8 on FSH-induced estradiol production were not altered by BMP-2, -4, -6 or -7. In the presence of FGF-8, BMPs suppressed FSH-induced progesterone by reducing cAMP, suggesting that FGF-8 and BMP independently regulate FSH receptor signaling. Notably, FGF-8-induced ERK and SAPK/JNK phosphorylation in granulosa cells, in which ERK activation was further enhanced by FSH and oocytes. Inhibition of ERK and SAPK/JNK reduced FSH-induced progesterone and cAMP levels, suggesting that the activation of these pathways enhances FSH-induced cAMP signaling. In addition, ERK inhibition upregulated FSH-induced estradiol synthesis, indicating that ERK pathway is also involved in suppressing aromatase activity in granulosa cells. Interestingly, FGF-8 enhanced BMP-induced Smad1/5/8 and Id-1-promoter activities with decreased expression of Smad6/7. Since the SAPK/JNK inhibitor inhibited FGF-8 effects in upregulating Id-1 transcription, SAPK/JNK appears to be involved in the mechanism by which FGF-8 enhances BMP-Smad signaling. Furthermore, in the presence of oocytes, the inhibition of endogenous FGF receptor signaling suppressed FSH- and forskolin-induced progesterone and cAMP, showing that endogenous FGF system is involved in activation of FSH-induced cAMP-PKA signaling via ERK and SAPK/JNK. Thus, the oocyte factor, FGF-8, not only suppresses FSH-induced estradiol production by activating ERK, but also enhances BMP-Smad signaling in granulosa cells. This interaction between FGF-8 and BMPs may play a key role in regulating steroidogenesis through oocyte-granulosa cell communication.
Collapse
Affiliation(s)
- Tomoko Miyoshi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Armstrong DT, Rodgers RJ. Do the theca layer and fibroblast growth factors have a role in follicular atresia? Biol Reprod 2010; 83:322-4. [PMID: 20610810 DOI: 10.1095/biolreprod.110.086736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- David T Armstrong
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Robinson Institute, The University of Adelaide, Adelaide, South Australia, Australia.
| | | |
Collapse
|
18
|
Binelli M, Murphy BD. Coordinated regulation of follicle development by germ and somatic cells. Reprod Fertil Dev 2010; 22:1-12. [PMID: 20003840 DOI: 10.1071/rd09218] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The continuum of folliculogenesis begins in the fetal ovary with the differentiation of the oogonia and their isolation within the primordial follicles. Primordial follicle activation is an enigmatic process, whereby some follicles enter the growing pool to become primary follicles, thereby embarking on an irreversible progression towards ovulation or atresia. This process is under the coordinated regulation of factors from the oocyte itself, as well as from the somatic cells of the ovary, in particular the theca and granulosa cells, which are structural components of the follicle. These two influences provide the principal stimuli for the growth of the follicle to the late preantral or early antral stage of development. The endocrine effects of the gonadotrophins FSH and LH are essential to the continued progression of the follicle and most atresia can be attributed to the failure to receive or process the gonadotrophin signals. The peri-ovulatory state has received intensive investigation recently, demonstrating a coordinated role for gonadotrophins, steroids, epidermal growth factor family proteins and prostaglandins. Thus, a complex programme of coordinated interaction of governing elements from both germ and somatic cell sources is required for successful follicle development.
Collapse
Affiliation(s)
- Mario Binelli
- College of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP 13635-900, Brazil
| | | |
Collapse
|
19
|
Sugiura K, Su YQ, Li Q, Wigglesworth K, Matzuk MM, Eppig JJ. Fibroblast growth factors and epidermal growth factor cooperate with oocyte-derived members of the TGFbeta superfamily to regulate Spry2 mRNA levels in mouse cumulus cells. Biol Reprod 2009; 81:833-41. [PMID: 19553596 PMCID: PMC2770016 DOI: 10.1095/biolreprod.109.078485] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/20/2009] [Accepted: 06/14/2009] [Indexed: 11/01/2022] Open
Abstract
Mouse oocytes produce members of the transforming growth factor beta (TGFbeta) superfamily, including bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9), as well as fibroblast growth factors (FGFs). These growth factors cooperate to regulate cumulus cell function. To identify potential mechanisms involved in these interactions, the ability of fully grown oocytes to regulate expression of BMP or FGF antagonists in cumulus cells was examined. Oocytes promoted cumulus cell expression of transcripts encoding antagonists to TGFbeta superfamily members, including Grem2, Htra1, Htra3, and Nog mRNAs. In contrast, oocytes suppressed cumulus cell expression of Spry2 mRNA, which encodes a regulator of receptor tyrosine kinase signals, such as FGF and epidermal growth factor (EGF) receptor signals. The regulation of Spry2 mRNA levels in cumulus cells was studied further as a model for analysis of potential mechanisms for cooperativity of FGF/EGF signaling with oocyte-derived members of the TGFbeta superfamily. Oocytes suppressed basal and FGF-stimulated Spry2 mRNA levels in cumulus cells but promoted EGF-stimulated levels. Furthermore, recombinant TGFbeta superfamily proteins, including BMP15 and GDF9, mimicked these effects of oocytes. Elevated expression of Spry2 mRNA in cumulus and mural granulosa cells correlated with human chorionic gonadotropin-induced expression of mRNAs encoding EGF-like peptides. Therefore, oocyte-derived members of the TGFbeta superfamily suppress FGF-stimulated Spry2 mRNA levels before the luteinizing hormone surge but promote Spry2 mRNA levels stimulated by EGF receptor-mediated signals after the surge.
Collapse
Affiliation(s)
- Koji Sugiura
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Drummond AE, Tellbach M, Dyson M, Findlay JK. Fibroblast growth factor-9, a local regulator of ovarian function. Endocrinology 2007; 148:3711-21. [PMID: 17494997 DOI: 10.1210/en.2006-1668] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fibroblast growth factor 9 (FGF9) is widely expressed in embryos and fetuses and has been shown to be involved in male sex determination, testicular cord formation, and Sertoli cell differentiation. Given its male gender bias, the ovary has not been reported to express FGF9, nor has a role in ovarian function been explored. We report here that FGF9 mRNA and protein are present in the rat ovary and provide evidence that supports a role for FGF9 in ovarian progesterone production. FGF9 mRNA levels as determined by real-time PCR were high in 4-d-old rat ovaries, thereafter declining and stabilizing at levels approximately 30% of d 4 levels at d 12-25. Levels of FGF9 mRNA in the ovary were significantly higher than that present in adult testis, at all ages studied. The FGF9 receptors FGFR2 and FGFR3 mRNAs were present in postnatal and immature rat ovary and appeared to be constitutively expressed. FGF9 protein was localized to theca, stromal cells, and corpora lutea and FGFR2 and FGFR3 proteins to granulosa cells, theca cells, oocytes, and corpora lutea, by immunohistochemistry. Follicular differentiation induced by gonadotropin treatment reduced the expression of FGF9 mRNA by immature rat ovaries, whereas the estrogen-stimulated development of large preantral follicles had no significant effect. In vitro, FGF9 stimulated progesterone production by granulosa cells beyond that elicited by a maximally stimulating dose of FSH. When the granulosa cells were pretreated with FSH to induce LH receptors, FGF9 was found not to be as potent as LH in stimulating progesterone production, nor did it enhance LH-stimulated production. The combined treatments of FSH/FGF9 and FSH/LH, however, were most effective at stimulating progesterone production by these differentiated granulosa cells. Analyses of steroidogenic regulatory proteins indicate that steroidogenic acute regulatory protein and P450 side chain cleavage mRNA levels were enhanced by FGF9, providing a mechanism of action for the increased progesterone synthesis. In summary, the data are consistent with a paracrine role for FGF9 in the ovary.
Collapse
MESH Headings
- 3-Hydroxysteroid Dehydrogenases/genetics
- Animals
- Cells, Cultured
- Cholesterol Side-Chain Cleavage Enzyme/genetics
- Diethylstilbestrol/pharmacology
- Estrogens, Non-Steroidal/pharmacology
- Female
- Fibroblast Growth Factor 9/genetics
- Fibroblast Growth Factor 9/metabolism
- Gene Expression/drug effects
- Gene Expression/physiology
- Granulosa Cells/cytology
- Granulosa Cells/physiology
- Immunohistochemistry
- Male
- Paracrine Communication/physiology
- Phosphoproteins/genetics
- Pregnancy
- Progesterone/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Steroids/biosynthesis
- Testis/cytology
- Testis/physiology
Collapse
Affiliation(s)
- Ann E Drummond
- Prince Henry's Institute of Medical Research, PO Box 5152, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|
21
|
Buratini J, Pinto MGL, Castilho AC, Amorim RL, Giometti IC, Portela VM, Nicola ES, Price CA. Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2B, in bovine follicles. Biol Reprod 2007; 77:743-50. [PMID: 17582010 DOI: 10.1095/biolreprod.107.062273] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Some fibroblast growth factors (FGFs) affect ovarian follicle cell growth and/or differentiation. Whereas many FGFs activate several FGF receptors, FGF7 and FGF10 primarily activate only one, FGFR2B. As FGF7 is produced by bovine theca cells and acts on granulosa cells, we tested the hypothesis that FGF10 may also play a role in folliculogenesis in cattle. Reverse transcription-polymerase chain reaction demonstrated the presence of FGF10 mRNA in the oocytes and theca cells of the antral follicles, as well as in the preantral follicles. FGF10 protein was detected by immunohistochemistry in the oocytes of the preantral and antral follicles, and in the granulosa and theca cells of the antral follicles. FGF10 expression in theca cells changed during follicle development; mRNA abundance decreased with increasing follicular estradiol concentration in healthy follicles, and was lowest in highly atretic follicles. Culturing of granulosa cells in serum-free medium revealed FSH regulation of FGF10 receptor expression. The addition of FGF10 to cultured granulosa cells decreased the level of estradiol but did not alter cell proliferation. These data support a role for FGF10 in signaling to granulosa cells from theca cells and/or the oocyte.
Collapse
Affiliation(s)
- J Buratini
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, CEP 18618-000, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Buratini J, Teixeira AB, Costa IB, Glapinski VF, Pinto MGL, Giometti IC, Barros CM, Cao M, Nicola ES, Price CA. Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor-3c and -4, in bovine antral follicles. Reproduction 2005; 130:343-50. [PMID: 16123241 DOI: 10.1530/rep.1.00642] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Paracrine cell signaling is believed to be important for ovarian follicle development, and a role for some members of the fibroblast growth factor (FGF) family has been suggested. In the present study, we tested the hypothesis that FGF-8 and its cognate receptors (FGFR3c and FGFR4) are expressed in bovine antral follicles. RT-PCR was used to analyze bovine Fgf8, Fgfr3c and Fgfr4 mRNA levels in oocytes, and granulosa and theca cells. Fgf8 expression was detected in oocytes and in granulosa and theca cells; this expression pattern differs from that reported in rodents. Granulosa and theca cells, but not oocytes, expressed Fgfr3c, and expression in granulosa cells increased significantly with follicle estradiol content, a major indicator of follicle health. Fgfr4 expression was restricted to theca cells in the follicle, and decreased significantly with increasing follicle size. To investigate the potential regulation of Fgfr3c expression in the bovine granulosa, cells were cultured in serum-free medium with FSH or IGF-I; gene expression was upregulated by FSH but not by IGF-I. The FSH-responsive and developmentally regulated patterns of Fgfr3c mRNA expression suggest that this receptor is a potential mediator of paracrine signaling to granulosa cells during antral follicle growth in cattle.
Collapse
Affiliation(s)
- J Buratini
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|