1
|
Menezes WF, Alvarenga ÉR, Nóbrega RH, França LR, Luz MR, Manduca LG, da Costa FFB, Bezerra VM, Fernandes AFDA, Turra EM. Growth performance, reproductive status, and chromosomal instability in triploid Nile tilapias. Anim Reprod 2024; 21:e20230147. [PMID: 38803328 PMCID: PMC11129864 DOI: 10.1590/1984-3143-ar2023-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/18/2024] [Indexed: 05/29/2024] Open
Abstract
Reproductive control is one of the biggest challenges in tilapia production and triploidy was developed as an alternative to sterilization. In general, polyploids present chromosomal instability but for triploid Nile tilapia it has yet to be reported. This study evaluated the chromosomal instability from juveniles to adulthood, growth performance and gonadal status of tilapia hatched from eggs submitted or not to heat shock for triploid induction. Nile tilapia oocytes were fertilized (1,476 oocytes), half of the eggs were subjected to a four-minute shock in 41 °C water four minutes after fertilization and the other half were not (Control group). The eggs were incubated (at 27°C) and 160 larvae from the treated group hatched and survived after yolk sac absorption. The determination of ploidy was performed by flow cytometry at 85th (juveniles) and 301st (adults) days of age post yolk sac absorption. At the time of the first cytometry analysis there were 73 surviving juveniles from the treated group, and only 14 were confirmed triploid. However, at the analysis of adult ploidy, one out of 8 surviving adult tilapias from the 14 confirmed triploid juveniles remained triploid. Gonadal histology showed that the non-remaining triploids continued to produce gametes. The growth performance of triploid tilapia was initially superior to that of diploid tilapia during the juvenile phase, but similar in adults. Once the chromosome sets are lost and the tilapias become diploid again, at least in tissues with a high proliferation rate, such as the hematopoietic tissue that was analyzed (and possibly in gonads), all possible advantages of triploids are probably lost. Thus, our results suggest that, due to genomic instabilities, the triploid generation of tilapia has low efficiency.
Collapse
Affiliation(s)
- Williane Ferreira Menezes
- Departamento de Zootecnia, Escola de Veterinária, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Érika Ramos Alvarenga
- Departamento de Zootecnia, Escola de Veterinária, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rafael Henrique Nóbrega
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, SP, Brasil
| | - Luiz Renato França
- Departamento de Zootecnia, Escola de Veterinária, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Marcelo Rezende Luz
- Departamento de Zootecnia, Escola de Veterinária, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ludson Guimarães Manduca
- Departamento de Zootecnia, Escola de Veterinária, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Franklin Fernando Batista da Costa
- Departamento de Zootecnia, Escola de Veterinária, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Vinícius Monteiro Bezerra
- Departamento de Zootecnia, Escola de Veterinária, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | - Eduardo Maldonado Turra
- Departamento de Zootecnia, Escola de Veterinária, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
2
|
Ghosh S, Carden CF, Juras R, Mendoza MN, Jevit MJ, Castaneda C, Phelps O, Dube J, Kelley DE, Varner DD, Love CC, Raudsepp T. Two Novel Cases of Autosomal Translocations in the Horse: Warmblood Family Segregating t(4;30) and a Cloned Arabian with a de novo t(12;25). Cytogenet Genome Res 2020; 160:688-697. [PMID: 33326979 DOI: 10.1159/000512206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 11/19/2022] Open
Abstract
We report 2 novel autosomal translocations in the horse. In Case 1, a breeding stallion with a balanced t(4p;30) had produced normal foals and those with congenital abnormalities. Of his 9 phenotypically normal offspring, 4 had normal karyotypes, 4 had balanced t(4p;30), and 1 carried an unbalanced translocation with tertiary trisomy of 4p. We argue that unbalanced forms of t(4p;30) are more tolerated and result in viable congenital abnormalities, without causing embryonic death like all other known equine autosomal translocations. In Case 2, two stallions produced by somatic cell nuclear transfer from the same donor were karyotyped because of fertility issues. A balanced translocation t(12q;25) was found in one, but not in the other clone. The findings underscore the importance of routine cytogenetic screening of breeding animals and animals produced by assisted reproductive technologies. These cases will contribute to molecular studies of translocation breakpoints and their genetic consequences in the horse.
Collapse
Affiliation(s)
- Sharmila Ghosh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | - Rytis Juras
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mayra N Mendoza
- Estación Experimental Agraria Chincha, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Ica, Peru
| | - Matthew J Jevit
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Caitlin Castaneda
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Olivia Phelps
- Powder River Veterinary Hospital & Supply, Kaycee, Wyoming, USA
| | - Jessie Dube
- Powder River Veterinary Hospital & Supply, Kaycee, Wyoming, USA
| | - Dale E Kelley
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Charley C Love
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA,
| |
Collapse
|
3
|
Montazer-Torbati F, Boutinaud M, Brun N, Richard C, Neveu A, Jaffrézic F, Laloë D, LeBourhis D, Nguyen M, Chadi S, Jammes H, Renard JP, Chat S, Boukadiri A, Devinoy E. Differences during the first lactation between cows cloned by somatic cell nuclear transfer and noncloned cows. J Dairy Sci 2016; 99:4778-4794. [PMID: 27016834 DOI: 10.3168/jds.2015-10532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/08/2016] [Indexed: 01/06/2023]
Abstract
Lactation performance is dependent on both the genetic characteristics and the environmental conditions surrounding lactating cows. However, individual variations can still be observed within a given breed under similar environmental conditions. The role of the environment between birth and lactation could be better appreciated in cloned cows, which are presumed to be genetically identical, but differences in lactation performance between cloned and noncloned cows first need to be clearly evaluated. Conflicting results have been described in the literature, so our aim was to clarify this situation. Nine cloned Prim' Holstein cows were produced by the transfer of nuclei from a single fibroblast cell line after cell fusion with enucleated oocytes. The cloned cows and 9 noncloned counterparts were raised under similar conditions. Milk production and composition were recorded monthly from calving until 200d in milk. At 67d in milk, biopsies were sampled from the rear quarter of the udder, their mammary epithelial cell content was evaluated, and mammary cell renewal, RNA, and DNA were then analyzed in relevant samples. The results showed that milk production did not differ significantly between cloned and noncloned cows, but milk protein and fat contents were less variable in cloned cows. Furthermore, milk fat yield and contents were lower in cloned cows during early lactation. At around 67 DIM, milk fat and protein yields, as well as milk fat, protein, and lactose contents, were also lower in cloned cows. These lower yields could be linked to the higher apoptotic rate observed in cloned cows. Apoptosis is triggered by insulin-like factor growth binding protein 5 (IGFBP5) and plasminogen activator inhibitor (PAI), which both interact with CSN1S2. During our experiments, CSN1S2 transcript levels were lower in the mammary gland of cloned cows. The mammary cell apoptotic rate observed in cloned cows may have been related to the higher levels of DNA (cytosine-5-)-methyltransferase 1 (DNMT1) transcripts, coding for products that maintain the epigenetic status of cells. We conclude, therefore, that milk production in cloned cows differs slightly from that of noncloned cows. These differences may be due, in part, to a higher incidence of subclinical mastitis. They were associated with differences in cell apoptosis and linked to variations in DNMT1 mRNA. However, milk protein and fat contents were more similar among cloned cows than among noncloned cows.
Collapse
Affiliation(s)
| | - M Boutinaud
- INRA, UMR1348 Pegase, F-35590 Saint Gilles, France; Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - N Brun
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - C Richard
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - A Neveu
- INRA, UE1298 Unité commune d'expérimentation animale, F-78350 Jouy-en-Josas, France
| | - F Jaffrézic
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - D Laloë
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - D LeBourhis
- ALLICE, lieu-dit Le Perroi, F-37380 Nouzilly, France
| | - M Nguyen
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - S Chadi
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - H Jammes
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - J-P Renard
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - S Chat
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - A Boukadiri
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - E Devinoy
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France.
| |
Collapse
|
4
|
Adachi N, Yamaguchi D, Watanabe A, Miura N, Sunaga S, Oishi H, Hashimoto M, Oishi T, Iwamoto M, Hanada H, Kubo M, Onishi A. Growth, reproductive performance, carcass characteristics and meat quality in F1 and F2 progenies of somatic cell-cloned pigs. J Reprod Dev 2014; 60:100-5. [PMID: 24492641 PMCID: PMC3999388 DOI: 10.1262/jrd.2012-167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/04/2013] [Indexed: 12/04/2022] Open
Abstract
The objective of this study was to examine the health and meat production of cloned sows and their progenies in order to demonstrate the application of somatic cell cloning to the pig industry. This study compared the growth, reproductive performance, carcass characteristics and meat quality of Landrace cloned sows, F1 progenies and F2 progenies. We measured their body weight, growth rate and feed conversion and performed a pathological analysis of their anatomy to detect abnormalities. Three of the five cloned pigs were used for a growth test. Cloned pigs grew normally and had characteristics similar to those of the control purebred Landrace pigs. Two cloned gilts were bred with a Landrace boar and used for a progeny test. F1 progenies had characteristics similar to those of the controls. Two of the F1 progeny gilts were bred with a Duroc or Large White boar and used for the progeny test. F2 progenies grew normally. There were no biological differences in growth, carcass characteristics and amino acid composition among cloned sows, F1 progenies, F2 progenies and conventional pigs. The cloned sows and F1 progenies showed normal reproductive performance. No specific abnormalities were observed by pathological analysis, with the exception of periarteritis in the F1 progenies. All pigs had a normal karyotype. These results demonstrate that cloned female pigs and their progenies have similar growth, reproductive performance and carcass quality characteristics and that somatic cell cloning could be a useful technique for conserving superior pig breeds in conventional meat production.
Collapse
Affiliation(s)
- Noritaka Adachi
- Ibaraki Prefecture Livestock Research Center, Ibaraki 315-0132, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang H, Zhang J, Zhao M, Zhang X, Sun Q, Chen D. Production and health assessment of second-generation cloned Holstein cows derived by somatic cell nuclear transfer. Anim Reprod Sci 2011; 126:11-8. [DOI: 10.1016/j.anireprosci.2011.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 04/14/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
|
6
|
Sumer H, Nicholls C, Pinto AR, Indraharan D, Liu J, Lim ML, Liu JP, Verma PJ. Chromosomal and telomeric reprogramming following ES-somatic cell fusion. Chromosoma 2009; 119:167-76. [PMID: 19904548 DOI: 10.1007/s00412-009-0245-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/18/2009] [Accepted: 10/19/2009] [Indexed: 01/14/2023]
Abstract
Chromosomal and telomeric reprogramming was assessed in intraspecies hybrids obtained by fusion of embryonic stem (ES) cells and mouse embryonic fibroblasts. Evaluation of the ploidy of ES-somatic hybrids revealed that 21 of 59 clones had a tetraploid DNA profile while the remaining clones showed deviations from the expected profile of fusion between two diploid cells. Microsatellite polymerase chain reaction analysis of four of these clones demonstrated no random loss of somatic chromosome pairs in the ES-somatic cell hybrids. Pluripotential of ES-somatic hybrids was assessed by gene expression analysis, antibody staining for Oct4 and SSEA-1 and teratoma formation containing derivatives of the three germ layers. Reprogramming of telomeric maintenance was observed with ES-somatic hybrids showing high telomerase activity and increased telomere lengths. However, we detected no significant increase in the expression of the three critical telomerase subunits: telomerase reverse transcriptase (TERT), telomerase RNA component (TERC), and dyskerin. This indicates that activation of telomerase and telomere maintenance is not reliant on changes in gene expression of TERT, TERC, and dyskerin following ES-somatic cell fusion or sister chromatid recombination and may arise through elimination of negative regulation of telomerase activity. This is the first demonstration of telomere lengthening following cell fusion and offers a new model for studying and identifying new regulators of telomere maintenance.
Collapse
Affiliation(s)
- Huseyin Sumer
- Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria, 3168, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang K, Beyhan Z, Rodriguez RM, Ross PJ, Iager AE, Kaiser GG, Chen Y, Cibelli JB. Bovine Ooplasm Partially Remodels Primate Somatic Nuclei following Somatic Cell Nuclear Transfer. CLONING AND STEM CELLS 2009; 11:187-202. [DOI: 10.1089/clo.2008.0061] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kai Wang
- Michigan State University, East Lansing, Michigan
| | - Zeki Beyhan
- Michigan State University, East Lansing, Michigan
| | | | | | - Amy E. Iager
- Michigan State University, East Lansing, Michigan
| | | | - Ying Chen
- Michigan State University, East Lansing, Michigan
| | - Jose B. Cibelli
- Michigan State University, East Lansing, Michigan
- Programa Andaluz de Terapia Celular, Andalucia, Spain
| |
Collapse
|
8
|
Palmieri C, Loi P, Ptak G, Della Salda L. Review Paper: A Review of the Pathology of Abnormal Placentae of Somatic Cell Nuclear Transfer Clone Pregnancies in Cattle, Sheep, and Mice. Vet Pathol 2008; 45:865-80. [DOI: 10.1354/vp.45-6-865] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cloning of cattle, sheep, and mice by somatic cell nuclear transfer (SCNT) can result in apparently healthy offspring, but the probability of a successful and complete pregnancy is less than 5%. Failures of SCNT pregnancy are associated with placental abnormalities, such as placentomegaly, reduced vascularisation, hypoplasia of trophoblastic epithelium, and altered basement membrane. The pathogenesis of these changes is poorly understood, but current evidence implicates aberrant reprogramming of donor nuclei by the recipient oocyte cytoplast, resulting in epigenetic modifications of key regulatory genes essential for normal placental development. The purpose of this review is to provide an overview of the anatomic pathology of abnormal placentae of SCNT clones and to summarize current knowledge concerning underlying pathogenetic mechanisms.
Collapse
Affiliation(s)
- C. Palmieri
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - P. Loi
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - G. Ptak
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - L. Della Salda
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
9
|
Lan GC, Wu YG, Han D, Ge L, Liu Y, Wang HL, Wang JZ, Tan JH. Demecolcine-assisted enucleation of goat oocytes: protocol optimization, mechanism investigation, and application to improve the developmental potential of cloned embryos. CLONING AND STEM CELLS 2008; 10:189-202. [PMID: 18373477 DOI: 10.1089/clo.2007.0088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although demecolcine-assisted enucleation has been performed successfully in porcine and cattle, the mechanism and protocol optimization of chemically assisted enucleation need further investigation. The present study optimized the protocol for goat oocyte enucleation and demonstrated that a 30-min treatment with 0.8 ng/mL demecolcine-induced cytoplasmic protrusions in over 90% of the oocytes. Rates of enucleation, cell fusion, and blastocyst formation were significantly higher after demecolcine-assisted than after blind aspiration enucleation, although differences in rates of live births remain to be unequivocally determined between the two treatments. The ability to form protrusions decreased significantly as spindles became less organized in aged oocytes and the oocytes with a poor cumulus expansion. More than 93% of the demecolcine-induced protrusions persisted for 2 h in the absence of cytochalasin B (CB) but most disappeared within 30 min of CB treatment. The spindle disintegrated, an actin-rich ring formed around the chromosome mass and the MAP kinase activity increased significantly after demecolcine treatment. When oocytes with induced protrusions were treated with CB, however, the contractile ring disappeared, the spindle reintegrated, and both MPF and MAP kinase activities decreased significantly. It is concluded that (1) cytoplasmic protrusions can be induced in goat oocytes with a very low concentration of demecolcine; (2) oocyte selection and enucleation can be achieved simultaneously with demecolcine treatment; and (3) an interactive effect between the MAP kinase, MPF, microfilaments and microtubules might be implicated in the control of cytoplasmic protrusion formation after demecolcine treatment.
Collapse
Affiliation(s)
- Guo-Cheng Lan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Food Safety, Animal Health and Welfare and Environmental Impact of Animals derived from Cloning by Somatic Cell Nucleus Transfer (SCNT) and their Offspring and Products Obtained from those Animals. EFSA J 2008; 6:767. [PMID: 37213844 PMCID: PMC10193655 DOI: 10.2903/j.efsa.2008.767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
11
|
King WA. Chromosome variation in the embryos of domestic animals. Cytogenet Genome Res 2008; 120:81-90. [PMID: 18467828 DOI: 10.1159/000118743] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2007] [Indexed: 12/30/2022] Open
Abstract
Chromosome abnormalities in the embryos of domestic animals are mostly eliminated during development. De novo chromosome abnormalities in the embryos of domestic animals have been detected in a larger proportion of embryos produced by in vitro fertilization and somatic cell nuclear transfer than in those produced by natural mating or artificial insemination. The increased incidence of abnormalities in embryos produced in vitro provides evidence for an influence of the embryo production procedures on chromosome stability. Research strategies involving cytogenetics, molecular biology and reproductive biotechnologies hold the promise of yielding insight into the mechanisms underlying chromosome instability in embryos and the impact of the in vitro environment on the chromosome make-up of embryos.
Collapse
Affiliation(s)
- W A King
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
12
|
Ortegon H, Betts DH, Lin L, Coppola G, Perrault SD, Blondin P, King WA. Genomic stability and physiological assessments of live offspring sired by a bull clone, Starbuck II. Theriogenology 2006; 67:116-26. [PMID: 17074384 DOI: 10.1016/j.theriogenology.2006.09.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It appears that overt phenotypic abnormalities observed in some domestic animal clones are not transmitted to their progeny. The current study monitored Holstein heifers sired by a bull clone, Starbuck II, from weaning to puberty. Genomic stability was assessed by telomere length status and chromosomal analysis. Growth parameters, blood profiles, physical exams and reproductive parameters were assessed for 12 months (and compared to age-matched control heifers). Progeny sired by the clone bull did not differ (P>0.05) in weight, length and height compared to controls. However, progeny had lower heart rates (HR) (P=0.009), respiratory rates (RR) (P=0.007) and body temperature (P=0.03). Hematological profiles were within normal ranges and did not differ (P>0.05) between both groups. External and internal genitalia were normal and both groups reached puberty at expected ages. Progeny had two or three ovarian follicular waves per estrous cycle and serum progesterone concentrations were similar (P=0.99) to controls. Telomere lengths of sperm and blood cells from Starbuck II were not different (P>0.05) than those of non-cloned cattle; telomere lengths of progeny were not different (P>0.05) from age-matched controls. In addition, progeny had normal karyotypes in peripheral blood leukocytes compared to controls (89.1% versus 86.3% diploid, respectively). In summary, heifers sired by a bull clone had normal chromosomal stability, growth, physical, hematological and reproductive parameters, compared to normal heifers. Furthermore, they had moderate stress responses to routine handling and restraint.
Collapse
Affiliation(s)
- H Ortegon
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Takeda K, Tasai M, Iwamoto M, Akita T, Tagami T, Nirasawa K, Hanada H, Onishi A. Transmission of mitochondrial DNA in pigs and progeny derived from nuclear transfer of Meishan pig fibroblast cells. Mol Reprod Dev 2006; 73:306-12. [PMID: 16245357 DOI: 10.1002/mrd.20403] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In embryos derived by nuclear transfer (NT), fusion, or injection of donor cells with recipient oocytes caused mitochondrial heteroplasmy. Previous studies have reported varying patterns of mitochondrial DNA (mtDNA) transmission in cloned calves. Here, we examined the transmission of mtDNA from NT pigs to their progeny. NT pigs were created by microinjection of Meishan pig fetal fibroblast nuclei into enucleated oocytes (maternal Landrace background). Transmission of donor cell (Meishan) mtDNA was analyzed using 4 NT pigs and 25 of their progeny by PCR-mediated single-strand conformation polymorphism (PCR-SSCP) analysis, PCR-RFLP, and a specific PCR to detect Meishan mtDNA single nucleotide polymorphisms (SNP-PCR). In the blood and hair root of NT pigs, donor mtDNAs were not detected by PCR-SSCP and PCR-RFLP, but detected by SNP-PCR. These results indicated that donor mtDNAs comprised between 0.1% and 1% of total mtDNA. Only one of the progeny exhibited heteroplasmy with donor cell mtDNA populations, ranging from 0% to 44% in selected tissues. Additionally, other progeny of the same heteroplasmic founder pig were analyzed, and 89% (16/18) harbored donor cell mtDNA populations. The proportion of donor mtDNA was significantly higher in liver (12.9 +/- 8.3%) than in spleen (5.0 +/- 3.9%), ear (6.7 +/- 5.3%), and blood (5.8 +/- 3.7%) (P < 0.01). These results demonstrated that donor mtDNAs in NT pigs could be transmitted to progeny. Moreover, once heteroplasmy was transmitted to progeny of NT-derived pigs, it appears that the introduced mitochondrial populations become fixed and maternally-derived heteroplasmy was more readily maintained in subsequent generations.
Collapse
Affiliation(s)
- Kumiko Takeda
- Department of Animal Breeding and Reproduction, National Institute of Livestock and Grassland Science, National Agricultural Research Organization, Tsukuba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
King WA, Coppola G, Alexander B, Mastromonaco G, Perrault S, Nino-Soto MI, Pinton A, Joudrey EM, Betts DH. The impact of chromosomal alteration on embryo development. Theriogenology 2005; 65:166-77. [PMID: 16280155 DOI: 10.1016/j.theriogenology.2005.09.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chromosome alterations, such as those affecting telomere erosion, predictably occur with each cell division, others, which involve changes to the expression and replication of the X-chromosome occur at particular stages of development, while those that involve loss or gain of chromosomes occur in a random and so far unpredictable manner. The production of embryos in vitro and by somatic cell nuclear transfer (SCNT) has been associated with altered expression of marker genes on the X-chromosome and an increased incidence of chromosomally abnormal cells during early development. In the case of SCNT embryos chromosome abnormalities may be associated with the nuclear donor cell. Telomere rebuilding subsequent to SCNT appears to vary according to species and type of donor cell used. It is speculated that the rate of telomere erosion and incidence of chromosome abnormalities affects developmental potential of early embryos and may be potential predictors of developmental outcome.
Collapse
Affiliation(s)
- W A King
- Department of Biomedical Sciences, University of Guelph, Guelph, Ont., Canada N1G 2W1.
| | | | | | | | | | | | | | | | | |
Collapse
|