1
|
He J, Lin X, Tan C, Li Y, Su L, Lin G, Tan YQ, Tu C. Molecular insights into sperm head shaping and its role in human male fertility. Hum Reprod Update 2025:dmaf003. [PMID: 40037590 DOI: 10.1093/humupd/dmaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/16/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Sperm head shaping, controlled by the acrosome-acroplaxome-manchette complex, represents a significant morphological change during spermiogenesis and involves numerous proteins expressed in a spatially and temporally specific manner. Defects in sperm head shaping frequently lead to teratozoospermia concomitant with oligozoospermia and asthenozoospermia, but the pathogenic mechanism underlying sperm head shaping, and its role in male infertility, remain poorly understood. OBJECTIVE AND RATIONALE This review aims to summarize the mechanism underlying sperm head shaping, reveal the relationship between gene defects associated with sperm head shaping and male infertility in humans and mice, and explore potential clinical improvements in ICSI treatment. SEARCH METHODS We searched the PubMed database for articles published in English using the keyword 'sperm head shaping' in combination with the following terms: 'acrosome formation', 'proacrosomal vesicles (PAVs)', 'manchette', 'perinuclear theca (PT)', 'chromatin condensation', 'linker of nucleoskeleton and cytoskeleton (LINC) complex', 'histone-to-protamine (HTP) transition', 'male infertility', 'ICSI', and 'artificial oocyte activation (AOA)'. The selected publications until 1 August 2024 were critically summarized, integrated, and thoroughly discussed, and the irrelevant literature were excluded. OUTCOMES A total of 6823 records were retrieved. After careful screening, integrating relevant literature, and excluding articles unrelated to the topic of this review, 240 articles were ultimately included in the analysis. Firstly, we reviewed the important molecular events and structures integral to sperm head shaping, including PAV formation to fusion, acrosome attachment to the nucleus, structure and function of the manchette, PT, chromatin condensation, and HTP transition. Then, we set forth human male infertility associated with sperm head shaping and identified genes related to sperm head shaping resulting in teratozoospermia concomitant with oligozoospermia and asthenozoospermia. Finally, we summarized the outcomes of ICSI in cases of male infertility resulting from mutations in the genes associated with sperm head shaping, as well as the ICSI outcomes through AOA for infertile men with impaired sperm head. WIDER IMPLICATIONS Understanding the molecular mechanisms of sperm head shaping and its relationship with human male infertility holds profound clinical implications, which may contribute to risk prediction, genetic diagnosis, and the potential treatment of human male infertility.
Collapse
Affiliation(s)
- Jiaxin He
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xinle Lin
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Chen Tan
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yong Li
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Lilan Su
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| |
Collapse
|
2
|
Carvelli L, Hermo L, O’Flaherty C, Oko R, Pshezhetsky AV, Morales CR. Effects of Heparan sulfate acetyl-CoA: Alpha-glucosaminide N-acetyltransferase (HGSNAT) inactivation on the structure and function of epithelial and immune cells of the testis and epididymis and sperm parameters in adult mice. PLoS One 2023; 18:e0292157. [PMID: 37756356 PMCID: PMC10529547 DOI: 10.1371/journal.pone.0292157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Heparan sulfate (HS), an abundant component of the apical cell surface and basement membrane, belongs to the glycosaminoglycan family of carbohydrates covalently linked to proteins called heparan sulfate proteoglycans. After endocytosis, HS is degraded in the lysosome by several enzymes, including heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT), and in its absence causes Mucopolysaccharidosis III type C (Sanfilippo type C). Since endocytosis occurs in epithelial cells of the testis and epididymis, we examined the morphological effects of Hgsnat inactivation in these organs. In the testis, Hgsnat knockout (Hgsnat-Geo) mice revealed statistically significant decrease in tubule and epithelial profile area of seminiferous tubules. Electron microscopy (EM) analysis revealed cross-sectional tubule profiles with normal and moderately to severely altered appearances. Abnormalities in Sertoli cells and blood-testis barrier and the absence of germ cells in some tubules were noted along with altered morphology of sperm, sperm motility parameters and a reduction in fertilization rates in vitro. Along with quantitatively increased epithelial and tubular profile areas in the epididymis, EM demonstrated significant accumulations of electrolucent lysosomes in the caput-cauda regions that were reactive for cathepsin D and prosaposin antibodies. Lysosomes with similar storage materials were also found in basal, clear and myoid cells. In the mid/basal region of the epithelium of caput-cauda regions of KO mice, large vacuolated cells, unreactive for cytokeratin 5, a basal cell marker, were identified morphologically as epididymal mononuclear phagocytes (eMPs). The cytoplasm of the eMPs was occupied by a gigantic lysosome suggesting an active role of these cells in removing debris from the epithelium. Some eMPs were found in proximity to T-lymphocytes, a feature of dendritic cells. Taken together, our results reveal that upon Hgsnat inactivation, morphological alterations occur to the testis affecting sperm morphology and motility parameters and abnormal lysosomes in epididymal epithelial cells, indicative of a lysosomal storage disease.
Collapse
Affiliation(s)
- Lorena Carvelli
- IHEM-CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Cristian O’Flaherty
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Department of Surgery (Urology Division), McGill University, Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Alexey V. Pshezhetsky
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Silva C, Viana P, Barros A, Sá R, Sousa M, Pereira R. Further Insights on RNA Expression and Sperm Motility. Genes (Basel) 2022; 13:genes13071291. [PMID: 35886074 PMCID: PMC9319021 DOI: 10.3390/genes13071291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Asthenozoospermia is one of the main causes of male infertility and it is characterized by reduced sperm motility. Several mutations in genes that code for structural or functional constituents of the sperm have already been identified as known causes of asthenozoospermia. In contrast, the role of sperm RNA in regulating sperm motility is still not fully understood. Consequently, here we aim to contribute to the knowledge regarding the expression of sperm RNA, and ultimately, to provide further insights into its relationship with sperm motility. We investigated the expression of a group of mRNAs by using real-time PCR (CATSPER3, CFAP44, CRHR1, HIP1, IQCG KRT34, LRRC6, QRICH2, RSPH6A, SPATA33 and TEKT2) and the highest score corresponding to the target miRNA for each mRNA in asthenozoospermic and normozoospermic individuals. We observed a reduced expression of all mRNAs and miRNAs in asthenozoospermic patients compared to controls, with a more accentuated reduction in patients with progressive sperm motility lower than 15%. Our work provides further insights regarding the role of RNA in regulating sperm motility. Further studies are required to determine how these genes and their corresponding miRNA act regarding sperm motility, particularly KRT34 and CRHR1, which have not previously been seen to play a significant role in regulating sperm motility.
Collapse
Affiliation(s)
- Carolina Silva
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Faculty of Medicine, University of Coimbra (FMUC), 3000-370 Coimbra, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
| | - Alberto Barros
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
- Department of Genetics, Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Institute of Health Research and Innovation (IPATIMUP/i3S), University of Porto, 4200-135 Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Correspondence:
| |
Collapse
|
4
|
Martínez-Fresneda L, Sylvester M, Shakeri F, Bunes A, Del Pozo JC, García-Vázquez FA, Neuhoff C, Tesfaye D, Schellander K, Santiago-Moreno J. Differential proteome between ejaculate and epididymal sperm represents a key factor for sperm freezability in wild small ruminants. Cryobiology 2021; 99:64-77. [PMID: 33485896 DOI: 10.1016/j.cryobiol.2021.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 01/23/2023]
Abstract
Epididymal sperm shows higher cryoresistance than ejaculated sperm. Although the sperm proteome seems to affect cell cryoresistance, studies aiming at identifying proteins involved in sperm freezing-tolerance are scarce. The aims of this study were to investigate differences of sperm freezability and proteome between epididymal and ejaculated sperm in three mountain ungulates: Iberian ibex, Mouflon and Chamois. Sperm samples were cryopreserved in straws by slow freezing. Tandem mass tag-labeled peptides from sperm samples were analyzed by high performance liquid chromatography coupled to a mass spectrometer in three technical replicates. The statistical analysis was done using the moderated t-test of the R package limma. Differences of freezability between both types of sperm were associated with differences of the proteome. Overall, epididymal sperm showed higher freezability than ejaculated sperm. Between 1490 and 1883 proteins were quantified in each species and type of sperm sample. Cross species comparisons revealed a total of 76 proteins that were more abundant in epididymal than in ejaculated sperm in the three species of study whereas 3 proteins were more abundant in ejaculated than epididymal sperm in the three species of study (adjusted P < 0.05; |log2| fold-change > 0.5). Many of the proteins that were associated with higher cryoresistance are involved in stress response and redox homeostasis. In conclusion, marked changes of sperm proteome were detected between epididymal and ejaculated sperm. This work contributes to update the sperm proteome of small ruminants and to identify candidate markers of sperm freezability.
Collapse
Affiliation(s)
- Lucía Martínez-Fresneda
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA), Avda Puerta de Hierro km 5.9, 28040, Madrid, Spain; Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, University of Bonn, 53115, Bonn, Germany; Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Andreas Bunes
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Juan C Del Pozo
- Centre for Biotechnology and Plant Genomic, Polytechnic University of Madrid-National Institute for Agricultural and Food Research and Technology (UPM-INIA), Autopista M-40 Km 38, 28223, Madrid, Spain
| | - Francisco A García-Vázquez
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Christiane Neuhoff
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, University of Bonn, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 3105 Rampart Rd, 80521, Fort Collins, CO, USA
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, University of Bonn, 53115, Bonn, Germany
| | - Julian Santiago-Moreno
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA), Avda Puerta de Hierro km 5.9, 28040, Madrid, Spain.
| |
Collapse
|
5
|
van Son M, Tremoen NH, Gaustad AH, Våge DI, Zeremichael TT, Myromslien FD, Grindflek E. Transcriptome profiling of porcine testis tissue reveals genes related to sperm hyperactive motility. BMC Vet Res 2020; 16:161. [PMID: 32456687 PMCID: PMC7249385 DOI: 10.1186/s12917-020-02373-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sperm hyperactive motility has previously been shown to influence litter size in pigs, but little is known about the underlying biological mechanisms. The aim of this study was to use RNA sequencing to investigate gene expression differences in testis tissue from Landrace and Duroc boars with high and low levels of sperm hyperactive motility. Boars with divergent phenotypes were selected based on their sperm hyperactivity values at the day of ejaculation (day 0) (contrasts (i) and (ii) for Landrace and Duroc, respectively) and on their change in hyperactivity between day 0 and after 96 h liquid storage at 18 °C (contrast (iii)). RESULTS RNA sequencing was used to measure gene expression in testis. In Landrace boars, 3219 genes were differentially expressed for contrast (i), whereas 102 genes were differentially expressed for contrast (iii). Forty-one differentially expressed genes were identified in both contrasts, suggesting a functional role of these genes in hyperactivity regardless of storage. Zinc finger DNLZ was the most up-regulated gene in contrasts (i) and (iii), whereas the most significant differentially expressed gene for the two contrasts were ADP ribosylation factor ARFGAP1 and solute carrier SLC40A1, respectively. For Duroc (contrast (ii)), the clustering of boars based on their gene expression data did not reflect their difference in sperm hyperactivity phenotypes. No results were therefore obtained for this breed. A case-control analysis of variants identified in the Landrace RNA sequencing data showed that SNPs in NEU3, CHRDL2 and HMCN1 might be important for sperm hyperactivity. CONCLUSIONS Differentially expressed genes were identified in Landrace boars with high and low levels of sperm hyperactivity at the day of ejaculate collection and high and low change in hyperactivity after 96 h of sperm storage. The results point towards important candidate genes, biochemical pathways and sequence variants underlying sperm hyperactivity in pigs.
Collapse
Affiliation(s)
| | - Nina Hårdnes Tremoen
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Ann Helen Gaustad
- Norsvin SA, 2317 Hamar, Norway
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway
| | - Dag Inge Våge
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | | | | |
Collapse
|
6
|
Selvaraj K, Manickam N, Kumaran E, Thangadurai K, Elumalai G, Sekar A, Radhakrishnan RK, Kandasamy M. Deterioration of neuroregenerative plasticity in association with testicular atrophy and dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis in Huntington's disease: A putative role of the huntingtin gene in steroidogenesis. J Steroid Biochem Mol Biol 2020; 197:105526. [PMID: 31715317 DOI: 10.1016/j.jsbmb.2019.105526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder mainly affecting the structure and functions of the striatum, cerebral cortex and hippocampus leading to movement disorders, cognitive dysfunctions and emotional disturbances. The onset of HD has been linked to a pathogenic CAG repeat expansion in the huntingtin (HTT) gene that encodes for the polyglutamine (polyQ) stretches in the huntingtin (Htt) protein. Notably, the neuropathogenic events of the mutant HTT gene appear to be primed during adulthood and magnified along the ageing process. While the normal Htt protein is vital for the neuronal differentiation and neuroprotection, experimental HD models and postmortem human HD brains have been characterized by neurodegeneration and defects in neuroregenerative plasticity in the basal ganglia and limbic system including the hippocampus. Besides gonadal dysfunctions, reduced androgen levels and abnormal hypothalamic-pituitary-gonadal (HPG) axis have increasingly been evident in HD. Recently, ageing-related changes in levels of steroid sex hormones have been proposed to play a detrimental effect on the regulation of hippocampal neurogenesis in the adult brain. Considering its adult-onset nature, a potential relationship between dysregulation in the synthesis of sex steroid hormones and the pathogenesis of the mutant HTT gene appears to be an important clinical issue in HD. While the hippocampus and testis are the major sites of steroidogenesis, the presence of Htt in both areas is conclusively evident. Hence, the expression of the normal HTT gene may take part in the steroidogenic events in aforementioned organs in the physiological state, whereas the mutant HTT gene may cause defects in steroidogenesis in HD. Therefore, this review article comprehends the potential relationship between the gonadal dysfunctions and abnormal hippocampal plasticity in HD and represents a hypothesis for the putative role of the HTT gene in the regulation of steroidogenesis in gonads and in the brain.
Collapse
Affiliation(s)
- Kaviya Selvaraj
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Nivethitha Manickam
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Elamathi Kumaran
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Kayalvizhi Thangadurai
- Department of Bio-Medical Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Gokul Elumalai
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Aravinthan Sekar
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Mahesh Kandasamy
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India.
| |
Collapse
|
7
|
Yang L, Zheng X, Mo C, Li S, Liu Z, Yang G, Zhao Q, Li S, Mou C. Transcriptome analysis and identification of genes associated with chicken sperm storage duration. Poult Sci 2019; 99:1199-1208. [PMID: 32036969 PMCID: PMC7587653 DOI: 10.1016/j.psj.2019.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
The sperm storage tubules located in the mucosal folds of the uterovaginal junction (UVJ) are the primary site of sperm storage in chicken hens after natural mating or artificial insemination (AI). The short-term sperm storage (24 h after mating or AI) in hens was highly associated with immunity and pH-related pathway genes. However, the underlying mechanism of longer duration of sperm storage in female birds remains largely unclear. In the present study, transcriptome analysis was applied to uncover the dynamic gene expression changes in chicken UVJ tissues at two time points (day 3 and day 9) after AI. A total of 574 differentially expressed genes (DEG) were enriched, including 266 upregulated and 308 downregulated DEG. The validation of 5 DEG using quantitative PCR showed a similar expression tendency with RNA sequencing results. The gene ontology terms of DEG were highly enriched in heparin binding (9 genes including COMP, CTGF, and IMPG2), glycosaminoglycan binding (10 genes including PCOLCE, POSTN, and RSPO3), and response to estradiol and ion transport (AREG, RAMP3, SFRP1, and SSTR1). Kyoto encyclopedia of genes and genomes pathway-enrichment analyses of DEG revealed 10 significant pathways (P < 0.05) represented by calcium signaling pathway (7 genes including CACNA1G, PDE1C, PDGFRB, and SLC8A1) and glycosaminoglycan biosynthesis (B3GNT7, CSGALNACT1, GLCE, and ST3GAL1). Protein-protein interaction network of DEG established the connection-regulating epithelial cell or cell-matrix adhesion and migration. The enriched pathways and genes were highly correlated with temporary sperm storage in and possibly sequential sperm release from chicken UVJ overtime after AI. Of these, HIP1, PDE1C, and calcium-related genes were the most interesting candidates associated with sperm storage duration. This report provided a global gene expression profile of the chicken UVJ regarding the capacity of sperm storage overtime after AI. The outcome of this study will contribute to further understanding of the long-term sperm maintenance in avian females and eventually improving the duration of fertile egg performance by selected chicken breeding.
Collapse
Affiliation(s)
- Liubin Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070 China
| | - Xinting Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070 China
| | - Changhuan Mo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070 China
| | - Shaomei Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070 China
| | - Zhiwei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070 China
| | - Ge Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070 China
| | - Qianqian Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070 China
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070 China.
| | - Chunyan Mou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070 China.
| |
Collapse
|
8
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
9
|
Xian Y, Wu M, Liu Y, Hao J, Wu Y, Liao X, Li G. Increased Sat2 expression is associated with busulfan-induced testicular Sertoli cell injury. Toxicol In Vitro 2017; 43:47-57. [PMID: 28578006 DOI: 10.1016/j.tiv.2017.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 12/25/2022]
Abstract
Busulfan is a chemotherapeutic agent used to treat chronic myelogenous leukemia and other myeloproliferative disorders. Increasing evidence has demonstrated that busulfan may induce testicular dysfunction by targeting genes that are expressed in the testis. Here, we showed that spermidine/spermine N1-acetyltransferase 2 (Sat2) was present in testicular Sertoli cells, and its expression was significantly increased by busulfan treatment. To investigate the implications of Sat2 upregulation for cell growth and function, a Sat2-overexpressing TM4 Sertoli cell model was established. Increased Sat2 expression led to inhibited cell proliferation and arrested cell cycle. Based on iTRAQ proteomics analysis, we revealed that Sat2 overexpression is detrimental to cell cycle progression and cell communication, and notably, Sat2 may disturb protein metabolic processes by altering translation regulation and protein complex subunit organization. In summary, the present study provides evidence that Sat2 upregulation induces alterations in the growth and function of Sertoli cells. In testis tissue subjected to busulfan, increased expression of Sat2 can cause cellular injury and subsequent organ damage, which could lead to male infertility. Therefore, Sat2 may be a novel molecular target for treating busulfan-induced testicular toxicity.
Collapse
Affiliation(s)
- Yi Xian
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yaping Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jie Hao
- The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yu Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiaogang Liao
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Yao PL, Chen L, Hess RA, Müller R, Gonzalez FJ, Peters JM. Peroxisome Proliferator-activated Receptor-D (PPARD) Coordinates Mouse Spermatogenesis by Modulating Extracellular Signal-regulated Kinase (ERK)-dependent Signaling. J Biol Chem 2015; 290:23416-31. [PMID: 26242735 DOI: 10.1074/jbc.m115.664508] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Ppard(-/-) mice exhibit smaller litter size compared with Ppard(+/+) mice. To determine whether peroxisome proliferator-activated receptor-D (PPARD) could possibly influence this phenotype, the role of PPARD in testicular biology was examined. Atrophic testes and testicular degeneration were observed in Ppard(-/-) mice compared with Ppard(+/+) mice, indicating that PPARD modulates spermatogenesis. Higher expression of p27 and decreased expression of proliferating cellular nuclear antigen in Sertoli cells were observed in Ppard(+/+) mice as compared with Ppard(-/-) mice, and these were associated with decreased Sertoli cell number in Ppard(+/+) mice. Cyclin D1 and cyclin D2 expression was lower in Ppard(+/+) as compared with Ppard(-/-) mice. Ligand activation of PPARD inhibited proliferation of a mouse Sertoli cell line, TM4, and an inverse agonist of PPARD (DG172) rescued this effect. Temporal inhibition of extracellular signal-regulated kinase (ERK) activation by PPARD in the testis was observed in Ppard(+/+) mice and was associated with decreased serum follicle-stimulating hormone and higher claudin-11 expression along the blood-testis barrier. PPARD-dependent ERK activation also altered expression of claudin-11, p27, cyclin D1, and cyclin D2 in TM4 cells, causing inhibition of cell proliferation, maturation, and formation of tight junctions in Sertoli cells, thus confirming a requirement for PPARD in accurate Sertoli cell function. Combined, these results reveal for the first time that PPARD regulates spermatogenesis by modulating the function of Sertoli cells during early testis development.
Collapse
Affiliation(s)
- Pei-Li Yao
- From the Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802,
| | - LiPing Chen
- From the Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Rex A Hess
- Reproductive Biology and Toxicology, Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois 61802
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor and Immunobiology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany, and
| | - Frank J Gonzalez
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jeffrey M Peters
- From the Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802,
| |
Collapse
|
11
|
Soleilhavoup C, Tsikis G, Labas V, Harichaux G, Kohnke P, Dacheux J, Guérin Y, Gatti J, de Graaf S, Druart X. Ram seminal plasma proteome and its impact on liquid preservation of spermatozoa. J Proteomics 2014; 109:245-60. [DOI: 10.1016/j.jprot.2014.07.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/01/2014] [Accepted: 07/07/2014] [Indexed: 12/13/2022]
|
12
|
Hoehndorf R, Schofield PN, Gkoutos GV. An integrative, translational approach to understanding rare and orphan genetically based diseases. Interface Focus 2013; 3:20120055. [PMID: 23853703 PMCID: PMC3638468 DOI: 10.1098/rsfs.2012.0055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 12/07/2012] [Indexed: 01/15/2023] Open
Abstract
PhenomeNet is an approach for integrating phenotypes across species and identifying candidate genes for genetic diseases based on the similarity between a disease and animal model phenotypes. In contrast to ‘guilt-by-association’ approaches, PhenomeNet relies exclusively on the comparison of phenotypes to suggest candidate genes, and can, therefore, be applied to study the molecular basis of rare and orphan diseases for which the molecular basis is unknown. In addition to disease phenotypes from the Online Mendelian Inheritance in Man (OMIM) database, we have now integrated the clinical signs from Orphanet into PhenomeNet. We demonstrate that our approach can efficiently identify known candidate genes for genetic diseases in Orphanet and OMIM. Furthermore, we find evidence that mutations in the HIP1 gene might cause Bassoe syndrome, a rare disorder with unknown genetic aetiology. Our results demonstrate that integration and computational analysis of human disease and animal model phenotypes using PhenomeNet has the potential to reveal novel insights into the pathobiology underlying genetic diseases.
Collapse
Affiliation(s)
- Robert Hoehndorf
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK ; Department of Computer Science, University of Aberystwyth, Old College, King Street, Aberystwyth SY23 2AX, UK
| | | | | |
Collapse
|
13
|
Byrne K, Leahy T, McCulloch R, Colgrave ML, Holland MK. Comprehensive mapping of the bull sperm surface proteome. Proteomics 2012; 12:3559-79. [DOI: 10.1002/pmic.201200133] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/23/2012] [Accepted: 09/10/2012] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Russell McCulloch
- CSIRO Food Futures National Research Flagship; Division of Livestock Industries; Queensland Biosciences Precinct; St. Lucia; Queensland; Australia
| | | | | |
Collapse
|
14
|
Dacheux JL, Belleannée C, Guyonnet B, Labas V, Teixeira-Gomes AP, Ecroyd H, Druart X, Gatti JL, Dacheux F. The contribution of proteomics to understanding epididymal maturation of mammalian spermatozoa. Syst Biol Reprod Med 2012; 58:197-210. [DOI: 10.3109/19396368.2012.663233] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Gerson KD, Maddula VSRK, Seligmann BE, Shearstone JR, Khan A, Mercurio AM. Effects of β4 integrin expression on microRNA patterns in breast cancer. Biol Open 2012; 1:658-66. [PMID: 23213459 PMCID: PMC3507297 DOI: 10.1242/bio.20121628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The integrin α6β4 is defined as an adhesion receptor for laminins. Referred to as ‘β4’, this integrin plays a key role in the progression of various carcinomas through its ability to orchestrate key signal transduction events and promote cell motility. To identify novel downstream effectors of β4 function in breast cancer, microRNAs (miRNAs) were examined because of their extensive links to tumorigenesis and their ability to regulate gene expression globally. Two breast carcinoma cell lines and a collection of invasive breast carcinomas with varying β4 expression were used to assess the effect of this integrin on miRNA expression. A novel miRNA microarray analysis termed quantitative Nuclease Protection Assay (qNPA) revealed that β4 expression can significantly alter miRNA expression and identified two miRNA families, miR-25/32/92abc/363/363-3p/367 and miR-99ab/100, that are consistently downregulated by expression of this integrin. Analysis of published Affymetrix GeneChip data identified 54 common targets of miR-92ab and miR-99ab/100 within the subset of β4-regulated mRNAs, revealing several genes known to be key components of β4-regulated signaling cascades and effectors of cell motility. Gene ontology classification identified an enrichment in genes associated with cell migration within this population. Finally, gene set enrichment analysis of all β4-regulated mRNAs revealed an enrichment in targets belonging to distinct miRNA families, including miR-92ab and others identified by our initial array analyses. The results obtained in this study provide the first example of an integrin globally impacting miRNA expression and provide evidence that select miRNA families collectively target genes important in executing β4-mediated cell motility.
Collapse
Affiliation(s)
- Kristin D Gerson
- Department of Cancer Biology, University of Massachusetts Medical School , 364 Plantation Street, Worcester, MA 01605 , USA
| | | | | | | | | | | |
Collapse
|
16
|
Belleannee C, Belghazi M, Labas V, Teixeira-Gomes AP, Gatti JL, Dacheux JL, Dacheux F. Purification and identification of sperm surface proteins and changes during epididymal maturation. Proteomics 2011; 11:1952-64. [DOI: 10.1002/pmic.201000662] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/29/2010] [Accepted: 02/01/2011] [Indexed: 11/10/2022]
|
17
|
Kim N, Xiao R, Choi H, Kim JH, Sang-Jun U, Chankyu P. Abnormal sperm development in pcd(3J)-/- mice: the importance of Agtpbp1 in spermatogenesis. Mol Cells 2011; 31:39-48. [PMID: 21110128 PMCID: PMC3906870 DOI: 10.1007/s10059-011-0002-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022] Open
Abstract
Homozygous Purkinje cell degeneration (pcd) mutant males exhibit abnormal sperm development. Microscopic examination of the testes from pcd(3J)-/- mice at postnatal days 12, 15, 18 and 60 revealed histological differences, in comparison to wild-type mice, which were evident by day 18. Greatly reduced numbers of spermatocytes and spermatids were found in the adult testes, and apoptotic cells were identified among the differentiating germ cells after day 15. Our immunohistological analysis using an antihuman AGTPBP1 antibody showed that AGTPBP1 was expressed in spermatogenic cells between late stage primary spermatocytes and round spermatids. A global gene expression analysis from the testes of pcd(3J)-/- mice showed that expression of cyclin B3 and de-ubiquitinating enzymes USP2 and USP9y was altered by >1.5-fold compared to the expression levels in the wild-type. Our results suggest that the pcd mutant mice have defects in spermatogenesis that begin with the pachytene spermatocyte stage and continue through subsequent stages. Thus, Agtpbp1, the gene responsible for the pcd phenotype, plays an important role in spermatogenesis and is important for survival of germ cells at spermatocytes stage onward.
Collapse
Affiliation(s)
- Nameun Kim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Rui Xiao
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| | | | | | | | - Park Chankyu
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
18
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
19
|
Banerjee M, Datta M, Majumder P, Mukhopadhyay D, Bhattacharyya NP. Transcription regulation of caspase-1 by R393 of HIPPI and its molecular partner HIP-1. Nucleic Acids Res 2009; 38:878-92. [PMID: 19934260 PMCID: PMC2817453 DOI: 10.1093/nar/gkp1011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Earlier we have shown that exogenous expression of HIPPI, a molecular partner of Huntingtin interacting protein HIP-1, induces apoptosis and increases expression of caspases-1, -8 and -10 in HeLa and Neuro2A cells. The C-terminal pseudo death effector domain of HIPPI (pDED-HIPPI) specifically interacts with the putative promoter sequences of these genes. In the present manuscript, we predict from structural modeling of pDED-HIPPI that R393 of HIPPI is important for such interaction. R393E mutation in pDED-HIPPI decreases the interaction with the putative promoter of caspase-1 in cells. Expression of caspase-1 is decreased in cells expressing mutant pDED-HIPPI in comparison to that observed in cells expressing wild type pDED-HIPPI. Using HIP-1 knocked down cells as well as over expressing HIP-1 with mutation at its nuclear localization signal and other deletion mutations, we demonstrate that translocation of HIPPI to the nucleus is mediated by HIP-1 for the increased expression of caspase-1. HIPPI-HIP-1 heterodimer is detected in cytoplasm as well as in the nucleus and is associated with transcription complex in cells. Taking together, we are able to show the importance of R393 of HIPPI and the role of HIPPI-HIP-1 heterodimer in the transcription regulation of caspase-1.
Collapse
Affiliation(s)
- M Banerjee
- Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India
| | | | | | | | | |
Collapse
|
20
|
Gottfried I, Ehrlich M, Ashery U. HIP1 exhibits an early recruitment and a late stage function in the maturation of coated pits. Cell Mol Life Sci 2009; 66:2897-911. [PMID: 19626275 PMCID: PMC11115706 DOI: 10.1007/s00018-009-0077-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 06/12/2009] [Indexed: 11/26/2022]
Abstract
Huntingtin interacting protein 1 (HIP1) is an accessory protein of the clathrin-mediated endocytosis (CME) pathway, yet its precise role and the step at which it becomes involved are unclear. We employed live-cell imaging techniques to focus on the early steps of CME and characterize HIP1 dynamics. We show that HIP1 is highly colocalized with clathrin at the plasma membrane and shares similar dynamics with a subpopulation of clathrin assemblies. Employing transferrin receptor fused to pHluorin, we distinguished between open pits to which HIP1 localizes and newly internalized vesicles that are devoid of HIP1. Moreover, shRNA knockdown of clathrin compromised HIP1 membranal localization, unlike the reported behavior of Sla2p. HIP1 fragment, lacking its ANTH and Talin-like domains, inhibits internalization of transferrin, but retains colocalization with membranal clathrin assemblies. These data demonstrate HIP1's role in pits maturation and formation of the coated vesicle, and its strong dependence on clathrin for membranal localization.
Collapse
Affiliation(s)
- Irit Gottfried
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Uri Ashery
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| |
Collapse
|
21
|
Bhattacharyya NP, Banerjee M, Majumder P. Huntington’s disease: roles of huntingtin-interacting protein 1 (HIP-1) and its molecular partner HIPPI in the regulation of apoptosis and transcription. FEBS J 2008; 275:4271-9. [DOI: 10.1111/j.1742-4658.2008.06563.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci 2007; 27:11056-64. [PMID: 17928447 DOI: 10.1523/jneurosci.1941-07.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Huntingtin-interacting protein 1 (HIP1) was identified through its interaction with htt (huntingtin), the Huntington's disease (HD) protein. HIP1 is an endocytic protein that influences transport and function of AMPA and NMDA receptors in the brain. However, little is known about its contribution to neuronal dysfunction in HD. We report that the Caenorhabditis elegans HIP1 homolog hipr-1 modulates presynaptic activity and the abundance of synaptobrevin, a protein involved in synaptic vesicle fusion. Presynaptic function was also altered in hippocampal brain slices of HIP1-/- mice demonstrating delayed recovery from synaptic depression and a reduction in paired-pulse facilitation, a form of presynaptic plasticity. Interestingly, neuronal dysfunction in transgenic nematodes expressing mutant N-terminal huntingtin was specifically enhanced by hipr-1 loss of function. A similar effect was observed with several other mutant proteins that are expressed at the synapse and involved in endocytosis, such as unc-11/AP180, unc-26/synaptojanin, and unc-57/endophilin. Thus, HIP1 is involved in presynaptic nerve terminal activity and modulation of mutant polyglutamine-induced neuronal dysfunction. Moreover, synaptic proteins involved in endocytosis may protect neurons against amino acid homopolymer expansion.
Collapse
|
23
|
Abstract
Actin can be found in all kinds of eukaryotic cells, maintaining their shapes and motilities, while its dynamics in sperm cells is understood less than their nonmuscle somatic cell counterparts. Spermatogenesis is a complicated process, resulting in the production of mature sperm from primordial germ cell. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. It was proved that all mammalian sperm contain actin, and that F-actin may play an important role during spermatogenesis, especially in nuclear shaping. Recently a new model for sperm head elongation based on the acrosome-acroplaxome-manchette complex has been proposed. In Drosophila, F-actin assembly is supposed to be very crucial during individualization. In this mini-review, we provide an overview of the structure, function, and regulation characteristics of actin cytoskeleton, and a summary of the current status of research of actin-based structure and movement is also provided, with emphasis on the role of actins in sperm head shaping during spermiogenesis and the cell junction dynamics in the testis. Research of the Sertoli ectoplasmic specialization is in the spotlight, which is a testis-specific actin-based junction very important for the movement of germ cells across the epithelium. Study of the molecular architecture and the regulating mechanism of the Sertoli ectoplasmic specialization has become an intriguing field. All this may lead to a new strategy for male infertility and, at the same time, a novel idea may result in devising much safer contraception with high efficiency. It is hoped that the advances listed in this review would give developmental and morphological researchers a favorable investigating outline and could help to enlarge the view of new strategies and models for actin dynamics during spermatogenesis.
Collapse
|
24
|
Bradley SV, Hyun TS, Oravecz-Wilson KI, Li L, Waldorff EI, Ermilov AN, Goldstein SA, Zhang CX, Drubin DG, Varela K, Parlow A, Dlugosz AA, Ross TS. Degenerative phenotypes caused by the combined deficiency of murine HIP1 and HIP1r are rescued by human HIP1. Hum Mol Genet 2007; 16:1279-92. [PMID: 17452370 DOI: 10.1093/hmg/ddm076] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The members of the huntingtin-interacting protein-1 (HIP1) family, HIP1 and HIP1-related (HIP1r), are multi-domain proteins that interact with inositol lipids, clathrin and actin. HIP1 is over-expressed in a variety of cancers and both HIP1 and HIP1r prolong the half-life of multiple growth factor receptors. To better understand the physiological importance of the HIP1 family in vivo, we have analyzed a large cohort of double Hip1/Hip1r knockout (DKO) mice. All DKO mice were dwarfed, afflicted with severe vertebral defects and died in early adulthood. These phenotypes were not observed during early adulthood in the single Hip1 or Hip1r knockouts, indicating that HIP1 and HIP1r compensate for one another. Despite the ability of HIP1 and HIP1r to modulate growth factor receptor levels when over-expressed, studies herein using DKO fibroblasts indicate that the HIP1 family is not necessary for endocytosis but is necessary for the maintenance of diverse adult tissues in vivo. To test if human HIP1 can function similar to mouse HIP1, transgenic mice with 'ubiquitous' expression of the human HIP1 cDNA were generated and crossed with DKO mice. Strikingly, the compound human HIP1 transgenic DKO mice were completely free from dwarfism and spinal defects. This successful rescue demonstrates that the human HIP1 protein shares some interchangeable functions with both HIP1 and HIP1r in vivo. In addition, we conclude that the degenerative phenotypes seen in the DKO mice are due mainly to HIP1 and HIP1r protein deficiency rather than altered expression of neighboring genes or disrupted intronic elements.
Collapse
Affiliation(s)
- Sarah V Bradley
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0942, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|