1
|
Krisher RL, Herrick JR. Bovine embryo production in vitro: evolution of culture media and commercial perspectives. Anim Reprod 2024; 21:e20240051. [PMID: 39372256 PMCID: PMC11452098 DOI: 10.1590/1984-3143-ar2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/20/2024] [Indexed: 10/08/2024] Open
Abstract
In vitro produced embryos exhibit lower viability compared to their in vivo counterparts. Mammalian preimplantation embryos have the ability to reach the blastocyst stage in diverse culture media, showcasing considerable metabolic adaptability, which complicates the identification of optimal developmental conditions. Despite embryos successfully progressing to the blastocyst stage, adaptation to suboptimal culture environments may jeopardize blastocyst viability, cryotolerance, and implantation potential. Enhancing our capacity to support preimplantation embryonic development in vitro requires a deeper understanding of fundamental embryo physiology, including preferred metabolic substrates and pathways utilized by high-quality embryos. Armed with this knowledge, it becomes achievable to optimize culture conditions to support normal, in vivo-like embryo physiology, mitigate adaptive stress, and enhance viability. The objective of this review is to summarize the evolution of culture media for bovine embryos, highlighting significant milestones and remaining challenges.
Collapse
|
2
|
Chen HH, Lee CI, Huang CC, Cheng EH, Lee TH, Lin PY, Chen CH, Lee MS. Biphasic oxygen tension promotes the formation of transferable blastocysts in patients without euploid embryos in previous monophasic oxygen cycles. Sci Rep 2023; 13:4330. [PMID: 36922540 PMCID: PMC10017668 DOI: 10.1038/s41598-023-31472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
This study evaluated whether the concentration of biphasic O2 (5-2%) promotes the formation of qualified blastocysts (QBs) and euploid blastocysts and the probability of cycles with transferable blastocysts. The paired experimental design included a total 90 patients (180 cycles) without euploid blastocysts in previous monophasic O2 (5%) cycles were enrolled for an additional cycle of biphasic O2 (5-2%). In the biphasic O2 (5-2%) group, the QB rate (35.8%, 225/628) was significantly higher than that in the monophasic O2 (5%) group (23.5%, 137/582; p < 0.001). In addition, the euploid blastocyst number (0.5 ± 0.8) and the percentage of cycles with transferable blastocysts were significantly higher in the biphasic O2 (5-2%) group (57.8%, 52/90) than those in the monophasic O2 (5%) group (0 and 35.6%, 32/90, respectively; p < 0.01). Multivariable regression analysis also indicated that the QB rate and the probability of cycles with transferable blastocysts correlated with O2 tension (OR 1.535, 95% CI 1.325-1.777, and OR 3.191, 95% CI 1.638-5.679, respectively; p < 0.001). Biphasic O2 culture can be used as an alternative strategy to increase the euploid QBs and the probability of cycles with transferable blastocysts in patients with a poor prognosis.
Collapse
Affiliation(s)
- Hsiu-Hui Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Chun-I Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Chun-Chia Huang
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - En-Hui Cheng
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Tsung-Hsien Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pin Yao Lin
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Chien-Hong Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan. .,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan.
| | - Maw-Sheng Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan. .,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan. .,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan. .,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
3
|
Yang W, Wang P, Cao P, Wang S, Yang Y, Su H, Nashun B. Hypoxic in vitro culture reduces histone lactylation and impairs pre-implantation embryonic development in mice. Epigenetics Chromatin 2021; 14:57. [PMID: 34930415 PMCID: PMC8691063 DOI: 10.1186/s13072-021-00431-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Dynamic changes of histone posttranslational modifications are important contexts of epigenetic reprograming after fertilization in pre-implantation embryos. Recently, lactylation has been reported as a novel epigenetic modification that regulates various cellular processes, but its role during early embryogenesis has not been elucidated. RESULTS We examined nuclear accumulation of H3K23la, H3K18la and pan histone lactylation in mouse oocytes and pre-implantation embryos by immunofluorescence with specific antibodies. All of the three modifications were abundant in GV stage oocytes, and both H3K23la and pan histone lactylation could be detected on the condensed chromosomes of the MII oocytes, while H3K18la were not detected. After fertilization, the nuclear staining of H3K23la, H3K18la and pan histone lactylation was faint in zygotes but homogeneously stained both of the parental pronuclei. The signal remained weak in the early cleavage stage embryos and increased remarkably in the blastocyst stage embryos. Comparison of the embryos cultured in four different conditions with varying concentrations of oxygen found that H3K23la, H3K18la and pan histone lactylation showed similar and comparable staining pattern in embryos cultured in atmospheric oxygen concentration (20% O2), gradient oxygen concentration (5% O2 to 2% O2) and embryos obtained from in vivo, but the modifications were greatly reduced in embryos cultured in hypoxic condition (2% O2). In contrast, nuclear accumulation of H3K18ac or H3K23ac was not significantly affected under hypoxic condition. Moreover, the developmental rate of in vitro cultured embryo was significantly reduced by low oxygen concentration and small molecule inhibition of LDHA activity led to decreased lactate production, as well as reduced histone lactylation and compromised developmental rate. CONCLUSIONS We provided for the first time the dynamic landscape of H3K23la, H3K18la and pan histone lactylation in oocytes and pre-implantation embryos in mice. Our data suggested that histone lactylation is subjected to oxygen concentration in the culture environment and hypoxic in vitro culture reduces histone lactylation, which in turn compromises developmental potential of pre-implantation embryos in mice.
Collapse
Affiliation(s)
- Wanting Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Peijun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Pengbo Cao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Shuang Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yuxiao Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Huimin Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
4
|
Murata H, Kunii H, Kusama K, Sakurai T, Bai H, Kawahara M, Takahashi M. Heat stress induces oxidative stress and activates the KEAP1-NFE2L2-ARE pathway in bovine endometrial epithelial cells. Biol Reprod 2021; 105:1114-1125. [PMID: 34296252 DOI: 10.1093/biolre/ioab143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Heat stress adversely affects the reproductive function in cows. Although a relationship between heat stress and oxidative stress has been suggested, it has not been sufficiently verified in bovine endometrial epithelial cells. Here, we investigated whether oxidative stress is induced by heat stress in bovine endometrial epithelial cells under high temperature. Luciferase reporter assays showed that the reporter activity of heat shock element (HSE) and antioxidant responsive element (ARE) was increased in endometrial epithelial cells cultured under high temperature compared to that in cells cultured under basal (thermoneutral) temperature. Also, nuclear factor, erythroid 2 like 2 (NFE2L2), a master regulator of cellular environmental stress response, stabilized and the expression levels of antioxidant enzyme genes increased under high temperature. Immunostaining confirmed the nuclear localization of NFE2L2 in endometrial epithelial cells cultured under high temperature. Quantitative polymerase chain reaction analysis showed that the expression levels of representative inflammatory cytokine genes, such as prostaglandin-endoperoxide synthase 2 (PTGS2) and interleukin 8, were significantly decreased in endometrial epithelial cells cultured under high temperature compared to those in cells cultured under basal temperature. Thus, our results suggest that heat stress induces oxidative stress, whereas NFE2L2 plays a protective role in bovine endometrial epithelial cells cultured under heat stress conditions.
Collapse
Affiliation(s)
- Hirona Murata
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Hiroki Kunii
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Toshihiro Sakurai
- School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama-shi, Fukushima 963-8611, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Masashi Takahashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan.,Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
5
|
He H, Zhang H, Li Q, Fan J, Pan Y, Zhang T, Robert N, Zhao L, Hu X, Han X, Yang S, Cui Y, Yu S. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos. Theriogenology 2020; 156:46-58. [PMID: 32673901 DOI: 10.1016/j.theriogenology.2020.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
Mammalian oocyte maturation and early embryo development are highly sensitive to the in vitro culture environment, and oxygen concentration is one of the important factors. In the present study, we aimed to explore the effects of different oxygen concentrations (20%, 10%, 5% or 1% O2) on yak oocyte maturation, in vitro fertilization (IVF), and embryo development competence, as well as its effects on the oxidative response, metabolism, and apoptosis in cumulus-oocyte complexes (COCs) and the embryo. The results revealed that the maturation rate of oocytes, blastocysts rate and hatched blastocysts rate in the group with 5% oxygen concentration were significantly higher (P < 0.05) than other groups, but the cleavage rate with 5% oxygen concentration was significantly lower (P < 0.05) than the 20% and 10% oxygen concentrations. The maturation rate of oocytes, the cleavage rate, blastocysts rate and hatched blastocysts rate with the 1% oxygen concentration were the lowest. The blastocyst cultured with 5% oxygen concentration had significantly greater (P < 0.05) numbers of total cells, inner cell mass (ICM) cells and trophectoderm (TE) cells compared to the other groups. Analysis of the apoptosis index of oocytes and blastocyst cells by transferase dUTP nick end labeling (TUNEL) showed that the number of apoptotic cells significantly reduced (P < 0.05) with 5% oxygen concentration, but increased significantly (P < 0.05) in the 1% oxygen concentration group. Also, the qRT-PCR and western immunoblotting analysis confirmed that the transcription levels of the metabolism genes, antioxidant response genes, apoptosis genes, oocyte competence genes and embryonic developmental markers showed significant differences (P < 0.05) in the COCs or blastocysts matured in 5% oxygen concentration group compared to the other groups. In summary, our findings demonstrate that 5% oxygen concentration improves oocyte maturation and blastocyst development in the yak, increases blastocyst cell numbers, reduces apoptosis rate in the oocyte and blastocyst as well as reduces embryo cleavage rate.
Collapse
Affiliation(s)
- Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Huizhu Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qin Li
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tongxiang Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Niayale Robert
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ling Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xuequan Hu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Han
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
6
|
Loren P, Sánchez-Villalba E, Risopatrón J, Arias ME, Felmer R, Sánchez R. Induction of oxidative stress does not increase the cryotolerance of vitrified embryos. Anim Reprod Sci 2020; 219:106511. [PMID: 32828397 DOI: 10.1016/j.anireprosci.2020.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Short-term treatment of mammalian oocytes with different stressors induces stress tolerance of embryos derived from these oocytes. The aims of this study were to evaluate effects on embryo development when there was treatment of oocyte complexes (COCs) used to derive the embryos with hydrogen peroxide (H2O2).The COCs were not incubated with H2O2: control (0 μM), or were incubated with 25, 50, 75, or 100 μM concentrations of H2O2 for 1 h prior to in vitro fertilization, and presumptive zygotes were cultured until day 7. Blastocysts at day 7 of development derived from H2O2-treated (25 μM treatment concentration) COCs were vitrified. Percentage of embryos undergoing cleavage was not affected by any treatment, while percentage of embryos developing to the blastocyst stage was less when there was treatment of COCs with 100 μM of H2O2. Embryo quality was less when COCs used to derive blastocysts were treated with 50, 75, or 100 μM concentrations of H2O2. There were lesser relative abundances of some mRNA transcripts of interest in blastocysts when there was treatment of COCs with H2O2. After vitrification, there were no differences in embryo re-expansion and hatching rates compared with fresh and vitrified blastocysts of the control group and those derived from COCs treated with 25 μM H2O2. In conclusion, treatment of COCs used to derive blastocysts with H2O2 does not induce stress tolerance in vitrified embryos of cattle; however, the viability of these blastocysts is similar to those of the control group.
Collapse
Affiliation(s)
- P Loren
- Applied Cellular and Molecular Biology Program, Universidad de La Frontera, Temuco, Chile
| | - E Sánchez-Villalba
- Applied Cellular and Molecular Biology Program, Universidad de La Frontera, Temuco, Chile
| | - J Risopatrón
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - M E Arias
- Department of Animal Production, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - R Felmer
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - R Sánchez
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
7
|
Bai H, Ukita H, Kawahara M, Mitani T, Furukawa E, Yanagawa Y, Yabuuchi N, Kim H, Takahashi M. Effect of summer heat stress on gene expression in bovine uterine endometrial tissues. Anim Sci J 2020; 91:e13474. [PMID: 33159383 DOI: 10.1111/asj.13474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Heat stress negatively affects reproductive functions in cows. Increased temperature disturbs fetal development in utero. However, the effect of heat stress on uterine endometrial tissues has not been fully examined. Using qPCR analysis, we measured the mRNA expression of various molecular markers in uterine endometrial tissue of dairy cows from Hokkaido, Japan, in winter and summer. Markers examined were heat shock proteins (HSPs), antioxidant enzymes (catalase, copper/zinc superoxide dismutase, manganese superoxide dismutase, and glutathione peroxidase 4), inflammatory cytokines, and interferon stimulated genes. Our results showed heat stress, body and milk temperatures were higher during summer than during winter. Expression levels of HSP27, HSP60, and HSP90 mRNA, and of catalase and copper/zinc superoxide dismutase mRNA were lower in summer than in winter. Tumor necrosis factor alpha expression was higher in summer than in winter. In conclusion, summer heat stress may reduce the expression of HSPs, affecting the levels of inflammatory cytokines in bovine uterine endometrial tissue.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Haruka Ukita
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Manabu Kawahara
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tomohiro Mitani
- Field Science Center for Norther Biosphere, Hokkaido University, Sapporo, Japan
| | - Eri Furukawa
- Laboratory of Theriogenology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | - Masashi Takahashi
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
García-Herreros M, Simintiras CA, Lonergan P. Temporally differential protein expression of glycolytic and glycogenic enzymes during in vitro preimplantation bovine embryo development. Reprod Fertil Dev 2019; 30:1245-1252. [PMID: 29566785 DOI: 10.1071/rd17429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/01/2018] [Indexed: 12/11/2022] Open
Abstract
Proteomic analyses are useful for understanding the metabolic pathways governing embryo development. This study investigated the presence of enzymes involved in glycolysis and glycogenesis in in vitro-produced bovine embryos at five developmental stages leading up to blastocyst formation. The enzymes examined were: (1) glycolytic: hexokinase-I (HK-I), phosphofructokinase-1 (PFK-1), pyruvate kinase mutase 1/2 (PKM-1/2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and (2) glycogenic: glycogen synthase kinase-3 isoforms α/ β (GSK-3α/β). Glucose transporter-1 (GLUT-1) was also analysed. The developmental stages examined were: (1) 2-4-cell, (2) 5-8-cell, (3) 16-cell, (4) morula and (5) expanded blastocyst. The enzymes HK-I, PFK-1, PKM-1/2, GAPDH and GLUT-1 were differentially expressed throughout all stages (P<0.05). GSK-3α and β were also differentially expressed from the 2-4-cell to the expanded blastocyst stage (P<0.05) and GLUT-1 was identified throughout. The general trend was that the abundance of PFK1, GAPDH and PKM-1/2 decreased whereas HK-I, phospho-GSK3α (P-GSK3α) and P-GSK3β levels increased as the embryo advanced. In contrast, GLUT-1 expression peaked at the 16-cell stage. These data combined suggest that in vitro bovine embryo metabolism switches from being glycolytic-centric to glycogenic-centric around the 16-cell stage, the developmental window also characterised by embryonic genome activation.
Collapse
Affiliation(s)
- Manuel García-Herreros
- National Institute for Agricultural and Veterinary Research (INIAV, I.P.), Quinta da Fonte Boa 2005-048, Santarém, Portugal
| | - Constantine A Simintiras
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Dublin D04 N2E5, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Dublin D04 N2E5, Ireland
| |
Collapse
|
9
|
Adegoke EO, Adeniran SO, Zeng Y, Wang X, Wang H, Wang C, Zhang H, Zheng P, Zhang G. Pharmacological inhibition of TLR4/NF-κB with TLR4-IN-C34 attenuated microcystin-leucine arginine toxicity in bovine Sertoli cells. J Appl Toxicol 2019; 39:832-843. [PMID: 30671980 DOI: 10.1002/jat.3771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 01/17/2023]
Abstract
This study investigated the pharmacological inhibition of the toll-like receptor 4 (TLR4) genes as a measure to attenuate microcystin-LR (MC-LR) reproductive toxicity. Bovine Sertoli cells were pretreated with TLR4-IN-C34 (C34) for 1 hour. Thereafter the pretreated and non-pretreated Sertoli cells were cultured in medium containing 10% heat-activated fetal bovine serum + 80 μg/L MC-LR for 24 hours to assess the ability of TLR4-IN-C34 to attenuate the toxic effects of MC-LR. The results showed that TLR4-IN-C34 inhibited MC-LR-induced mitochondria membrane damage, mitophagy and downregulation of blood-testis barrier constituent proteins via TLR4/nuclear factor-kappaB and mitochondria-mediated apoptosis signaling pathway blockage. The downregulation of the mitochondria electron transport chain, energy production and DNA replication related genes (mt-ND2, COX-1, COX-2, ACAT, mtTFA) and upregulation of inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor-α, IL-1β, interferon-γ, IL-4, IL-10, IL-13 and transforming growth factor β1) were modulated by TLR4-IN-C34. Taken together, we conclude that TLR4-IN-C34 inhibits MC-LR-related disruption of mitochondria membrane, mitophagy and downregulation of blood-testis barrier proteins of the bovine Sertoli cell via cytochrome c release and TLR4 signaling blockage.
Collapse
Affiliation(s)
- Elikanah Olusayo Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Samson Olugbenga Adeniran
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Yue Zeng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Xue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Hao Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Chen Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Han Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Peng Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Guixue Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| |
Collapse
|
10
|
Adegoke EO, Xue W, Machebe NS, Adeniran SO, Hao W, Chen W, Han Z, Guixue Z, Peng Z. Sodium Selenite inhibits mitophagy, downregulation and mislocalization of blood-testis barrier proteins of bovine Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB and mitochondrial signaling pathways blockage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:165-175. [PMID: 30267989 DOI: 10.1016/j.ecoenv.2018.09.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
This study was conducted to investigate the ameliorative effect of selenium on microcystin-LR induced toxicity in bovine Sertoli cells. Bovine Sertoli cells were pretreated with selenium (Na2SeO3) for 24 h after which selenium pretreated and non-pretreated Sertoli cells were cultured in medium containing 10% heat activated fetal bovine serum FBS+ 80 µg/L MC-LR to assess its ameliorative effect on MC-LR toxicity. The results show that selenium pretreatment inhibited the MC-LR induced mitophagy, downregulation and mislocalization of blood-testis barrier constituent proteins in bovine Sertoli cells via NF-kB and cytochrome c release blockage. The observed downregulation of electron transport chain (ETC) related genes (mt-ND2, COX-1, COX-2) and upregulation of inflammatory cytokines (IL-6, TNF-α, IL-1β, IFN-γ, IL-4, IL-10, 1 L-13, TGFβ1) in non-pretreated cells exposed to MC-LR were ameliorated in selenium pretreated cells. There was no significant difference (P > 0.05) in the protein levels of blood-testis barrier constituent proteins (ZO-1, occludin, connexin-43, CTNNB1, N-cadherin) and mitochondria related genes (mt-ND2, COX-1, COX-2, ACAT1, mtTFA) of selenium pretreated Sertoli cell compared to the control. Taken together, we conclude that selenium inhibits MC-LR caused Mitophagy, downregulation and mislocalization of blood-testis barrier proteins of bovine Sertoli cell via mitochondrial and TLR4/NF-kB signaling pathways blockage.
Collapse
Affiliation(s)
- E O Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Wang Xue
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - N S Machebe
- Department of Animal Science, University of Nigeria, Nsukka, Nigeria
| | - S O Adeniran
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Wang Hao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Wang Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Zhang Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Zhang Guixue
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China.
| | - Zheng Peng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China.
| |
Collapse
|
11
|
Variables associated with mitochondrial copy number in human blastocysts: what can we learn from trophectoderm biopsies? Fertil Steril 2018; 109:110-117. [PMID: 29307391 DOI: 10.1016/j.fertnstert.2017.09.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/18/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To study the potential variables that affect the mitochondrial DNA (mtDNA) content of trophectoderm (TE) cells in blastocysts that have undergone TE biopsy. DESIGN Observational retrospective single-center analysis. SETTING University-affiliated private in vitro fertilization center. PATIENT(S) A total of 465 consecutive preimplantation genetic screening (PGS) cycles of 402 women undergoing preimplantation genetic testing. INTERVENTION(S) Trophectoderm biopsy performed on blastocysts of women undergoing preimplantation genetic testing-aneuploidy (PGT-A). MAIN OUTCOME MEASURE(S) The mtDNA content in trophectoderm cells. RESULT(S) We checked the possible influence of patient characteristics, ovarian stimulation variables, embryo morphology, and embryo culture conditions on mtDNA values. Of all the analyzed variables, some such as body mass index (BMI), serum progesterone (P4), aneuploidy, and trophectoderm quality had an effect on mtDNA content in blastocysts. Body mass index had a small but positive effect on the mtDNA copy number; as the BMI values increased, the probability of women producing blastocysts with an mtDNA content above the median increased by 6%. For P4 serum concentration, an increase in P4 lowered the probability of blastocysts having values above the median by 39%. Embryo-associated variables such as TE quality and aneuploidy status appeared to affect the mtDNA copy number. For the aneuploid blastocysts, the probability of being above the median increased by 42%. Finally, blastocysts with poor quality TE had more chances of carrying higher mtDNA values. CONCLUSION(S) Summarizing, larger quantities of mtDNA in blastocysts are associated with the condition of aneuploidy and low quality TE, as well as being from women with high BMI values. Understanding the biological meaning of mtDNA content in human blastocysts and what factors may interfere with their values is fundamental. Other key gaps, such as whether a correlation exists between mtDNA content and mitochondrial mass and biogenesis in human TE cells, and whether this correlation can be extended to the inner cell mass, need to be further addressed. These questions are currently being investigated.
Collapse
|
12
|
Razza EM, Pedersen HS, Stroebech L, Fontes PK, Kadarmideen HN, Callesen H, Pihl M, Nogueira MFG, Hyttel P. Simulated physiological oocyte maturation has side effects on bovine oocytes and embryos. J Assist Reprod Genet 2018; 36:413-424. [PMID: 30443692 DOI: 10.1007/s10815-018-1365-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/02/2018] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Oocyte maturation is a complex process involving nuclear and cytoplasmic modulations, during which oocytes acquire their ability to become fertilized and support embryonic development. The oocyte is apparently "primed" for maturation during its development in the dominant follicle. As bovine oocytes immediately resume meiosis when cultured, it was hypothesized that delaying resumption of meiosis with cyclic nucleotide modulators before in vitro maturation (IVM) would allow the oocytes to acquire improved developmental competence. METHODS We tested the Simulated Physiological Oocyte Maturation (SPOM) system that uses forskolin and 3-isobutyl-1-methylxanthine for 2 h prior to IVM against two different systems of conventional IVM (Con-IVM). We evaluated the ultrastructure of matured oocytes and blastocysts and also assessed the expression of 96 genes related to embryo quality in the blastocysts. RESULTS In summary, the SPOM system resulted in lower blastocyst rates than both Con-IVM systems (30 ± 9.1 vs. 35 ± 8.7; 29 ± 2.6 vs. 38 ± 2.8). Mature SPOM oocytes had significantly increased volume and number of vesicles, reduced volume and surface density of large smooth endoplasmic reticulum clusters, and lower number of mitochondria than Con-IVM oocytes. SPOM blastocysts showed only subtle differences with parallel undulations of adjacent trophectoderm plasma membranes and peripherally localized ribosomes in cells of the inner cell mass compared with Con-IVM blastocysts. SPOM blastocysts, however, displayed significant downregulation of genes related to embryonic developmental potential when compared to Con-IVM blastocysts. CONCLUSIONS Our results show that the use of the current version of the SPOM system may have adverse effects on oocytes and blastocysts calling for optimized protocols for improving oocyte competence.
Collapse
Affiliation(s)
- Eduardo M Razza
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), Distrito de Rubião Junior s/n, Botucatu, São Paulo, 18618970, Brazil.
| | - Hanne S Pedersen
- Department of Animal Science, Aarhus University, DK-8830, Tjele, Denmark
| | - Lotte Stroebech
- EmbryoTrans Biotech, Frederiksberg C, DK-1851, Copenhagen, Denmark
| | - Patricia K Fontes
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), Distrito de Rubião Junior s/n, Botucatu, São Paulo, 18618970, Brazil
| | - Haja N Kadarmideen
- Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, DK-8830, Tjele, Denmark
| | - Maria Pihl
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Marcelo F G Nogueira
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), Distrito de Rubião Junior s/n, Botucatu, São Paulo, 18618970, Brazil.,Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Avenida Dom Antonio, 2100, Assis, São Paulo, 19806900, Brazil
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
13
|
Bagheri D, Kazemi P, Sarmadi F, Shamsara M, Hashemi E, Daliri Joupari M, Dashtizad M. Low oxygen tension promotes invasive ability and embryo implantation rate. Reprod Biol 2018; 18:295-300. [DOI: 10.1016/j.repbio.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/08/2018] [Accepted: 05/29/2018] [Indexed: 01/05/2023]
|
14
|
Mantikou E, Jonker MJ, Wong KM, van Montfoort APA, de Jong M, Breit TM, Repping S, Mastenbroek S. Factors affecting the gene expression of in vitro cultured human preimplantation embryos. Hum Reprod 2015; 31:298-311. [PMID: 26677958 DOI: 10.1093/humrep/dev306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/20/2015] [Indexed: 01/20/2023] Open
Abstract
STUDY QUESTION What is the relative effect of common environmental and biological factors on transcriptome changes during human preimplantation development? SUMMARY ANSWER Developmental stage and maternal age had a larger effect on the global gene expression profile of human preimplantation embryos than the culture medium or oxygen concentration used in in vitro culture. WHAT IS KNOWN ALREADY Studies on mouse and bovine embryos have shown that different conditions in the in vitro culture of embryos can lead to changes in transcriptome profiles. For humans, an effect of developmental stage on the transcriptome profile of embryos has been demonstrated, but studies on the effect of maternal age or culture conditions are lacking. STUDY DESIGN, SIZE, DURATION Donated, good quality, day 4 cryopreserved human preimplantation embryos (N = 89) were randomized to be cultured in one of two culture media (G5 medium or HTF medium) and one of two oxygen concentrations (5% or 20%), with stratification for maternal age. Next to these variables, developmental stage after culture was taken into account in the analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Embryos that developed to morula or blastocyst stage during these 2 days whose amplified mRNA passed our quality control criteria for microarray hybridization were individually examined for genome-wide gene expression (N = 37). MAIN RESULTS AND THE ROLE OF CHANCE Based on the number of differentially expressed genes (DEGs), developmental stage (3519 DEGs) and maternal age (1258 DEGs) had a larger effect on the global gene expression profile of human preimplantation embryos than either tested culture medium (596 DEGs) or oxygen concentration (492 DEGs) used during in vitro culture. Interactions between the factors were found, indicating that culture conditions might have a different effect depending on the developmental stage or the maternal age of the embryos. Affected pathways included metabolism, cell cycle processes and oxidative phosphorylation. LIMITATIONS, REASONS FOR CAUTION Culture of embryos for only 2 days might have limited the effect on global gene expression by the investigated culture conditions. Earlier stages of development (Day 0 until Day 4) were not analyzed and these embryos might respond differently to the experimental conditions. The freezing and thawing procedures might have had an effect on gene expression. RT-PCR validation was not performed due to scarcity of the material. WIDER IMPLICATIONS OF THE FINDINGS Our results show that when studying gene expression in single human preimplantation embryos under various experimental conditions, one should take into account the confounding effect of biological variables, such as developmental stage and maternal age. This makes these experiments different from gene expression experiments where these variables can be tightly controlled, for example when using cell lines. STUDY FUNDING/COMPETING INTERESTS This study received no external funding and there were no competing interests.
Collapse
Affiliation(s)
- E Mantikou
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands MicroArray Department and Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences, Faculty of Science (FNWI), University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - M J Jonker
- MicroArray Department and Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences, Faculty of Science (FNWI), University of Amsterdam, 1090 GE Amsterdam, The Netherlands Netherlands Bioinformatics Center (NBIC), 6525 GA Nijmegen, The Netherlands
| | - K M Wong
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - A P A van Montfoort
- Department of Obstetrics and Gynaecology, GROW school for Oncology and Developmental Biology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - M de Jong
- MicroArray Department and Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences, Faculty of Science (FNWI), University of Amsterdam, 1090 GE Amsterdam, The Netherlands Present address: GenomeScan B.V., Plesmanlaan 1d, 2333BZ Leiden, The Netherlands
| | - T M Breit
- MicroArray Department and Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences, Faculty of Science (FNWI), University of Amsterdam, 1090 GE Amsterdam, The Netherlands Netherlands Bioinformatics Center (NBIC), 6525 GA Nijmegen, The Netherlands
| | - S Repping
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - S Mastenbroek
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Cheuquemán C, Loren P, Arias M, Risopatrón J, Felmer R, Álvarez J, Mogas T, Sánchez R. Effects of short-term exposure of mature oocytes to sodium nitroprusside on in vitro embryo production and gene expression in bovine. Theriogenology 2015; 84:1431-7. [DOI: 10.1016/j.theriogenology.2015.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 07/25/2015] [Accepted: 07/26/2015] [Indexed: 12/13/2022]
|
16
|
Amin A, Gad A, Salilew-Wondim D, Prastowo S, Held E, Hoelker M, Rings F, Tholen E, Neuhoff C, Looft C, Schellander K, Tesfaye D. Bovine embryo survival under oxidative-stress conditions is associated with activity of the NRF2-mediated oxidative-stress-response pathway. Mol Reprod Dev 2015; 81:497-513. [PMID: 25057524 DOI: 10.1002/mrd.22316] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In present study, we sought to examine the ability of preimplantation bovine embryos to activate the NF-E2-related factor 2 (NRF2)-mediated oxidative-stress response under an oxidative stress environment. In vitro 2-, 4-, 8-, 16-cell-, and blastocyst-stage embryos were cultured under low (5%) or high (20%) oxygen levels. The expression of NRF2, KEAP1 (NRF2 inhibitor), antioxidants downstream of NRF2, and genes associated with embryo metabolism were analyzed between the embryo groups using real-time quantitative PCR. NRF2 and KEAP1 protein abundance, mitochondrial activity, and accumulation of reactive oxygen species (ROS) were also investigated in blastocysts of varying competence that were derived from high- or low-oxygen levels. The expression levels of NRF2 and its downstream antioxidant genes were higher in 8-cell, 16-cell, and blastocyst stages under high oxygen tension, whereas KEAP1 expression was down-regulated under the same conditions. Higher expression of NRF2 and lower ROS levels were detected in early (competent) blastocysts compared to their late (noncompetent) counterparts in both oxygen-tension groups. Similarly, higher levels of active nuclear NRF2 protein were detected in competent blastocysts compared to their noncompetent counterparts. Thus, the survival and developmental competence of embryos cultured under oxidative stress are associated with activity of the NRF2-mediated oxidative stress response pathway during bovine pre-implantation embryo development.
Collapse
|
17
|
de los Santos MJ, Gámiz P, Albert C, Galán A, Viloria T, Pérez S, Romero JL, Remohï J. Reduced oxygen tension improves embryo quality but not clinical pregnancy rates: a randomized clinical study into ovum donation cycles. Fertil Steril 2013; 100:402-7. [DOI: 10.1016/j.fertnstert.2013.03.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/21/2013] [Accepted: 03/27/2013] [Indexed: 01/26/2023]
|
18
|
Nagai M, Hori N, Miyamoto M, Sakaguchi M, Hayakawa Y, Kawai M, Kita M, Furuya T, Imai K. Effect of co-culture with intact embryos on development of bovine separated blastomeres. Anim Sci J 2013; 84:461-5. [PMID: 23607693 DOI: 10.1111/asj.12022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 09/26/2012] [Indexed: 11/28/2022]
Abstract
To improve embryo development in bovine separated blastomeres, we evaluated applicability of co-culture with intact embryos. The morphological quality of blastocysts derived from separated blastomeres and rate of blastocyst formation were only slightly increased when the cells were co-cultured with intact embryos, which did not provide significant differences when statistically analyzed. However, the cell count of inner cell mass (ICM), trophectoderm (TE) and total number of cells in Day 8 blastocysts were significantly higher when the cells were co-cultured with the intact embryos than those with the cells cultured individually (P<0.05). Transfer of four monozygotic pairs of blastocysts derived from the cells co-cultured with intact embryos led to three pregnancies even when the blastomeres were produced by in vitro maturation and in vitro fertilization of oocytes collected by ovum pick-up from elite cows. These results suggest that co-culturing with intact embryos may enhance development of bovine separated blastomere.
Collapse
Affiliation(s)
- Makoto Nagai
- Ishikawa Prefectual livestock Research Center, Houdatsushimizu, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yoon J, Juhn KM, Ko JK, Yoon SH, Ko Y, Lee CY, Lim JH. Effects of oxygen tension and IGF-I on HIF-1α protein expression in mouse blastocysts. J Assist Reprod Genet 2013; 30:99-105. [PMID: 23232974 PMCID: PMC3553358 DOI: 10.1007/s10815-012-9902-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/21/2012] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Hypoxia inducible factors (HIFs) are key regulators of oxygen homeostasis in response to reduced oxygenation in somatic cells. In addition, HIF-1α protein can be also induced by insulin-like growth factor I (IGF-I) treatment in various cell lines under normoxic condition. However, the expression and function of HIF-1α in embryogenesis are still unclear. Therefore, the objectives of this study were to examine the expression of HIF-1α in mouse blastocysts cultured under hypoxic and normoxic conditions, and to determine whether oxygen tension and IGF-I influence embryonic development through stimulation of HIF-1α expression. METHODS Mouse embryos were cultured from the 1-cell to blastocyst stage under 5 % or 20 % O(2) in both the absence and presence of IGF-I. RESULTS The embryonic development rates to the blastocyst stage were not affected by oxygen tension or IGF-I treatment. HIF-1α protein was localized to the cytoplasm of blastocysts, and its levels were independent of oxygen concentration or IGF-I treatment. Blastocysts cultured under 5 % O(2) exhibited significantly higher total cell numbers (83.4 ± 18.1) and lower apoptotic index (3.7 ± 1.5) than those cultured under 20 % O(2) (67.4 ± 15.6) (6.9 ± 3.5) (P<0.05). IGF-I reduced the apoptotic index in both oxygen conditions, but a significant decrease was detected in the 20 % O(2) group. CONCLUSIONS HIF-1α may not be a major mediator that responds to change in oxygen tension within blastocysts, inconsistent with that of somatic cells. Supplementation of culture media with IGF-I has been shown to promote embryo development by an anti-apoptotic effect, instead of increasing HIF-1α protein expression.
Collapse
Affiliation(s)
- Jeong Yoon
- />Korea University, Anam-dong, Seongbuk-gu Seoul, 136-713 South Korea
- />Maria Research Center, 103-11, Sinseol-dong, Dongdaemun-gu, Seoul, 130-812 South Korea
| | - Kyoung-Mi Juhn
- />Maria Research Center, 103-11, Sinseol-dong, Dongdaemun-gu, Seoul, 130-812 South Korea
| | - Jin-Kyung Ko
- />Maria Research Center, 103-11, Sinseol-dong, Dongdaemun-gu, Seoul, 130-812 South Korea
| | - San-Hyun Yoon
- />Maria Research Center, 103-11, Sinseol-dong, Dongdaemun-gu, Seoul, 130-812 South Korea
| | - Yong Ko
- />Korea University, Anam-dong, Seongbuk-gu Seoul, 136-713 South Korea
| | - Chul-Young Lee
- />Gyeongnam National University of Science and Technology, 33 Dongjin-ro, Jinju-si, 660-758 South Korea
| | - Jin-Ho Lim
- />Maria Fertility Hospital, 103-11, Sinseol-dong, Dongdaemun-gu Seoul, 130-812 South Korea
| |
Collapse
|
20
|
Takahashi M. Oxidative stress and redox regulation on in vitro development of mammalian embryos. J Reprod Dev 2012; 58:1-9. [PMID: 22450278 DOI: 10.1262/jrd.11-138n] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many factors affect development of mammalian preimplantation embryos in vitro. It is well known that in vitro development of bovine embryos is highly affected by culture condition including energy source, growth factors, pH or gas environment. Many efforts have been made towards the suitable environments which can successfully support embryo development in vitro. For a rapid growth and differentiation, embryo requires energy by utilizing ATP, NADPH with oxygen molecules. These energy substrates are produced from the electron transport chain in the mitochondria. In addition to energy production, reactive oxygen species (ROS) are also generated as by-product of such energy production system. ROS production is sensitively controlled by the balance of oxidizing and reducing status and affected by several antioxidant enzymes such as superoxide dismutase (SOD), Catalase, glutathione peroxidase (GPx) or low molecular weight thiols such as glutathione (GSH). Imbalance of oxidation and reduction causes production of excess ROS, which causes the developmental arrest, physical DNA damage, apoptosis induction or lipid peroxidation. Environmental oxygen condition during embryo culture also highly affects embryo development as well as intracellular redox balance. Several studies have revealed that regulation of intra- and extra- cellular reducing environment by reducing excess ROS by using antioxidants, reducing oxygen concentration are effective for improving embryo development. Also, recent studies have demonstrated the difference in gene expression affected by oxidative stress. This review briefly summarizes the effects of ROS and the role of redox balance on preimplantation embryos for improving the efficiency of in vitro production of mammalian embryos.
Collapse
Affiliation(s)
- Masashi Takahashi
- Livestock and Grassland Research Division, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Kumamoto 861-1192, Japan.
| |
Collapse
|
21
|
Gomes Sobrinho DB, Oliveira JBA, Petersen CG, Mauri AL, Silva LFI, Massaro FC, Baruffi RLR, Cavagna M, Franco JG. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis. Reprod Biol Endocrinol 2011; 9:143. [PMID: 22044493 PMCID: PMC3229451 DOI: 10.1186/1477-7827-9-143] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/01/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Improved pregnancy, implantation, and birth rates have been reported after the use of reduced O2 concentration during embryo culture, mainly due to a reduction of the cumulative detrimental effects of reactive oxygen species. However, some studies have failed to report any positive effects. The objective of this meta-analysis was to evaluate the effect of a low-O2 environment on IVF/intracytoplasmic sperm injection (ICSI) outcomes. METHODS All available published and ongoing randomised trials that compared the effects of low (~5%; OC~5) and atmospheric (~20%; OC~20) oxygen concentrations on IVF/ICSI outcomes were included. Search strategies included online surveys of databases from 1980 to 2011. The outcomes measured were fertilisation rate, implantation rate and ongoing pregnancy rates. The fixed effects model was used to calculate the odds ratio. RESULTS Seven studies were included in this analysis. The pooled fertilisation rate did not differ significantly (P=0.54) between the group of oocytes cultured at low O2 tension and the group at atmospheric O2 tension. Concerning all cycles, the implantation (P=0.06) and ongoing pregnancy (P=0.051) rates were not significantly different between the group receiving transferred sets containing only OC~5 embryos and the group receiving transferred sets with only OC~20 embryos. In a meta-analysis performed for only those trials in which embryos were transferred on day 2/3, implantation (P=0.63) and ongoing pregnancy (P=0.19) rates were not significantly different between the groups. In contrast, when a meta-analysis was performed using only trials in which embryos were transferred on days 5 and 6 (at the blastocyst stage), the group with transferred sets of only OC~5 embryos showed a statistically significantly higher implantation rate (P=0.006) than the group receiving transferred sets with only OC~20 embryos, although the ongoing pregnancy (P=0.19) rates were not significantly different between the groups. CONCLUSIONS Despite some promising results, it seems too early to conclude that low O2 culture has an effect on IVF outcome. Additional randomised controlled trials are necessary before evidence-based recommendations can be provided. It should be emphasised that the present meta-analysis does not provide any evidence that low oxygen concentration is unnecessary.
Collapse
Affiliation(s)
- David B Gomes Sobrinho
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, Brazil
| | - Joao Batista A Oliveira
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, Brazil
- Center for Human Reproduction Prof Franco Jr, Ribeirao Preto, Brazil
- Paulista Centre for Diagnosis, Research and Training, Ribeirao Preto, Brazil
| | - Claudia G Petersen
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, Brazil
- Center for Human Reproduction Prof Franco Jr, Ribeirao Preto, Brazil
- Paulista Centre for Diagnosis, Research and Training, Ribeirao Preto, Brazil
| | - Ana L Mauri
- Center for Human Reproduction Prof Franco Jr, Ribeirao Preto, Brazil
- Paulista Centre for Diagnosis, Research and Training, Ribeirao Preto, Brazil
| | - Liliane FI Silva
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, Brazil
- Center for Human Reproduction Prof Franco Jr, Ribeirao Preto, Brazil
- Paulista Centre for Diagnosis, Research and Training, Ribeirao Preto, Brazil
| | - Fabiana C Massaro
- Center for Human Reproduction Prof Franco Jr, Ribeirao Preto, Brazil
- Paulista Centre for Diagnosis, Research and Training, Ribeirao Preto, Brazil
| | - Ricardo LR Baruffi
- Center for Human Reproduction Prof Franco Jr, Ribeirao Preto, Brazil
- Paulista Centre for Diagnosis, Research and Training, Ribeirao Preto, Brazil
| | - Mario Cavagna
- Center for Human Reproduction Prof Franco Jr, Ribeirao Preto, Brazil
- Paulista Centre for Diagnosis, Research and Training, Ribeirao Preto, Brazil
- Women's Health Reference Center, Hospital Perola Byington, Sao Paulo, Brazil
| | - José G Franco
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, Brazil
- Center for Human Reproduction Prof Franco Jr, Ribeirao Preto, Brazil
- Paulista Centre for Diagnosis, Research and Training, Ribeirao Preto, Brazil
| |
Collapse
|
22
|
Romek M, Gajda B, Rolka M, Smorąg Z. Mitochondrial Activity and Morphology in Developing Porcine Oocytes and Pre-implantation Non-Cultured and Cultured Embryos. Reprod Domest Anim 2010; 46:471-80. [DOI: 10.1111/j.1439-0531.2010.01691.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod 2008; 14:667-72. [PMID: 19019836 PMCID: PMC2639445 DOI: 10.1093/molehr/gan065] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This review examines the 'Quiet Embryo Hypothesis' which proposes that viable preimplantation embryos operate at metabolite or nutrient turnover rates distributed within lower ranges than those of their less viable counterparts. The 'quieter' metabolism consistent with this hypothesis is considered in terms of (i) 'functional' quietness; the contrasting levels of intrinsic metabolic activity in different cell types as a consequence of their specialized functions, (ii) inter-individual embryo/cell differences in metabolism and (iii) loss of quietness in response to environmental stress. Data are reviewed which indicate that gametes and early embryos function in vivo at a lower temperature than core body temperature, which could encourage the expression of a quiet metabolism. We call for research to determine the optimum temperature for mammalian gamete/embryo culture. The review concludes by examining the key role of reactive oxygen species, which can induce molecular damage, trigger a cellular stress response and lead to a loss of quietness.
Collapse
Affiliation(s)
- Henry J Leese
- Department of Biology (Area 3) and Hull York Medical School, University of York, Heslington, York YO10 5DD, UK.
| | | | | | | | | |
Collapse
|
24
|
Sturmey RG, Hawkhead JA, Barker EA, Leese HJ. DNA damage and metabolic activity in the preimplantation embryo. Hum Reprod 2008; 24:81-91. [PMID: 18835872 DOI: 10.1093/humrep/den346] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Embryos with greater viability have a lower or 'quieter' amino acid metabolism than those which arrest. We have hypothesized this is due to non-viable embryos possessing greater cellular/molecular damage and consuming more nutrients, such as amino acids for repair processes. We have tested this proposition by measuring physical damage to DNA in bovine, porcine and human embryos at the blastocyst stage and relating the data to amino acid profiles during embryo development. METHODS Amino acid profiles of in vitro-derived porcine and bovine blastocysts were measured by high-performance liquid chromatography and the data related retrospectively to DNA damage in each individual blastomere using a modified alkaline comet assay. Amino acid profiles of spare human embryos on Day 2-3 were related to DNA damage at the blastocyst stage. RESULTS A positive correlation between amino acid turnover and DNA damage was apparent when each embryo was examined individually; a relationship exhibited by all three species. There was no relationship between DNA damage and embryo grade. CONCLUSIONS Amino acid profiling of single embryos can provide a non-invasive marker of DNA damage at the blastocyst stage. The data are consistent with the quiet embryo hypothesis with viable embryos (lowest DNA damage) having the lowest amino acid turnover. Moreover, these data support the notion that metabolic profiling, in terms of amino acids, might be used to select single embryos for transfer in clinical IVF.
Collapse
Affiliation(s)
- Roger G Sturmey
- Biology Department (Area 3), University of York, York YO10 5YW, UK.
| | | | | | | |
Collapse
|
25
|
de Castro e Paula LA, Hansen PJ. Modification of actions of heat shock on development and apoptosis of cultured preimplantation bovine embryos by oxygen concentration and dithiothreitol. Mol Reprod Dev 2008; 75:1338-50. [PMID: 18246528 DOI: 10.1002/mrd.20866] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preimplantation embryos exposed to elevated temperatures have reduced developmental competence. The involvement of reactive oxygen species in these effects has been controversial. Here we tested hypotheses that (1) heat shock effects on development and apoptosis would be greater when embryos were cultured in a high oxygen environment (air; oxygen concentration = approximately 20.95%, v/v) than in a low oxygen environment (5% oxygen) and (2) that these effects would be reversed by addition of the antioxidant dithiothreitol (DTT). Heat shock of 41 degrees C for 9 hr reduced development of two-cell embryos and Day 5 embryos to the blastocyst stage embryos when in high oxygen. There was no effect of heat shock on development when embryos were in low oxygen. Furthermore, induction of TUNEL-positive cells in Day 5 embryos by heat shock only occurred when embryos were in high oxygen. Addition of DTT to two-cell embryos either did not reduce effects of a heat shock of 41 degrees C for 15 hr on development or caused slight protection only. In contrast, treatment of Day 5 embryos with DTT reduced effects of heat shock on development and apoptosis. In summary, oxygen tension was shown to be a major determinant of the effects of heat shock on development and apoptosis in preimplantation bovine embryos. Protective effects of the antioxidant DTT were stage specific and more pronounced at later stages of development.
Collapse
|
26
|
Agarwal A, Gupta S, Sekhon L, Shah R. Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:1375-403. [PMID: 18402550 DOI: 10.1089/ars.2007.1964] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Physiological levels of reactive oxygen species (ROS) play an important regulatory role through various signaling transduction pathways in folliculogenesis, oocyte maturation, endometrial cycle, luteolysis, implantation, embryogenesis, and pregnancy. Persistent and elevated generation of ROS leads to a disturbance of redox potential that in turn causes oxidative stress (OS). Our literature review captures the role of ROS in modulating a range of physiological functions and pathological processes affecting the female reproductive life span and even thereafter (i.e., menopause). The role of OS in female reproduction is becoming increasingly important, as recent evidence suggest that it plays a part in conditions such as polycystic ovarian disease, endometriosis, spontaneous abortions, preeclampsia, hydatidiform mole, embryopathies, preterm labor, and intrauterine growth retardation. OS has been implicated in different reproductive scenarios and is detrimental to both natural and assisted fertility. Many extrinsic and intrinsic conditions exist in assisted reproduction settings that can be tailored to reduce the toxic effects of ROS. Laboratory personnel should avoid procedures that are known to be deleterious, especially when safer procedures that can prevent OS are available. Although antioxidants such as folate, zinc, and thiols may help enhance fertility, the available data are contentious and must be evaluated in controlled studies with larger populations.
Collapse
Affiliation(s)
- Ashok Agarwal
- Reproductive Research Center, Department of Obstetrics and Gynecology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
Bovine in vitro embryo production is an inefficient process; while maturation and fertilization proceed apparently normally, the proportion of embryos reaching the transferable (blastocyst) stage is rarely over 40% and those that do reach this stage are often compromised in quality and competence. There is considerable evidence of a significant influence of follicular origin on oocyte developmental potential and it appears that once the oocyte is removed from the follicle its developmental capacity is capped. Evidence suggests that while culture conditions during bovine in vitro embryo production can impact somewhat the developmental potential of the early embryo, the intrinsic quality of the oocyte is the key factor determining the proportion of oocytes developing to the blastocyst stage. This paper highlights some of the problems associated with in vitro production of embryos and discusses some of the ways of overcoming these problems.
Collapse
|
28
|
Abstract
Currently, relatively little is known regarding the protein production of mammalian embryos. Unlike the genome, the proteome itself is dynamic reflecting both internal and external environmental stimuli. Until now the lack of sensitivity has remained a stumbling block for the global introduction of proteomics into the field of mammalian embryology. However, new developments in mass spectrometry have been revolutionary, utilizing protein profiling and peptide sequencing to elucidate underlying biological processes. The sensitivity of these platforms have allowed for the development of new protocols that are capable of profiling the proteome of individual mammalian oocytes and embryos. This information is fundamental to unravelling the complexity of embryo physiology including the dialogue between the developing embryo and its maternal environment. Such proteomic approaches are also assisting in the optimization of ART techniques, including oocyte cryopreservation and in vitro maturation. Embryo selection for transfer is another area of ART that should benefit in this era of proteomics. Currently, mammalian embryos are selected for transfer based on morphological grading systems. Although of great value, analysis of morphology alone cannot determine the embryo's physiological state or chromosomal complement. Subsequently, there is a need to identify in culture those embryos with the highest implantation potential. Proteomic analysis of the embryonic secretome (proteins produced by the embryo and secreted into the surrounding medium) followed by the identification of specific proteins critical for implantation, may lead to the development of a non-invasive viability assay to assist in the selection of embryos for transfer.
Collapse
Affiliation(s)
- M G Katz-Jaffe
- Colorado Center for Reproductive Medicine, 799 E Hampden Avenue, Suite 520, Englewood, CO 80113, USA.
| | | |
Collapse
|
29
|
Wrenzycki C, Herrmann D, Niemann H. Messenger RNA in oocytes and embryos in relation to embryo viability. Theriogenology 2007; 68 Suppl 1:S77-83. [PMID: 17524469 DOI: 10.1016/j.theriogenology.2007.04.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Messenger RNA (mRNA) expression techniques have become a powerful tool to analyze the relative abundance of transcripts related to oocyte and/or embryo quality. Numerous efforts to identify candidate genes for the developmental competence of bovine oocytes and embryos have been made employing different strategies. The preimplantation bovine embryo is initially under the control of maternal genomic information that is accumulated during oogenesis. Soon, the genetic program of development becomes dependent upon new transcripts derived from activation of the embryonic genome. The early steps in development including maturation, fertilization, timing of first cleavage, activation of the embryonic genome, compaction, and blastocyst formation can be affected by the culture media and conditions as well as the production procedure itself. These perturbations can possibly result in a dramatic decrease of the quality of the resulting blastocysts, and may even affect the viability of offspring born after transfer.
Collapse
Affiliation(s)
- C Wrenzycki
- Institute for Animal Breeding (FAL), Department of Biotechnology, Mariensee, 31535 Neustadt, Germany.
| | | | | |
Collapse
|
30
|
Balasubramanian S, Son WJ, Kumar BM, Ock SA, Yoo JG, Im GS, Choe SY, Rho GJ. Expression pattern of oxygen and stress-responsive gene transcripts at various developmental stages of in vitro and in vivo preimplantation bovine embryos. Theriogenology 2007; 68:265-75. [PMID: 17559922 DOI: 10.1016/j.theriogenology.2007.05.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 05/02/2007] [Indexed: 01/28/2023]
Abstract
The present study examined the expression pattern of oxygen (O(2)) and stress-responsive gene transcripts at various preimplantation developmental stages of in vitro produced (IVP) and in vivo derived (IVD) bovine embryos. Embryos were produced in vitro from oocytes matured, fertilized and cultured in synthetic oviductal fluid (SOF) medium under low (5%) and high (20%) O(2) concentrations. In vivo embryos were derived from 18 superovulated and artificially inseminated cows. In IVP and IVD groups, embryos were collected at 2-, 4-, 8-, 16-cell morula and blastocyst stages at specific time points for gene expression analysis. The cleavage rates (69.8+/-4.8%) did not differ significantly, but blastocyst rates were significantly higher (28.5+/-3.7%) in low O(2) than those in high O(2) group (18.7+/-3.9%). Mean cell number in low O(2) (145+/-12) and high O(2) (121+/-73) IVP blastocyst were lower (P<0.05) than those of IVD blastocyst (223+/-25). The ICM ratio of IVD blastocyst (26+/-4) was lower (P<0.05) than that of IVP embryos under 5% O(2) (33+/-5) and 20% O(2) (34+/-4) concentrations, respectively. Using real time PCR, for the set of target transcripts (Glut1, Glut5, Sox, G6PD, MnSOD, PRDX5, NADH and Hsp 70.1) analyzed, there were differences in the mRNA expression pattern at 2-, 4-, 8-, 16-cell morula and Day 7 blastocyst stages between the two embryo sources. It can be concluded that, although in vitro bovine embryo culture in SOF medium under low (5%) O(2) concentration provided a more conducive environment in terms of blastocyst formation; differences in the total cell number and gene expression pattern between the IVP and IVD embryos reflected the effect of O(2) concentration.
Collapse
Affiliation(s)
- S Balasubramanian
- College of Veterinary Medicine, Gyeongsang National University, 900 Gazwa, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Harvey AJ, Kind KL, Thompson JG. Regulation of gene expression in bovine blastocysts in response to oxygen and the iron chelator desferrioxamine. Biol Reprod 2007; 77:93-101. [PMID: 17329595 DOI: 10.1095/biolreprod.106.058826] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Low (2%) oxygen conditions during postcompaction culture of bovine blastocysts improve embryo quality and are associated with small increases in the expression of glucose transporter 1 (SLC2A1), anaphase promoting complex (ANAPC1), and myotrophin (MTPN), suggesting a role for oxygen in the regulation of embryo development, mediated through oxygen-sensitive gene expression. However, bovine embryos, to at least the blastocyst stage, lack detectable levels of the key regulator of oxygen-sensitive gene expression, hypoxia-inducible 1 alpha (HIF1A), while the less well-characterized HIF2 alpha protein is readily detectable. Here we report that other key HIF1 regulated genes are not significantly altered in their expression pattern in bovine blastocysts in response to reduced oxygen concentrations postcompaction-with the exception of lactate dehydrogenase A (LDHA), which was significantly increased following 2% oxygen culture. Antioxidant enzymes have been suggested as potential HIF2 target genes, but their expression was not altered following low-oxygen culture in the bovine blastocyst. The addition of desferrioxamine (an iron chelator and inducer of HIF-regulated gene expression) during postcompaction stages significantly increased SLC2A1, LDHA, inducible nitric oxide synthase (NOS2A), and MTPN gene expression in bovine blastocysts, although development to the blastocyst stage was not significantly affected. These results further suggest that expression of genes, known to be regulated by oxygen via HIF-1 in somatic cells, is not influenced by oxygen during preimplantation postcompaction bovine embryo development. Oxygen-regulated expression of LDHA and SLC2A1 in bovine blastocysts suggests that regulation of these genes may be mediated by HIF2. Furthermore, the effect of a reduced-oxygen environment on gene expression can be mimicked in vitro through the use of desferrioxamine. These results further support our data that the bovine blastocyst stage embryo is unique in its responsiveness to oxygen compared with somatic cells, in that the lack of HIF1-mediated gene expression reduces the overall response to low (physiological) oxygen environments, which appear to favor development.
Collapse
Affiliation(s)
- A J Harvey
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynecology, Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | |
Collapse
|
32
|
Abstract
The long-term effects of in vitro embryo culture on animal health are presently unknown, however, current knowledge directs investigations toward understanding the mechanisms involved in regulating embryo development. In vitro culture is known to have short-term effects, particularly on gene expression and metabolism at the blastocyst stage, while large offspring syndrome is commonly observed following transfer of in vitro produced bovine embryos. Indeed, it is likely that the environment surrounding the early embryo, prior to implantation, may program later development. Regulation of gene expression and metabolism, through gene activation, is mediated by transcription factors, which are themselves controlled by internal and external factors. Alterations in the surrounding environment during preimplantation embryo development, such as that which occurs with inadequate developmental 'support' during in vitro culture, may modify the activation, or inactivation, of several transcription factors, and may therefore have long-term consequences for the developing offspring. In vitro culture deviates from in vivo conditions in many respects, but one of the critical factors that is generally not considered is the oxygen tension under which embryos are cultured. Numerous studies have demonstrated that atmospheric oxygen conditions during culture have detrimental effects on embryo development. While it is generally believed that this arises from the production of reactive oxygen species, this presents an over-simplistic view of the role of oxygen during development. The hypoxia-inducible factor transcription factor family is involved in the responses of cells to alterations in external oxygen concentrations, regulating the expression of numerous genes. Alterations in expression of some of these genes have been highlighted by recent studies in the bovine embryo, implicating oxygen as a regulator of several cellular and metabolic pathways. While it is clear that oxygen plays a role during embryo development, further work to investigate interactions between oxygen and other signaling pathways such as pH and Ca(2+), mitochondria and metabolism is required, as well as exposure of embryos at different time points, to determine the mechanisms that control preimplantation development, the interactions of a range of stimuli and to establish culture procedures that support optimal development and minimize risks to health. This review focuses largely on work undertaken in ruminant models, with brief references to other species.
Collapse
Affiliation(s)
- A J Harvey
- Department of Biological Sciences, University of New Orleans, 2045 Lakeshore Drive, New Orleans, LA 70122, USA.
| |
Collapse
|