1
|
Ramirez-Diaz J, Cenadelli S, Bornaghi V, Bongioni G, Montedoro SM, Achilli A, Capelli C, Rincon JC, Milanesi M, Passamonti MM, Colli L, Barbato M, Williams JL, Marsan PA. Identification of genomic regions associated with total and progressive sperm motility in Italian Holstein bulls. J Dairy Sci 2023; 106:407-420. [PMID: 36400619 DOI: 10.3168/jds.2021-21700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Sperm motility is directly related to the ability of sperm to move through the female reproductive tract to reach the ovum. Sperm motility is a complex trait that is influenced by environmental and genetic factors and is associated with male fertility, oocyte penetration rate, and reproductive success of cattle. In this study we carried out a GWAS in Italian Holstein bulls to identify candidate regions and genes associated with variations in progressive and total motility (PM and TM, respectively). After quality control, the final data set consisted of 5,960 records from 949 bulls having semen collected in 10 artificial insemination stations and genotyped at 412,737 SNPs (call rate >95%; minor allele frequency >5%). (Co)variance components were estimated using single trait mixed models, and associations between SNPs and phenotypes were assessed using a genomic BLUP approach. Ten windows that explained the greatest percentage of genetic variance were located on Bos taurus autosomes 1, 2, 4, 6, 7, 23, and 26 for TM and Bos taurus autosomes 1, 2, 4, 6, 8, 16, 23, and 26 for PM. A total of 150 genes for TM and 72 genes for PM were identified within these genomic regions. Gene Ontology enrichment analyses identified significant Gene Ontology terms involved with energy homeostasis, membrane functions, sperm-egg interactions, protection against oxidative stress, olfactory receptors, and immune system. There was significant enrichment of quantitative trait loci for fertility, calving ease, immune response, feed intake, and carcass weight within the candidate windows. These results contribute to understanding the architecture of the genetic control of sperm motility and may aid in the development of strategies to identify subfertile bulls and improve reproductive success.
Collapse
Affiliation(s)
- J Ramirez-Diaz
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122; Institute of Agricultural Biology and Biotechnology (IBBA), Consiglio Nazionale di Ricerca, Milano, Italy.
| | - S Cenadelli
- Institute Lazzaro Spallanzani, Rivolta d'Adda (CR), Cremona, Italy
| | - V Bornaghi
- Institute Lazzaro Spallanzani, Rivolta d'Adda (CR), Cremona, Italy
| | - G Bongioni
- Institute Lazzaro Spallanzani, Rivolta d'Adda (CR), Cremona, Italy
| | - S M Montedoro
- Institute Lazzaro Spallanzani, Rivolta d'Adda (CR), Cremona, Italy
| | - A Achilli
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - C Capelli
- Department of Chemical, Life and Environmental Sustainability Sciences, Università degli Studi di Parma, Parma, Italy
| | - J C Rincon
- Department of Animal Science, Universidad Nacional de Colombia, Palmira, Valle del Cauca, Colombia
| | - M Milanesi
- Department for Innovation in Biological, Agri-food and Forestry Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - M M Passamonti
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| | - L Colli
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| | - M Barbato
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| | - J L Williams
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| | - P Ajmone Marsan
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy 29122
| |
Collapse
|
2
|
Min X, Zhu Y, Hu Y, Yang M, Yu H, Xiong Y, Fu W, Li J, Matsuda F, Xiong X. Analysis of PPP1R11 expression in granulosa cells during developmental follicles of yak and its effects on cell function. Reprod Domest Anim 2023; 58:129-140. [PMID: 36178063 DOI: 10.1111/rda.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 01/07/2023]
Abstract
The aims of this study were to analyse the protein phosphatase 1 regulatory subunit 11 (PPP1R11) expression and cellular localization in yak follicles and investigate its effects on cell proliferation, apoptosis and oestrogen secretion in granulosa cells (GCs). Ten healthy and non-pregnant female yaks (4-year-old) were used as experimental animals. The mRNA relative expression level of PPP1R11 in GCs from small (<3.0 mm), medium (3.0-5.9 mm) and large (6.0-9.0 mm) follicles was detected by RT-qPCR, and the cellular localization of PPP1R11 protein was detected by immunohistochemistry staining (IHC). After isolation, culture and identification of yak GCs in vitro, si-PPP1R11 and si-NC (negative control) were transfected into GCs. RT-qPCR and immunofluorescence staining were used to evaluate the interference efficiency, and ELISA was performed to detect oestrogen concentration. Then, EdU staining and TUNEL staining were conducted to analyse cell proliferation and apoptosis. In addition, the oestrogen synthesis, proliferation- and apoptosis-related genes were detected by RT-qPCR after knockdown PPP1R11. The results showed that PPP1R11 is mainly located in ovarian GCs, and the expression levels of PPP1R11 in GCs from large follicles were significantly higher than that from medium and small follicles. Transfection of si-PPP1R11 into GCs could significantly inhibit the expression of PPP1R11. Interestingly, the oestrogen secretion ability and the expression level of oestrogen pathway-related genes (STAR, CYP11A1, CYP19A1 and HSD17B1) were also significantly downregulated. Moreover, the proportion of positive cells was decreased, and cellular proliferation-related genes (PCNA, CCNB1 and CDC25A) were significantly downregulated after knockdown PPP1R11. However, the proportion of apoptotic cells was increased, and apoptosis-related genes (BAX, CASP3 and P53) were significantly upregulated. Taken together, this study was the first revealed the expression and cellular localization of PPP1R11 in yak follicles. Interference PPP1R11 could reduce oestrogen secretion, inhibit proliferation and promote apoptosis in GCs, which provided a basis for further studies on the regulatory mechanism of PPP1R11 in follicle development.
Collapse
Affiliation(s)
- Xingyu Min
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yanjin Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yulei Hu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Manzhen Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Hailing Yu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Fuko Matsuda
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| |
Collapse
|
3
|
Xiong X, Min X, Yu H, Fei X, Zhu Y, Pan B, Xiong Y, Fu W, Li J. MicroRNA-34b-5p targets PPP1R11 to inhibit proliferation and promote apoptosis in cattleyak Sertoli cells by regulating specific signaling pathways. Theriogenology 2022; 194:46-57. [DOI: 10.1016/j.theriogenology.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
4
|
Lindholm A, Sutter A, Künzel S, Tautz D, Rehrauer H. Effects of a male meiotic driver on male and female transcriptomes in the house mouse. Proc Biol Sci 2019; 286:20191927. [PMID: 31718496 PMCID: PMC6892043 DOI: 10.1098/rspb.2019.1927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023] Open
Abstract
Not all genetic loci follow Mendel's rules, and the evolutionary consequences of this are not yet fully known. Genomic conflict involving multiple loci is a likely outcome, as restoration of Mendelian inheritance patterns will be selected for, and sexual conflict may also arise when sexes are differentially affected. Here, we investigate effects of the t haplotype, an autosomal male meiotic driver in house mice, on genome-wide gene expression patterns in males and females. We analysed gonads, liver and brain in adult same-sex sibling pairs differing in genotype, allowing us to identify t-associated differences in gene regulation. In testes, only 40% of differentially expressed genes mapped to the approximately 708 annotated genes comprising the t haplotype. Thus, much of the activity of the t haplotype occurs in trans, and as upregulation. Sperm maturation functions were enriched among both cis and trans acting t haplotype genes. Within the t haplotype, we observed more downregulation and differential exon usage. In ovaries, liver and brain, the majority of expression differences mapped to the t haplotype, and were largely independent of the differences seen in the testis. Overall, we found widespread transcriptional effects of this male meiotic driver in the house mouse genome.
Collapse
Affiliation(s)
- Anna Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andreas Sutter
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Goswami S, Korrodi-Gregório L, Sinha N, Bhutada S, Bhattacharjee R, Kline D, Vijayaraghavan S. Regulators of the protein phosphatase PP1γ2, PPP1R2, PPP1R7, and PPP1R11 are involved in epididymal sperm maturation. J Cell Physiol 2018; 234:3105-3118. [PMID: 30144392 DOI: 10.1002/jcp.27130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
The serine/threonine protein phosphatase 1 (PP1) inhibitors PPP1R2, PPP1R7, and PPP1R11 are evolutionarily ancient and highly conserved proteins. Four PP1 isoforms, PP1α, PP1β, PP1γ1, and PP1γ2, exist; three of them except PP1γ2 are ubiquitous. The fact that PP1γ2 isoform is present only in mammalian testis and sperm led to the notion that isoform-specific regulators for PP1γ2 in sperm may be responsible for its function. In this report, we studied these inhibitors, PPP1R2, R7, and R11, to determine their spatial and temporal expression in testis and their regulatory functions in sperm. We show that, similar to PP1γ2, the three inhibitors are expressed at high levels in developing spermatogenic cells. However, the transcripts for the regulators are expressed as unique sizes in testis compared with somatic tissues. The three regulators share localization with PP1γ2 in the head and the principal piece of sperm. We show that the association of inhibitors to PP1γ2 changes during epididymal sperm maturation. In immotile caput epididymal sperm, PPP1R2 and PPP1R7 are not bound to PP1γ2, whereas in motile caudal sperm, all three inhibitors are bound as heterodimers or heterotrimers. In caudal sperm from male mice lacking sAC and glycogen synthase kinase 3, where motility and fertility are impaired, the association of PP1γ2 to the inhibitors resembles immature caput sperm. Changes in the association of the regulators with PP1γ2, due to their phosphorylation, are part of biochemical mechanisms responsible for the development of motility and fertilizing ability of sperm during their passage through the epididymis.
Collapse
Affiliation(s)
- Suranjana Goswami
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Luís Korrodi-Gregório
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Nilam Sinha
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Sumit Bhutada
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | |
Collapse
|
6
|
Korrodi-Gregório L, Esteves SLC, Fardilha M. Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins. Transl Res 2014; 164:366-91. [PMID: 25090308 DOI: 10.1016/j.trsl.2014.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 01/21/2023]
Abstract
The coordinated and reciprocal action of serine-threonine protein kinases and protein phosphatases produces transitory phosphorylation, a fundamental regulatory mechanism for many biological processes. Phosphoprotein phosphatase 1 (PPP1), a major serine-threonine phosphatase, in particular, is ubiquitously distributed and regulates a broad range of cellular functions, including glycogen metabolism, cell cycle progression, and muscle relaxation. PPP1 has evolved effective catalytic machinery but in vitro lacks substrate specificity. In vivo, its specificity is achieved not only by the existence of different PPP1 catalytic isoforms, but also by binding of the catalytic moiety to a large number of regulatory or targeting subunits. Here, we will address exhaustively the existence of diverse PPP1 catalytic isoforms and the relevance of their specific partners and consequent functions.
Collapse
Affiliation(s)
- Luís Korrodi-Gregório
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Sara L C Esteves
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
7
|
Li G, Peñagaricano F, Weigel K, Zhang Y, Rosa G, Khatib H. Comparative genomics between fly, mouse, and cattle identifies genes associated with sire conception rate. J Dairy Sci 2012; 95:6122-9. [DOI: 10.3168/jds.2012-5591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/12/2012] [Indexed: 02/06/2023]
|
8
|
Fardilha M, Esteves SLC, Korrodi-Gregório L, Pelech S, da Cruz E Silva OAB, da Cruz E Silva E. Protein phosphatase 1 complexes modulate sperm motility and present novel targets for male infertility. Mol Hum Reprod 2011; 17:466-77. [PMID: 21257602 DOI: 10.1093/molehr/gar004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Infertility is a growing concern in modern society, with 30% of cases being due to male factors, namely reduced sperm concentration, decreased motility and abnormal morphology. Sperm cells are highly compartmentalized, almost devoid of transcription and translation consequently processes such as protein phosphorylation provide a key general mechanism for regulating vital cellular functions, more so than for undifferentiated cells. Reversible protein phosphorylation is the principal mechanism regulating most physiological processes in eukaryotic cells. To date, hundreds of protein kinases have been identified, but significantly fewer phosphatases (PPs) are responsible for counteracting their action. This discrepancy can be explained in part by the mechanism used to control phosphatase activity, which is based on regulatory interacting proteins. This is particularly true for PP1, a major serine/threonine-PP, for which >200 interactors (PP1 interacting proteins-PIPs) have been indentified that control its activity, subcellular location and substrate specificity. For PP1, several isoforms have been described, among them PP1γ2, a testis/sperm-enriched PP1 isoform. Recent findings support our hypothesis that PP1γ2 is involved in the regulation of sperm motility. This review summarizes the known sperm-specific PP1-PIPs, involved in the acquisition of mammalian sperm motility. The complexes that PP1 routinely forms with different proteins are addressed and the role of PP1/A-kinase anchoring protein complexes in sperm motility is considered. Furthermore, the potential relevance of targeting PP1-PIPs complexes to infertility diagnostics and therapeutics as well as to male contraception is also discussed.
Collapse
Affiliation(s)
- Margarida Fardilha
- Signal Transduction Laboratory, Centre for Cell Biology, Health Sciences Department and Biology Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
9
|
Ziegler A, Santos PSC, Kellermann T, Uchanska-Ziegler B. Self/nonself perception, reproduction and the extended MHC. SELF NONSELF 2010; 1:176-191. [PMID: 21487476 DOI: 10.4161/self.1.3.12736] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 01/01/2023]
Abstract
Self/nonself perception governs mate selection in most eukaryotic species. It relies on a number of natural barriers that act before, during and after copulation. These hurdles prevent a costly investment into an embryo with potentially suboptimal genetic and immunological properties and aim at discouraging fertilization when male and female gametes exhibit extensive sharing of alleles. Due to the fact that several genes belonging to the extended major histocompatibility complex (xMHC) carry out crucial immune functions and are the most polymorphic within vertebrate genomes, it is likely that securing heterozygosity and the selection of rare alleles within this gene complex contributes to endowing the offspring with an advantage in fighting infections. Apart from MHC class I and II antigens, the products of several other genes within the xMHC are candidates for participating in mate choice, especially since the respective loci are subject to long-range linkage disequilibrium which may aid to preserve functionally connected alleles within a given haplotype. Among these loci are polymorphic odorant receptor genes that are expressed not only in the olfactory epithelium, but also within male reproductive tissues. They may thus not only be of importance in olfaction-influenced mate choice, by recognizing MHC-dependent individual-specific olfactory signals, but could also guide spermatozoa along chemical gradients to their target, the oocyte. By focusing on the human HLA complex and genes within its vicinity, we show here that the products of several xMHC-specified molecules might be involved in self/nonself perception during reproduction. Although the molecular details are often unknown, the existence of highly diverse, yet intertwined pre- and post-copulatory barriers suggests that xMHC-encoded proteins may be important for various stages of mate choice, germ cell development, as well as embryonic and foetal life in mammals and other vertebrates. Many of these genes should thus be regarded as crucial not only within the immune system, but also in reproduction.
Collapse
Affiliation(s)
- Andreas Ziegler
- Institut für Immungenetik; Charité-Universitätsmedizin Berlin; Campus Benjamin Franklin; Freie Universität Berlin; Berlin, Germany
| | | | | | | |
Collapse
|
10
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 2010; 73:409-94. [PMID: 19941291 DOI: 10.1002/jemt.20786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
11
|
Cheng L, Pilder S, Nairn AC, Ramdas S, Vijayaraghavan S. PP1gamma2 and PPP1R11 are parts of a multimeric complex in developing testicular germ cells in which their steady state levels are reciprocally related. PLoS One 2009; 4:e4861. [PMID: 19300506 PMCID: PMC2654099 DOI: 10.1371/journal.pone.0004861] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/06/2009] [Indexed: 01/10/2023] Open
Abstract
Mice lacking the protein phosphatase 1 gamma isoforms, PP1gamma1 and PP1gamma2, are male-sterile due to defective germ cell morphogenesis and apoptosis. However, this deficiency causes no obvious abnormality in other tissues. A biochemical approach was employed to learn how expression versus deficiency of PP1gamma2, the predominant PP1 isoform in male germ cells, affects spermatogenesis. Methods used in this study include column chromatography, western blot and northern blot analyses, GST pull-down assays, immunoprecipitation, non-denaturing gel electrophoresis, phosphatase enzyme assays, protein sequencing, and immunohistochemistry. We report for the first time that in wild-type testis, PP1gamma2 forms an inactive complex with actin, protein phosphatase 1 regulatory subunit 7 (PPP1R7), and protein phosphatase 1 regulatory subunit 11 (PPP1R11), the latter, a potent PP1 inhibitor. Interestingly, PPP1R11 protein, but not its mRNA level, falls significantly in PP1gamma-null testis where mature sperm are virtually absent. Conversely, both mature sperm numbers and the PPP1R11 level increase substantially in PP1gamma-null testis expressing transgenic PP1gamma2. PPP1R11 also appears to be ubiquitinated in PP1gamma-null testis. The levels of PP1gamma2 and PPP1R11 were increased in phenotypically normal PP1alpha-null testis. However, in PP1alpha-null spleen, where PP1gamma2 normally is not expressed, PPP1R11 levels remained unchanged. Our data clearly show a direct reciprocal relationship between the levels of the protein phosphatase isoform PP1gamma2 and its regulator PPP1R11, and suggest that complex formation between these polypeptides in testis may prevent proteolysis of PPP1R11 and thus, germ cell apoptosis.
Collapse
Affiliation(s)
- Lina Cheng
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Stephen Pilder
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Angus C. Nairn
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States of America
| | - Shandilya Ramdas
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Srinivasan Vijayaraghavan
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail:
| |
Collapse
|
12
|
Han Y, Song XX, Feng HL, Cheung CK, Lam PM, Wang CC, Haines CJ. Mutations of t-complex testis expressed gene 5 transcripts in the testis of sterile t-haplotype mutant mouse. Asian J Androl 2008; 10:219-26. [DOI: 10.1111/j.1745-7262.2008.00323.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Han Y, Haines CJ, Feng HL. Role(s) of the serine/threonine protein phosphatase 1 on mammalian sperm motility. ACTA ACUST UNITED AC 2007; 53:169-77. [PMID: 17852041 DOI: 10.1080/01485010701314032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mammalian spermatozoa acquire the capacity for motility and fertilization during the transit through the epididymis under the control of different factors, such as cAMP, intracellular pH, intracellular calcium and phosphorylation of sperm proteins. As the acquisition of functional competence including gaining motility during epididymal transit occurs in the complete absence of contemporaneous gene transcription and translation on the part of the spermatozoa, it is widely accepted that post-translational modifications are the only means by which spermatozoa can acquire functionality. Serine-threonine protein phosphatase 1 (PP1) together with their testis/sperm-specific interacting proteins might be involved in this regulatory mechanism. PP1alpha, PP1beta/delta, PP1gamma1 and PP1gamma2 are all expressed in the testis whereas PP1gamma2 is the only isoform expressed on spermatozoa. I2, I3, sds22, 14-3-3 and hsp90 are associated with PP1gamma2 in spermatozoa located on the sperm head and tail. Activity of PP1gamma2 and the binding pattern to these regulatory proteins changes in spermatozoa recruited from the caput and those from the cauda part of the epididymis. In this review, we summarize the possible roles of PP1 on spermatozoa during spermatogenesis and flagellar motility control. We suggest that PP1 might take part in the inhibition of the sperm motility activation by interacting with AKAPs and CAMKII. A hypothesized signaling pathway of mammalian sperm motility activation and PP1's function has been proposed.
Collapse
Affiliation(s)
- Yibing Han
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, SAR, China.
| | | | | |
Collapse
|