1
|
Carlisle JA, Gurbuz DH, Swanson WJ. Recurrent Independent Pseudogenization Events of the Sperm Fertilization Gene ZP3r in Apes and Monkeys. J Mol Evol 2024:10.1007/s00239-024-10192-x. [PMID: 39264464 DOI: 10.1007/s00239-024-10192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024]
Abstract
Many reproductive proteins show signatures of rapid evolution through sequence divergence and duplication. These features of reproductive genes may complicate the detection of orthologs across taxa, making it difficult to connect studies in model systems to human biology. In mice, ZP3r/sp56 is a binding partner to the egg coat protein ZP3 and may mediate induction of the acrosome reaction, a crucial step in fertilization. In rodents, ZP3r, as a member of the Regulators of Complement Activation cluster, is surrounded by paralogs, some of which have been shown to be evolving under positive selection. Although primate egg coats also contain ZP3, sequence divergence paired with paralogous relationships with neighboring genes has complicated the accurate identification of the human ZP3r ortholog. Here, we phylogenetically and syntenically resolve that the human ortholog of ZP3r is the pseudogene C4BPAP1. We investigate the evolution of this gene within primates. We observe independent pseudogenization events of ZP3r in all Apes with the exception of Orangutans, and independent pseudogenization events in many monkey species. ZP3r in both primates that retain ZP3r and in rodents contains positively selected sites. We hypothesize that redundant mechanisms mediate ZP3 recognition in mammals and ZP3r's relative importance to ZP recognition varies across species.
Collapse
Affiliation(s)
- J A Carlisle
- Department of Genome Sciences, University of Washington, Seattle, USA.
| | - D H Gurbuz
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - W J Swanson
- Department of Genome Sciences, University of Washington, Seattle, USA
| |
Collapse
|
2
|
McSwiggin H, Magalhães R, Nilsson EE, Yan W, Skinner MK. Epigenetic transgenerational inheritance of toxicant exposure-specific non-coding RNA in sperm. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae014. [PMID: 39494159 PMCID: PMC11529619 DOI: 10.1093/eep/dvae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 11/05/2024]
Abstract
Environmentally induced epigenetic transgenerational inheritance of phenotypic variation and disease susceptibility requires the germ cell (sperm or egg) transmission of integrated epigenetic mechanisms involving DNA methylation, histone modifications, and non-coding RNA (ncRNA) actions. Previous studies have demonstrated that transgenerational exposure and disease-specific differential DNA methylation regions (DMRs) in sperm are observed and that ncRNA-mediated DNA methylation occurs. The current study was designed to determine if transgenerational exposure-specific ncRNAs exist in sperm. Specifically, toxicants with distinct mechanisms of action including the fungicide vinclozolin (anti-androgenic), pesticide dichlorodiphenyltrichloroethane (estrogenic), herbicide atrazine (endocrine disruptor at cyclic adenosine monophosphate level), and hydrocarbon mixture jet fuel (JP8) (aryl hydrocarbon receptor disruptor) were used to promote transgenerational disease phenotypes in F3 generation outbred rats. New aliquots of sperm, previously collected and used for DNA methylation analyses, were used in the current study for ncRNA sequencing analyses of nuclear RNA. Significant changes in transgenerational sperm ncRNA were observed for each transgenerational exposure lineage. The majority of ncRNA was small noncoding RNAs including piwi-interacting RNA, tRNA-derived small RNAs, microRNAs, rRNA-derived small RNA, as well as long ncRNAs. Although there was some overlap among the different classes of ncRNA across the different exposures, the majority of differentially expressed ncRNAs were exposure-specific with no overlapping ncRNA between the four different exposure lineages in the transgenerational F3 generation sperm nuclear ncRNAs. The ncRNA chromosomal locations and gene associations were identified for a small number of differential expressed ncRNA. Interestingly, an overlap analysis between the transgenerational sperm DMRs and ncRNA chromosomal locations demonstrated small populations of overlapping ncRNA, but a large population of non-overlapping ncRNAs. Observations suggest that transgenerational sperm ncRNAs have both exposure-specific populations within the different classes of ncRNA, as well as some common populations of ncRNAs among the different exposures. The lack of co-localization of many of the ncRNAs with previously identified transgenerational DMRs suggests a distal integration of the different epigenetic mechanisms. The potential use of ncRNA analyses for transgenerational toxicant exposure assessment appears feasible.
Collapse
Affiliation(s)
- Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Rubens Magalhães
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, United States
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| |
Collapse
|
3
|
Ma M, Zhang L, Liu Z, Teng Y, Li M, Peng X, An L. Effect of blastocyst development on hatching and embryo implantation. Theriogenology 2024; 214:66-72. [PMID: 37857152 DOI: 10.1016/j.theriogenology.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
The mammalian zygote, formed after a sperm fertilizes an egg, undergoes several rounds of mitosis and morphogenesis to form the blastocyst. During the peri-implantation period, the blastocyst hatches out of the zona pellucida (ZP) and invades the receptive uterine endometrium. This process promotes maternal-fetal dialogue at the physiological and molecular level, thereby initiating the implantation process. Blastocyst hatching is a consequence of elevated osmotic pressure due to active Na+/K+ ion transporter in the blastocyst cavity, as well as proteases produced by trophectoderm (TE) that hydrolyze the ZP. This review summarizes the process underpinning blastocyst hatching, such as the hatching schedule, the location of TEs during initial hatching out of the ZP, the molecules involved in blastocyst hatching, and how these processes affect implantation events. Additionally, we focus on identifying crucial molecules that may influence the quality of implantation and predict the outcome of embryo implantation. Further understanding the mechanism of these molecules may help us to improve the efficiency of Assisted reproductive technology (ART) in livestock breeding. This review provides insight into embryonic development, specifically during the short-term process of blastocyst hatching and its effects on the following implantation.
Collapse
Affiliation(s)
- Meixiang Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Liang Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Zihan Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yadi Teng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Miaolong Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xinrong Peng
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, 830011, China.
| | - Liyou An
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
4
|
Kong N, Xu Q, Shen X, Zhu X, Cao G. Case report: A novel homozygous variant in ZP3 is associated with human empty follicle syndrome. Front Genet 2023; 14:1256549. [PMID: 37908588 PMCID: PMC10613883 DOI: 10.3389/fgene.2023.1256549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 11/02/2023] Open
Abstract
Empty follicle syndrome (EFS) is a rare condition in female infertility. It is characterized by the inability to retrieve oocytes from visibly large, normally developing follicles in the ovaries, despite ovarian stimulation. The genetic factors contributing to this syndrome remain unclear. This study focused on patients who underwent three consecutive ovarian stimulation procedures for oocyte retrieval but experienced unsuccessful outcomes, despite the presence of observable large follicles. Ultrasound examinations were conducted to assess follicular development during each procedure. In order to investigate potential genetic causes, we performed whole exome sequencing on peripheral blood samples from the patient. Interestingly, we identified that this patient carries a homozygous mutation in the ZP3 genes. Within the ZP3 gene, we identified a homozygous variant [NM_001110354.2, c.176T>A (p.L59H)] specifically located in the zona pellucida (ZP) domain. Further analysis, including bioinformatics methods and protein structure modeling, was carried out to investigate the conservation of the ZP3L59H variant across different species. This homozygous variant exhibited a high degree of conservation across various species. Importantly, the homozygous ZP3L59H variant was associated with the occurrence of empty follicle syndrome in affected female patients. The homozygous ZP3L59H variant represents a newly discovered genetic locus implicated in the development of human empty follicle syndrome. Our findings contribute to a deeper understanding of the role of zona pellucida-related genes in infertility and provide valuable insights for the genetic diagnosis of female infertility.
Collapse
Affiliation(s)
- Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Qian Xu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoyue Shen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xiangyu Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guangyi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| |
Collapse
|
5
|
Zhang Z, Guo Q, Jia L, Zhou C, He S, Fang C, Zhang M, Sun P, Zeng Z, Wang M, Wang D, Liang X. A novel gene mutation in ZP3 loop region identified in patients with empty follicle syndrome. Hum Mutat 2021; 43:180-188. [PMID: 34816529 DOI: 10.1002/humu.24297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022]
Abstract
The zona pellucida (ZP) is an extracellular matrix surrounding mammalian oocytes. It is composed of three to four glycoproteins, ZP1-ZP4. ZP3 is essential for sperm binding and zona matrix formation. Here, we identified a novel heterozygous mutation (NM_001110354.2:c.502_504delGAG) of ZP3, occurring in a pair of sisters with empty follicle syndrome (EFS). A mouse model with the same mutation was established using the CRISPR/Cas9 gene-editing system. As in the above family, F0 -, F1 -, and F2 -generation female mice with the mutation were all infertile. Further analysis using the Chinese hamster ovary cells (CHO-K1) also showed that this mutation weakens the strength of binding between ZP3 and ZP2, which hinders the assembly of ZP and results in unstable ZP formation. Immunohistochemical analysis using ovarian serial sections in both humans and mice demonstrated that the ZP of preantral follicles was thinner than normal control, or even absent. Our study presents a new gene mutation that leads to EFS, providing new evidence and support for the genetic diagnosis of infertile individuals with similar phenotypes. Our results also show that the loop of ZP3 is not only a linker between two amphiphilic helices but may play a critical role in specifying the correct heterodimerization partner.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Guo
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Jia
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuanchuan Zhou
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shujing He
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cong Fang
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minfang Zhang
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Sun
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi Zeng
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Wang
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dandan Wang
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Liang
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Duarte MA, Fernandes CR, Heckel G, da Luz Mathias M, Bastos-Silveira C. Variation and Selection in the Putative Sperm-Binding Region of ZP3 in Muroid Rodents: A Comparison between Cricetids and Murines. Genes (Basel) 2021; 12:genes12091450. [PMID: 34573431 PMCID: PMC8469249 DOI: 10.3390/genes12091450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
In mammals, the zona pellucida glycoprotein 3 (ZP3) is considered a primary sperm receptor of the oocyte and is hypothesized to be involved in reproductive isolation. We investigated patterns of diversity and selection in the putative sperm-binding region (pSBR) of mouse ZP3 across Cricetidae and Murinae, two hyperdiverse taxonomic groups within muroid rodents. In murines, the pSBR is fairly conserved, in particular the serine-rich stretch containing the glycosylation sites proposed as essential for sperm binding. In contrast, cricetid amino acid sequences of the pSBR were much more variable and the serine-rich motif, typical of murines, was generally substantially modified. Overall, our results suggest a general lack of species specificity of the pSBR across the two muroid families. We document statistical evidence of positive selection acting on exons 6 and 7 of ZP3 and identified several amino acid sites that are likely targets of selection, with most positively selected sites falling within or adjacent to the pSBR.
Collapse
Affiliation(s)
- Margarida Alexandra Duarte
- Champalimaud Centre for the Uknown, Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisboa, Portugal
- Museu Nacional de História Natural e da Ciência, Departamento de Zoologia e Antropologia, Universidade de Lisboa, Rua da Escola Politécnica, 58, Lisboa, 1250-102 Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- Centro de Estudos de Ambiente e Mar, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence:
| | - Carlos Rodríguez Fernandes
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (C.R.F.); (C.B.-S.)
- Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013 Lisboa, Portugal
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland;
- SIB Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Amphipole, CH-1015 Lausanne, Switzerland
| | - Maria da Luz Mathias
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- Centro de Estudos de Ambiente e Mar, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cristiane Bastos-Silveira
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (C.R.F.); (C.B.-S.)
| |
Collapse
|
7
|
Sandam NP, Prakash D, Thimmareddy P. Immunocontraceptive potential of a GnRH receptor-based fusion recombinant protein. J Genet Eng Biotechnol 2021; 19:63. [PMID: 33945047 PMCID: PMC8096874 DOI: 10.1186/s43141-021-00164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The management of stray dog population has been of utmost importance due to their overpopulation, increase in dog bites incidence, and rabies. Contraceptive vaccines, a non-surgical alternative to spaying and neutering are viewed as a valuable option for the management of dog population. In this study, the contraceptive potential of a recombinant fusion protein containing the three genes GnRH, GnRH receptor, and ZP3 was explored. RESULTS The gene fragment encoding GnRH, GnRHR, and ZP3 along with the antigenic epitopes of canine distemper virus and tetanus toxoid was assembled, synthesized, and cloned into pET28a expression vector. The resulting construct GVAC08 was successfully transformed into BL21DE3 strain of E. coli and confirmed by colony PCR. The recombinant GVAC08 protein was expressed and purified using Ni-NTA and was confirmed to be a 50-KDa protein by SDS PAGE and Western blot. Mice were immunized with the GVAC08 protein using Freund's complete adjuvant followed by a booster using Freund's incomplete adjuvant. This induced a high antibody titer against GnRH, GnRH receptor, and ZP3 which was determined by ELISA. CONCLUSION Mating studies showed that the GVAC08 recombinant protein was able to reduce the litter size in immunized mice showing improved efficacy. However, the vaccine candidate with further improvements will be a viable contraceptive vaccine.
Collapse
Affiliation(s)
| | - Dhamodhar Prakash
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India.
| | | |
Collapse
|
8
|
Alborzi P, Jafari Atrabi M, Akbarinejad V, Khanbabaei R, Fathi R. Incorporation of arginine, glutamine or leucine in culture medium accelerates in vitro activation of primordial follicles in 1-day-old mouse ovary. ZYGOTE 2020; 28:1-8. [PMID: 32482183 DOI: 10.1017/s096719942000026x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In vitro activation of primordial follicles provides cancer patients subjected to oncotherapy with a safe therapeutic strategy for fertility preservation, however a successful protocol for activation of primordial follicles in prepubertal patients has not yet been defined comprehensively. There is evidence that amino acids such as leucine, arginine and glutamine could stimulate the mammalian target of rapamycin (mTOR) pathway, which plays a pivotal role in primordial follicle activation. Nevertheless, there has been no report that elucidates the effect of these amino acids on in vitro development of ovarian follicles. Therefore, the present study was conducted to evaluate the effects of these amino acids and their combination on the formation and activation of primordial follicles in 1-day-old murine ovaries during an 11-day culture period. The experimental groups consisted of base medium (BM), base medium + arginine (ARG), base medium + glutamine (GLU), base medium + leucine (LEU) and base medium + a combination of arginine, glutamine and leucine (AGL). The proportions of different stages of ovarian follicles and gene expression of regulatory factors were assessed using histology and quantitative real-time PCR on days 5 and 11 of culture. The proportion of transitional and primary follicles was greater in all amino acid-treated groups compared with the BM group (P < 0.05). Moreover, leucine resulted in elevated expression of Gdf9 and Bmp15, and glutamine augmented the expression of Pi3k on day 11 of culture. In conclusion, the present study showed that inclusion of leucine, glutamine, arginine or their combination in the culture medium for murine ovarian tissue could accelerate the activation of primordial follicles and alter the expression of the corresponding factors.
Collapse
Affiliation(s)
- Parimah Alborzi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Jafari Atrabi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ramezan Khanbabaei
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Chen L, Lu Y, Li W, Ren Y, Yu M, Jiang S, Fu Y, Wang J, Peng S, Bilyk KT, Murphy KR, Zhuang X, Hune M, Zhai W, Wang W, Xu Q, Cheng CHC. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes. Gigascience 2019; 8:5304890. [PMID: 30715292 PMCID: PMC6457430 DOI: 10.1093/gigascience/giz016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background The Southern Ocean is the coldest ocean on Earth but a hot spot of evolution. The bottom-dwelling Eocene ancestor of Antarctic notothenioid fishes survived polar marine glaciation and underwent adaptive radiation, forming >120 species that fill all water column niches today. Genome-wide changes enabling physiological adaptations and the rapid expansion of the Antarctic notothenioids remain poorly understood. Results We sequenced and compared 2 notothenioid genomes—the cold-adapted and neutrally buoyant Antarctic toothfish Dissostichus mawsoni and the basal Patagonian robalo Eleginops maclovinus, representing the temperate ancestor. We detected >200 protein gene families that had expanded and thousands of genes that had evolved faster in the toothfish, with diverse cold-relevant functions including stress response, lipid metabolism, protein homeostasis, and freeze resistance. Besides antifreeze glycoprotein, an eggshell protein had functionally diversified to aid in cellular freezing resistance. Genomic and transcriptomic comparisons revealed proliferation of selcys–transfer RNA genes and broad transcriptional upregulation across anti-oxidative selenoproteins, signifying their prominent role in mitigating oxidative stress in the oxygen-rich Southern Ocean. We found expansion of transposable elements, temporally correlated to Antarctic notothenioid diversification. Additionally, the toothfish exhibited remarkable shifts in genetic programs towards enhanced fat cell differentiation and lipid storage, and promotion of chondrogenesis while inhibiting osteogenesis in bone development, collectively contributing to the achievement of neutral buoyancy and pelagicism. Conclusions Our study revealed a comprehensive landscape of evolutionary changes essential for Antarctic notothenioid cold adaptation and ecological expansion. The 2 genomes are valuable resources for further exploration of mechanisms underlying the spectacular notothenioid radiation in the coldest marine environment.
Collapse
Affiliation(s)
- Liangbiao Chen
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Lu
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Wenhao Li
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Yandong Ren
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kuming, China
| | - Mengchao Yu
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Yanxia Fu
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Sihua Peng
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Kevin T Bilyk
- Department of Animal Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Katherine R Murphy
- Department of Animal Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Xuan Zhuang
- Department of Animal Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Mathias Hune
- Fundación Ictiológica, Providencia, Santiago, Chile
| | - Wanying Zhai
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Wen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kuming, China
| | - Qianghua Xu
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Chi-Hing Christina Cheng
- Department of Animal Biology, University of Illinois at Urbana-Champaign, IL, USA.,Fundación Ictiológica, Providencia, Santiago, Chile
| |
Collapse
|
10
|
Grosbois J, Vermeersch M, Devos M, Clarke HJ, Demeestere I. Ultrastructure and intercellular contact-mediated communication in cultured human early stage follicles exposed to mTORC1 inhibitor. Mol Hum Reprod 2019; 25:706-716. [DOI: 10.1093/molehr/gaz053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
The reproductive lifespan of a woman is determined by the gradual recruitment of quiescent follicles into the growing pool. In humans, ovarian tissue removal from its in vivo environment induces spontaneous activation of resting follicles. Similarly, pharmacological activation of the PI3K/Akt pathway leads to accelerated follicle recruitment, but has been associated with follicular damage. Recent findings demonstrate that everolimus (EVE), an mTORC1 inhibitor, limits primordial follicle activation. However, its potential benefit regarding growing follicle integrity remains unexplored. Ovarian cortical fragments were exposed to ± EVE for 24 h and cultured for an additional 5 days. After 0, 1 and 6 days of culture, fragments were either processed for ultrastructural analysis or subjected to follicular isolation for gene expression and immunofluorescence assessments. Data from transmission electron microscopy showed that growing follicles displayed similar ultrastructural features irrespective of the conditions and maintained close contacts between germinal and stromal compartments. Establishment of intra-follicular communication was confirmed by detection of a gap junction component, Cx43, in both groups throughout culture, whereas transzonal projections, which physically link granulosa cells to oocyte, formed later in EVE-treated follicles. Importantly, levels of GJA1 mRNA, encoding for the Cx43 protein, significantly increased from Day 0 to Day 1 in the EVE group, but not in the control group. Given that EVE-treated follicles were smaller than controls, these findings suggest that EVE might facilitate the establishment of appropriate intercellular communications without impairing follicle ultrastructure. Therefore, mTORC1 inhibitors might represent an attractive tool to delay the culture-induced primordial follicle activation while maintaining follicles in a functionally integrated state.
Collapse
Affiliation(s)
- J Grosbois
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
| | - M Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium
| | - M Devos
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
| | - H J Clarke
- Department of Obstetrics and Gynecology, Biology, and Experimental Medicine, McGill University, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - I Demeestere
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
- Obstetrics and Gynecology Department, Erasme Hospital, Brussels, Belgium
| |
Collapse
|
11
|
Morgan CC, Hart MW. Molecular evolution of mammalian genes with epistatic interactions in fertilization. BMC Evol Biol 2019; 19:154. [PMID: 31345177 PMCID: PMC6659299 DOI: 10.1186/s12862-019-1480-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genes that encode proteins associated with sperm competition, fertilization, and sexual conflicts of interest are often among the most rapidly evolving parts of animal genomes. One family of sperm-expressed genes (Zp3r, C4bpa) in the mammalian gene cluster called the regulator of complement activation (RCA) encodes proteins that bind eggs and mediate reproductive success, and are therefore expected to show high relative rates of nonsynonymous nucleotide substitution in response to sexual selection in comparison to other genes not involved in gamete binding at fertilization. We tested that working hypothesis by using phylogenetic models of codon evolution to identify episodes of diversifying positive selection. We used a comparative approach to quantify the evidence for episodic diversifying selection acting on RCA genes with known functions in fertilization (and sensitivity to sexual selection), and contrast them with other RCA genes in the same gene family that function in innate immunity (and are not sensitive to sexual selection). RESULTS We expected but did not find evidence for more episodes of positive selection on Zp3r in Glires (the rodents and lagomorphs) or on C4BPA in Primates, in comparison to other paralogous RCA genes in the same taxon, or in comparison to the same orthologous RCA gene in the other taxon. That result was not unique to RCA genes: we also found little evidence for more episodes of diversifying selection on genes that encode selective sperm-binding molecules in the egg coat or zona pellucida (Zp2, Zp3) in comparison to members of the same gene family that encode structural elements of the egg coat (Zp1, Zp4). Similarly, we found little evidence for episodic diversifying selection acting on two other recently discovered genes (Juno, Izumo1) that encode essential molecules for sperm-egg fusion. CONCLUSIONS These negative results help to illustrate the importance of a comparative context for this type of codon model analysis. The results may also point to other phylogenetic contexts in which the effects of selection acting on these fertilization proteins might be more readily discovered and documented in mammals and other taxa.
Collapse
Affiliation(s)
- Claire C. Morgan
- Department of Medicine, Imperial College London, London, W12 0NN UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michael W. Hart
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| |
Collapse
|
12
|
Tanphaichitr N, Kongmanas K, Faull KF, Whitelegge J, Compostella F, Goto-Inoue N, Linton JJ, Doyle B, Oko R, Xu H, Panza L, Saewu A. Properties, metabolism and roles of sulfogalactosylglycerolipid in male reproduction. Prog Lipid Res 2018; 72:18-41. [PMID: 30149090 PMCID: PMC6239905 DOI: 10.1016/j.plipres.2018.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022]
Abstract
Sulfogalactosylglycerolipid (SGG, aka seminolipid) is selectively synthesized in high amounts in mammalian testicular germ cells (TGCs). SGG is an ordered lipid and directly involved in cell adhesion. SGG is indispensable for spermatogenesis, a process that greatly depends on interaction between Sertoli cells and TGCs. Spermatogenesis is disrupted in mice null for Cgt and Cst, encoding two enzymes essential for SGG biosynthesis. Sperm surface SGG also plays roles in fertilization. All of these results indicate the significance of SGG in male reproduction. SGG homeostasis is also important in male fertility. Approximately 50% of TGCs become apoptotic and phagocytosed by Sertoli cells. SGG in apoptotic remnants needs to be degraded by Sertoli lysosomal enzymes to the lipid backbone. Failure in this event leads to a lysosomal storage disorder and sub-functionality of Sertoli cells, including their support for TGC development, and consequently subfertility. Significantly, both biosynthesis and degradation pathways of the galactosylsulfate head group of SGG are the same as those of sulfogalactosylceramide (SGC), a structurally related sulfoglycolipid important for brain functions. If subfertility in males with gene mutations in SGG/SGC metabolism pathways manifests prior to neurological disorder, sperm SGG levels might be used as a reporting/predicting index of the neurological status.
Collapse
Affiliation(s)
- Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Obstetrics/Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Kessiri Kongmanas
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California, USA
| | - Julian Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California, USA
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Kanagawa 252-0880, Japan
| | - James-Jules Linton
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Brendon Doyle
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Hongbin Xu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Luigi Panza
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Arpornrad Saewu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Abstract
All animal oocytes are surrounded by a glycoproteinaceous egg coat, a specialized extracellular matrix that serves both structural and species-specific roles during fertilization. Egg coat glycoproteins polymerize into the extracellular matrix of the egg coat using a conserved protein-protein interaction module-the zona pellucida (ZP) domain-common to both vertebrates and invertebrates, suggesting that the basic structural features of egg coats have been conserved across hundreds of millions of years of evolution. Egg coat proteins, as with other proteins involved in reproduction, are frequently found to be rapidly evolving. Given that gamete compatibility must be maintained for the fitness of sexually reproducing organisms, this finding is somewhat paradoxical and suggests a role for adaptive diversification in reproductive protein evolution. Here we review the structure and function of metazoan egg coat proteins, with an emphasis on the potential role their evolution has played in the creation and maintenance of species boundaries.
Collapse
Affiliation(s)
- Emily E Killingbeck
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| |
Collapse
|
14
|
Xuan B, Li ZC, Wang QY, Xu M, Chen X, Jin Y. Inhibition of PSMD4 alters ZP1 ubiquitination state and sperm-oocyte-binding ability in pigs. Reprod Domest Anim 2018; 53:688-694. [PMID: 29575084 DOI: 10.1111/rda.13158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/19/2018] [Indexed: 12/29/2022]
Abstract
The aim of this study was to determine how the duration of culture affects the ubiquitination of zona pellucida (ZP) proteins (ZP1, ZP2 and ZP3) during porcine oocyte maturation in vitro. We analysed the changes in ZP protein ubiquitination under three conditions: (i) during oocyte maturation from stage GV to MII; (ii) in oocytes cultured for different periods of time; and (iii) in oocytes treated with an antibody against PSMD4. Our results show that ZP1 and ZP2 are ubiquitinated at the GV stage, while ZP1, ZP2 and ZP3 are ubiquitinated at the MII stage, and band intensities for these proteins were significantly different between the GV and MII stages (p < .05). We also found that ubiquitination occurs in ZP1, ZP2 and ZP3 after cultured for 46, 52, 58 and 64 hr, and that the level of ubiquitinated ZP1 was significantly different in oocytes that were cultured for different time periods. Finally, treatment with an antibody against PSMD4 resulted in a significant decrease in ZP1 ubiquitination (p < .05), without affecting ZP2 or ZP3. The number of attached sperms per oocyte was also significantly different between control and anti-PSMD4-treated groups. Thus, we concluded that ZP1 and ZP2 are ubiquitinated at the GV stage, and ZP1, ZP2 and ZP3 are ubiquitinated at the MII stage. As the duration of culture increases, the ubiquitination levels of ZP proteins decrease. We also found that PSMD4 improves ZP1 ubiquitination during in vitro culture of porcine oocytes and effectively inhibits sperm-oocyte binding.
Collapse
Affiliation(s)
- B Xuan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Z C Li
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Q Y Wang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - M Xu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - X Chen
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Y Jin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| |
Collapse
|
15
|
Hart MW, Stover DA, Guerra V, Mozaffari SV, Ober C, Mugal CF, Kaj I. Positive selection on human gamete-recognition genes. PeerJ 2018; 6:e4259. [PMID: 29340252 PMCID: PMC5767332 DOI: 10.7717/peerj.4259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/21/2017] [Indexed: 01/29/2023] Open
Abstract
Coevolution of genes that encode interacting proteins expressed on the surfaces of sperm and eggs can lead to variation in reproductive compatibility between mates and reproductive isolation between members of different species. Previous studies in mice and other mammals have focused in particular on evidence for positive or diversifying selection that shapes the evolution of genes that encode sperm-binding proteins expressed in the egg coat or zona pellucida (ZP). By fitting phylogenetic models of codon evolution to data from the 1000 Genomes Project, we identified candidate sites evolving under diversifying selection in the human genes ZP3 and ZP2. We also identified one candidate site under positive selection in C4BPA, which encodes a repetitive protein similar to the mouse protein ZP3R that is expressed in the sperm head and binds to the ZP at fertilization. Results from several additional analyses that applied population genetic models to the same data were consistent with the hypothesis of selection on those candidate sites leading to coevolution of sperm- and egg-expressed genes. By contrast, we found no candidate sites under selection in a fourth gene (ZP1) that encodes an egg coat structural protein not directly involved in sperm binding. Finally, we found that two of the candidate sites (in C4BPA and ZP2) were correlated with variation in family size and birth rate among Hutterite couples, and those two candidate sites were also in linkage disequilibrium in the same Hutterite study population. All of these lines of evidence are consistent with predictions from a previously proposed hypothesis of balancing selection on epistatic interactions between C4BPA and ZP3 at fertilization that lead to the evolution of co-adapted allele pairs. Such patterns also suggest specific molecular traits that may be associated with both natural reproductive variation and clinical infertility.
Collapse
Affiliation(s)
- Michael W Hart
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Daryn A Stover
- School of Mathematical and Natural Sciences, Arizona State University Colleges at Lake Havasu City, Lake Havasu City, AZ, USA
| | - Vanessa Guerra
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sahar V Mozaffari
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Ingemar Kaj
- Department of Mathematics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Swann CA, Cooper SJB, Breed WG. The egg coat zona pellucida 3 glycoprotein - evolution of its putative sperm-binding region in Old World murine rodents (Rodentia: Muridae). Reprod Fertil Dev 2017; 29:2376-2386. [PMID: 28403915 DOI: 10.1071/rd16455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/26/2017] [Indexed: 11/23/2022] Open
Abstract
In eutherian mammals, before fertilisation can occur the spermatozoon has to bind to, and penetrate, the egg coat, the zona pellucida (ZP). In the laboratory mouse there is good evidence that the primary sperm-binding site is a protein region encoded by Exon 7 of the ZP3 gene and it has been proposed that binding is species specific and evolves by sexual selection. In the present study we investigate these hypotheses by comparing Exon 6 and 7 sequences of ZP3 in 28 species of murine rodents of eight different divisions from Asia, Africa and Australasia, in which a diverse array of sperm morphologies occurs. We found considerable nucleotide (and corresponding amino acid) sequence divergence in Exon 7, but not in Exon 6, across these species, with evidence for positive selection at five codon positions. This molecular divergence does not appear to be due to reinforcement to reduce hybridisation, nor does it correlate with divergence in sperm head morphology or tail length, thus it is unlikely to be driven by inter-male sperm competition. Other forms of post-copulatory sexual selection therefore appear to have resulted in the molecular divergence of this region of ZP3 in this highly speciose group of mammals.
Collapse
Affiliation(s)
- Christine A Swann
- Discipline of Anatomy and Pathology, Medical School, and Robinson Research Institute, Faculty of Health Sciences, The University of Adelaide, SA 5005, Australia
| | - Steven J B Cooper
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| | - William G Breed
- Discipline of Anatomy and Pathology, Medical School, and Robinson Research Institute, Faculty of Health Sciences, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
17
|
Shu L, Suter MJF, Räsänen K. Evolution of egg coats: linking molecular biology and ecology. Mol Ecol 2015; 24:4052-73. [DOI: 10.1111/mec.13283] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Longfei Shu
- Department of Aquatic Ecology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| | - Marc J.-F. Suter
- Department of Environmental Toxicology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Department of Environmental Systems Science; Swiss Federal Institute of Technology; ETH Zurich; 8092 Zurich Switzerland
| | - Katja Räsänen
- Department of Aquatic Ecology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| |
Collapse
|
18
|
Watthammawut A, Somrit M, Asuvapongpatana S, Weerachatyanukul W. Enhancement of trypsin-like enzymes by A23187 ionophore is crucial for sperm penetration through the egg vestment of the giant freshwater prawn. Cell Tissue Res 2015; 362:643-52. [DOI: 10.1007/s00441-015-2226-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
19
|
Hirohashi N, Gerton GL, Buffone MG. Video imaging of the sperm acrosome reaction during in vitro fertilization. Commun Integr Biol 2014. [DOI: 10.4161/cib.15636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
20
|
Harayama H. Roles of intracellular cyclic AMP signal transduction in the capacitation and subsequent hyperactivation of mouse and boar spermatozoa. J Reprod Dev 2014; 59:421-30. [PMID: 24162806 PMCID: PMC3934125 DOI: 10.1262/jrd.2013-056] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is not until accomplishment of a variety of molecular changes during the transit
through the female reproductive tract that mammalian spermatozoa are capable of
exhibiting highly activated motility with asymmetric whiplash beating of the flagella
(hyperactivation) and undergoing acrosomal exocytosis in the head (acrosome
reaction). These molecular changes of the spermatozoa are collectively termed
capacitation and promoted by bicarbonate, calcium and cholesterol acceptors. Such
capacitation-promoting factors can stimulate intracellular cyclic AMP (cAMP) signal
transduction in the spermatozoa. Meanwhile, hyperactivation and the acrosome reaction
are essential to sperm fertilization with oocytes and are apparently triggered by a
sufficient increase of intracellular Ca2+ in the sperm flagellum and head,
respectively. Thus, it is necessary to investigate the relationship between cAMP
signal transduction and calcium signaling cascades in the spermatozoa for the purpose
of understanding the molecular basis of capacitation. In this review, I cover updated
insights regarding intracellular cAMP signal transduction, the acrosome reaction and
flagellar motility in mammalian spermatozoa and then account for possible roles of
intracellular cAMP signal transduction in the capacitation and subsequent
hyperactivation of mouse and boar spermatozoa.
Collapse
Affiliation(s)
- Hiroshi Harayama
- Laboratory of Reproductive Biology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
21
|
Aalberts M, Stout TAE, Stoorvogel W. Prostasomes: extracellular vesicles from the prostate. Reproduction 2013; 147:R1-14. [PMID: 24149515 DOI: 10.1530/rep-13-0358] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The term 'prostasomes' is generally used to classify the extracellular vesicles (EVs) released into prostatic fluid by prostate epithelial cells. However, other epithelia within the male reproductive tract also release EVs that mix with 'true' prostasomes during semen emission or ejaculation. Prostasomes have been proposed to regulate the timing of sperm cell capacitation and induction of the acrosome reaction, as well as to stimulate sperm motility where all three are prerequisite processes for spermatozoa to attain fertilising capacity. Other proposed functions of prostasomes include interfering with the destruction of spermatozoa by immune cells within the female reproductive tract. On the other hand, it is unclear whether the distinct presumed functions are performed collectively by a single type of prostasome or by separate distinct sub-populations of EVs. Moreover, the exact molecular mechanisms through which prostasomes exert their functions have not been fully resolved. Besides their physiological functions, prostasomes produced by prostate tumour cells have been suggested to support prostate cancer spread development, and prostasomes in peripheral blood plasma may prove to be valuable biomarkers for prostate cancer.
Collapse
|
22
|
Agca C, Yakan A, Agca Y. Estrus synchronization and ovarian hyper-stimulation treatments have negligible effects on cumulus oocyte complex gene expression whereas induction of ovulation causes major expression changes. Mol Reprod Dev 2013; 80:102-17. [PMID: 23239112 DOI: 10.1002/mrd.22141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/29/2012] [Indexed: 02/02/2023]
Abstract
The effects of exogenous hormones, used for estrus synchronization and ovarian hyper stimulation, on cumulus oocyte complexes (COCs) gene expression in sexually mature rats were determined using microarrays. Gene expression in COCs collected from GnRH (G(trt)), GnRH + eCG (G + E(trt)), and GnRH + eCG + hCG (G + E + H(trt)) treatments were compared to COCs from naturally cycling (NC) rats before the preovulatory luteninizing hormone surge. There was no significant difference in gene expression among NC, G(trt), and G + E(trt); however, over 2,600 genes were significantly different between NC and G + E + H(trt) (P < 0.05). Genes upregulated in G + E + H(trt) encode for: proteins that are involved in prostaglandin synthesis (Ptgs2, Pla2g4a, and Runx1) and cholesterol biosynthesis (Hmgcr, Sc4mol, and Dhcr24); receptors that allow cholesterol uptake (Ldlr and Scarb1), regulate progesterone synthesis (Star), and inactivate estrogen (Sult1e1); and downstream effectors of LH signal (Pgr, Cebpb, Creb3l1, Areg, Ereg, and Adamts1). Conversely, G + E + H(trt) downregulated genes encoding proteins involved in: DNA replication and cell cycle progression (Ccne2, Orc5l, Rad50, and Mcm6); reproductive developmental process; and granulosa cell expansion (Gdf9, Bmp15, Amh, Amhr2, Bmpr1b, Tgfb2, Foxl2, Pde3a, Esr2, Fshr, Ybx2, Ccnd2, Ccnb1ip1, and Zp3); maternal effect genes required for embryo development (Zar1, Npm2, Nlrp5, Dnmt1, H1foo, and Zfp57); amino acid degradation; and ketogenesis (Hmgcs2, and Cpt1b). These results from the rat show that hormones used for estrus synchronization (G(trt)) and ovarian hyper stimulation (G + E(trt)) had minimal effects on gene expression, whereas induction of ovulation (G + E + H(trt)) caused major changes in gene expression of rat COCs. This study provides comprehensive information about regulated genes during late follicle development and ovulation induction.
Collapse
Affiliation(s)
- Cansu Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
23
|
Abstract
To succeed in fertilization, spermatozoa must decode environmental cues which require a set of ion channels. Recent findings have revealed that K(+) and Cl(-) channels participate in some of the main sperm functions. This work reviews the evidence indicating the involvement of K(+) and Cl(-) channels in motility, maturation, and the acrosome reaction, and the advancement in identifying their molecular identity and modes of regulation. Improving our insight on how these channels operate will strengthen our ability to surmount some infertility problems, improve animal breeding, preserve biodiversity, and develop selective and secure male contraceptives.
Collapse
|
24
|
Xu Q, Li G, Cao L, Wang Z, Ye H, Chen X, Yang X, Wang Y, Chen L. Proteomic characterization and evolutionary analyses of zona pellucida domain-containing proteins in the egg coat of the cephalochordate, Branchiostoma belcheri. BMC Evol Biol 2012; 12:239. [PMID: 23216630 PMCID: PMC3543715 DOI: 10.1186/1471-2148-12-239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/29/2012] [Indexed: 01/06/2023] Open
Abstract
Background Zona pellucida domain-containing proteins (ZP proteins) have been identified as the principle constituents of the egg coat (EC) of diverse metazoan taxa, including jawed vertebrates, urochordates and molluscs that span hundreds of millions of years of evolutionary divergence. Although ZP proteins generally contain the zona pellucida (ZP) structural modules to fulfill sperm recognition and EC polymerization functions during fertilization, the primary sequences of the ZP proteins from the above-mentioned animal classes are drastically different, which makes it difficult to assess the evolutionary relationships of ZP proteins. To understand the origin of vertebrate ZP proteins, we characterized the egg coat components of Branchiostoma belcheri, an invertebrate species that belongs to the chordate subphylum Cephalochordata. Results Five ZP proteins (BbZP1-5) were identified by mass spectrometry analyses using the egg coat extracts from both unfertilized and fertilized eggs. In addition to the C-terminal ZP module in each of the BbZPs, the majority contain a low-density lipoprotein receptor domain and a von Willebrand factor type A (vWFA) domain, but none possess an EGF-like domain that is frequently observed in the ZP proteins of urochordates. Fluorescence in situ hybridization and immuno-histochemical analyses of B. belcheri ovaries showed that the five BbZPs are synthesized predominantly in developing eggs and deposited around the extracellular space of the egg, which indicates that they are bona fide egg coat ZP proteins. BbZP1, BbZP3 and BbZP4 are significantly more abundant than BbZP2 and BbZP5 in terms of gene expression levels and the amount of mature proteins present on the egg coats. The major ZP proteins showed high polymorphism because multiple variants are present with different molecular weights. Sequence comparison and phylogenetic analysis between the ZP proteins from cephalochordates, urochordates and vertebrates showed that BbZP1-5 form a monophyletic group and share no significant sequence similarities with the ZP proteins of urochordates and the ZP3 subtype of jawed vertebrates. By contrast, small regions of homology were identifiable between the BbZP and ZP proteins of the non-jawed vertebrate, the sea lamprey Petromyzon marinus. The lamprey ZP proteins were highly similar to the ZP1 and ZP2 subtypes of the jawed vertebrates, which suggests that the ZP proteins of basal chordates most likely shared a recent common ancestor with vertebrate ZP1/2 subtypes and lamprey ZP proteins. Conclusions The results document the spectra of zona pellucida domain-containing proteins of the egg coat of basal chordates. Particularly, the study provides solid evidence for an invertebrate origin of vertebrate ZP proteins and indicates that there are diverse domain architectures in ZP proteins of various metazoan groups.
Collapse
Affiliation(s)
- Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, People’s Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Grasa P, Kaune H, Williams SA. Embryos generated from oocytes lacking complex N- and O-glycans have compromised development and implantation. Reproduction 2012; 144:455-65. [PMID: 22919046 PMCID: PMC3464042 DOI: 10.1530/rep-12-0084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Female mice generating oocytes lacking complex N- and O-glycans (double mutants (DM)) produce only one small litter before undergoing premature ovarian failure (POF) by 3 months. Here we investigate the basis of the small litter by evaluating ovulation rate and embryo development in DM (Mgat1(F/F)C1galt1(F/F):ZP3Cre) and Control (Mgat1(F/F)C1galt1(F/F)) females. Surprisingly, DM ovulation rate was normal at 6 weeks, but declined dramatically by 9 weeks. In vitro development of zygotes to blastocysts was equivalent to Controls although all embryos from DM females lacked a normal zona pellucida (ZP) and ∼30% lacked a ZP entirely. In contrast, in vivo preimplantation development resulted in less embryos recovered from DM females compared with Controls at 3.5 days post coitum (dpc) (3.2±1.3 vs 7.0±0.6). Furthermore, only 45% of mated DM females contained embryos at 3.5 dpc. Of the preimplantation embryos collected from DM females, approximately half were morulae unlike Controls where the majority were blastocysts, indicating delayed embryo development in DM females. Post-implantation development in DM females was analysed to determine whether delayed preimplantation development affected subsequent development. In DM females at 5.5 dpc, only ∼40% of embryos found at 3.5 dpc had implanted. However, at 6.5 dpc, implantation sites in DM females corresponded to embryo numbers at 3.5 dpc indicating delayed implantation. At 9.5 dpc, the number of decidua corresponded to embryo numbers 6 days earlier indicating that all implanted embryos progress to midgestation. Therefore, a lack of complex N- and O-glycans in oocytes during development impairs early embryo development and viability in vivo leading to delayed implantation and a small litter.
Collapse
Affiliation(s)
- Patricia Grasa
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, Level 3, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | | | | |
Collapse
|
26
|
Delivering value from sperm proteomics for fertility. Cell Tissue Res 2012; 349:783-93. [PMID: 22688957 DOI: 10.1007/s00441-012-1452-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 05/14/2012] [Indexed: 12/20/2022]
Abstract
Fertilization of an egg by a spermatozoon sets the stage for mammalian development. Viable sperm are a prerequisite for successful fertilization and beyond. Spermatozoa have a unique cell structure where haploid genomic DNA is located in a tiny cytoplasmic space in the head, mitochondria in the midpiece and then the tail, all enclosed by several layers of membrane. Proteins in sperm play vital roles in motility, capacitation, fertilization, egg activation and embryo development. Molecular defects in these proteins are associated with low fertility or in some cases, infertility. This review will first summarize genesis, molecular anatomy and physiology of spermatozoa, fertilization, embryogenesis and then those proteins playing important roles in various aspects of sperm physiology.
Collapse
|
27
|
Xu H, Liu F, Srakaew N, Koppisetty C, Nyholm PG, Carmona E, Tanphaichitr N. Sperm arylsulfatase A binds to mZP2 and mZP3 glycoproteins in a nonenzymatic manner. Reproduction 2012; 144:209-19. [PMID: 22685254 DOI: 10.1530/rep-11-0338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have shown previously that sperm surface arylsulfatase A (ASA) of mouse, pig, and human is involved in sperm-egg zona pellucida (ZP) binding. By treating capacitated mouse sperm with A23187 to induce the acrosome reaction, we demonstrated by immunoblotting that ASA also existed in the acrosomal content and on the inner acrosomal membrane. Since mZP2 and mZP3 are known as sperm receptors, whereas mZP1 as a cross-linker of mZP2/mZP3, we determined whether purified ASA bound to mZP2 and mZP3 selectively. The three mZP glycoproteins were purified from solubilized ovarian ZP by size exclusion column chromatography. Immuno-dot blot analyses revealed that purified sperm ASA bound to mZP2 at the highest level followed by mZP3, whereas the binding of ASA to mZP1 was minimal. The results confirmed the physiological significance of sperm ASA in the ZP binding process. The binding of ASA to mZP2 and mZP3 was, however, not dependent on the active site pocket amino acids, Cys69, Lys123, and Lys302, which are pertinent to the capturing of an arylsulfate substrate, since ASA mutant with Ala substitution at these three residues still bound to mZP2 and mZP3. The availability of the active site pocket of ASA bound to the ZP suggested that ASA would still retain enzymatic activity, which might be important for subsequent sperm penetration through the ZP.
Collapse
Affiliation(s)
- Hongbin Xu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Orta G, Ferreira G, José O, Treviño CL, Beltrán C, Darszon A. Human spermatozoa possess a calcium-dependent chloride channel that may participate in the acrosomal reaction. J Physiol 2012; 590:2659-75. [PMID: 22473777 DOI: 10.1113/jphysiol.2011.224485] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Motility, maturation and the acrosome reaction (AR) are fundamental functions of mammalian spermatozoa. While travelling through the female reproductive tract, spermatozoa must mature through a process named capacitation, so that they can reach the egg and undergo the AR, an exocytotic event necessary to fertilize the egg. Though Cl⁻ is important for sperm capacitation and for the AR, not much is known about the molecular identity of the Cl⁻ transporters involved in these processes.We implemented a modified perforated patch-clamp strategy to obtain whole cell recordings sealing on the head of mature human spermatozoa.Our whole cell recordings revealed the presence of a Ca²⁺-dependent Cl⁻ current. The biophysical characteristics of this current and its sensitivity to niflumic acid (NFA) and 4,4-diisothiocyano-2,2-stilbene disulphonic acid (DIDIS) are consistent with those displayed by the Ca²⁺-dependent Cl⁻ channel from the anoctamin family (TMEM16). Whole cell patch clamp recordings in the cytoplasmic droplet of human spermatozoa corroborated the presence of these currents, which were sensitive to NFA and to a small molecule TMEM16A inhibitor (TMEM16Ainh, an aminophenylthiazole). Importantly, the human sperm AR induced by a recombinant human glycoprotein from the zona pellucida, rhZP3, displayed a similar sensitivity to NFA, DIDS and TMEM16Ainh as the sperm Ca²⁺-dependent Cl⁻ currents. Our findings indicate the presence of Ca²⁺-dependent Cl⁻ currents in human spermatozoa, that TMEM16A may contribute to these currents and also that sperm Ca²⁺-dependent Cl⁻ currents may participate in the rhZP3-induced AR.
Collapse
Affiliation(s)
- Gerardo Orta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP 62210, México
| | | | | | | | | | | |
Collapse
|
29
|
Ma XX, Zhu JQ, Zhou H, Yang WX. The formation of zona radiata in Pseudosciaena crocea revealed by light and transmission electron microscopy. Micron 2012; 43:435-44. [DOI: 10.1016/j.micron.2011.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/23/2011] [Accepted: 10/25/2011] [Indexed: 11/16/2022]
|
30
|
Hirohashi N, Gerton GL, Buffone MG. Video imaging of the sperm acrosome reaction during in vitro fertilization. Commun Integr Biol 2011; 4:471-6. [PMID: 21966575 DOI: 10.4161/cib.4.4.15636] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 01/12/2023] Open
Abstract
Mammalian spermatozoa become competent for fusion with oocytes while traveling through the female reproductive tract and the oocyte's extracellular investments. Recent studies highlighted the molecular mechanism of the sperm's interactions with the zona pellucida (ZP), the extracellular coat surrounding the oocyte. Fertilizing spermatozoa initiate the sperm acrosome reaction (AR), essential for zona penetration and fusion with the oocyte plasma membrane, before they reach the ZP. However, the exact condition of spermatozoa that leads to successful penetration of the ZP remains unknown. We performed microscopic observations of in vitro fertilization with genetically (EGFP) and chemically (antibody and lectin) labeled spermatozoa to monitor the progression of the AR. Spermatozoa exhibiting EGFP(-)/PNA(+) prior to binding to the ZP initiated zona penetration. This result suggests that spermatozoa that have undergone the AR are still capable of binding and penetrating the ZP.
Collapse
Affiliation(s)
- Noritaka Hirohashi
- Department of Biological Sciences; Graduate School of Humanities and Sciences; Ochanomizu University; Bunkyo, Tokyo Japan
| | | | | |
Collapse
|
31
|
Monné M, Jovine L. A structural view of egg coat architecture and function in fertilization. Biol Reprod 2011; 85:661-9. [PMID: 21715714 DOI: 10.1095/biolreprod.111.092098] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Species-restricted interaction between gametes at the beginning of fertilization is mediated by the extracellular coat of the egg, a matrix of cross-linked glycoprotein filaments called the zona pellucida (ZP) in mammals and the vitelline envelope in nonmammals. All egg coat subunits contain a conserved protein-protein interaction module-the "ZP domain"-that allows them to polymerize upon dissociation of a C-terminal propeptide containing an external hydrophobic patch (EHP). Recently, the first crystal structures of a ZP domain protein, sperm receptor ZP subunit zona pellucida glycoprotein 3 (ZP3), have been reported, giving a glimpse of the structural organization of the ZP at the atomic level and the molecular basis of gamete recognition in vertebrates. The ZP module is divided in two related immunoglobulin-like domains, ZP-N and ZP-C, that contain characteristic disulfide bond patterns and, in the case of ZP-C, also incorporate the EHP. This segment lies at the interface between the two domains, which are connected by a long loop carrying a conserved O-glycan important for binding to sperm in vitro. The structures explain several apparently contradictory observations by reconciling the variable disulfide bond patterns found in different homologues of ZP3 as well as the multiple ZP3 determinants alternatively involved in gamete interaction. These findings have implications for our understanding of ZP subunit biogenesis; egg coat assembly, architecture, and interaction with sperm; structural rearrangements leading to postfertilization hardening of the ZP and the block to sperm binding; and the evolutionary origin of egg coats.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences and Nutrition and Center for Biosciences, Karolinska Institutet, Huddinge, Sweden
| | | |
Collapse
|
32
|
Nishimura H, Gupta S, Myles DG, Primakoff P. Characterization of mouse sperm TMEM190, a small transmembrane protein with the trefoil domain: evidence for co-localization with IZUMO1 and complex formation with other sperm proteins. Reproduction 2011; 141:437-51. [DOI: 10.1530/rep-10-0391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
TMEM190, a small transmembrane protein containing the trefoil domain, was previously identified by our proteomic analysis of mouse sperm. Two structural features of TMEM190, ‘trefoil domain’ and ‘small transmembrane protein’, led us to hypothesize that this protein forms a protein–protein complex required during fertilization, and we characterized TMEM190 by biochemical, cytological, and genetic approaches. We showed in this study that the mouse Tmem190 gene exhibits testis-specific mRNA expression and that the encoded RNA is translated into a 19-kDa protein found in both testicular germ cells and cauda epididymal sperm. Treatment of the cell surface with proteinase K, subcellular fractionation, and immunofluorescence assay all revealed that mouse TMEM190 is an inner-acrosomal membrane protein of cauda epididymal sperm. During the acrosome reaction, TMEM190 partly relocated onto the surface of the equatorial segment, on which sperm–oocyte fusion occurs. Moreover, TMEM190 and IZUMO1, which is an immunoglobulin-like protein required for gamete fusion, co-localized in mouse sperm both before and after the acrosome reaction. However, immunoprecipitates of TMEM190 contained several sperm proteins, but did not include IZUMO1. These findings suggest that a mouse sperm protein complex(es) including TMEM190 plays an indirect role(s) in sperm–oocyte fusion. The role(s), if any, is probably dispensable since Tmem190-null male mice were normally fertile.
Collapse
|
33
|
Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci U S A 2011; 108:4892-6. [PMID: 21383182 DOI: 10.1073/pnas.1018202108] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
To fuse with oocytes, spermatozoa of eutherian mammals must pass through extracellular coats, the cumulus cell layer, and the zona pellucida (ZP). It is generally believed that the acrosome reaction (AR) of spermatozoa, essential for zona penetration and fusion with oocytes, is triggered by sperm contact with the zona pellucida. Therefore, in most previous studies of sperm-oocyte interactions in the mouse, the cumulus has been removed before insemination to facilitate the examination of sperm-zona interactions. We used transgenic mouse spermatozoa, which enabled us to detect the onset of the acrosome reaction using fluorescence microscopy. We found that the spermatozoa that began the acrosome reaction before reaching the zona were able to penetrate the zona and fused with the oocyte's plasma membrane. In fact, most fertilizing spermatozoa underwent the acrosome reaction before reaching the zona pellucida of cumulus-enclosed oocytes, at least under the experimental conditions we used. The incidence of in vitro fertilization of cumulus-free oocytes was increased by coincubating oocytes with cumulus cells, suggesting an important role for cumulus cells and their matrix in natural fertilization.
Collapse
|
34
|
Kempisty B, Jackowska M, Piotrowska H, Antosik P, Woźna M, Bukowska D, Brüssow KP, Jaśkowski JM. Zona pellucida glycoprotein 3 (pZP3) and integrin β2 (ITGB2) mRNA and protein expression in porcine oocytes after single and double exposure to brilliant cresyl blue test. Theriogenology 2011; 75:1525-35. [PMID: 21295838 DOI: 10.1016/j.theriogenology.2010.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/23/2010] [Accepted: 12/19/2010] [Indexed: 11/16/2022]
Abstract
Brilliant cresyl blues (BCB) staining test is a useful tool in assessing the competence of cumulus-oocyte-complexes (COCs) in several mammalian species. It is mostly used to select gametes after they are recovered from the ovary or before and after IVM to isolate those oocytes that reach developmental competency. However, there is evidence that double exposure to BCB test may lead to impaired fertilization or even have a toxic effect on cells. The aim of the present study was to investigate the expression pattern of sperm-egg interaction molecules in oocytes after single and double exposure to BCB test. Follicles were dissected from porcine ovaries after slaughter and aspirated COCs were cultured in standard porcine IVM culture medium (TCM 199) for 44 h. The BCB test was applied to COCs before and after IVM. In developmentally competent oocytes, assessed by determining the activity of glucose-6-phosphate dehydrogenase (G6PDH; BCB test), real-time quantitative PCR reaction methods, western blot and confocal microscopy analysis were applied to determine the transcript levels of porcine zona pellucida glycoprotein 3 (pZP3), and integrin beta 2 (ITGB2), as well as the levels of pZP3 and ITGB2 proteins. In the control group, assessment of the expression of the investigated genes was performed before and after IVM without BCB test. We observed a significantly higher level of pZP3 mRNA in oocytes after single exposure to BCB test compared to control before and after IVM (P < 0.001), and to double staining (P < 0.05). The level of ITGB2 mRNA was also increased in gametes after single exposure to BCB test as compared to control before and after IVM (P < 0.001, P < 0.01, respectively), and double staining (P < 0.05). Western blot analysis demonstrated a higher level of pZP3 protein in oocytes after single staining with BCB as compared to control both before and after IVM (P < 0.001, P < 0.05, respectively) and double staining (P < 0.05). Confocal microscopic observations have revealed the same pattern of increased level of pZP3 and ITGB2 expression after single exposure to BCB test. In both cases we detected specific cytoplasmic localization of both proteins. The ITGB2 protein has zona pellucida and membrane localization in control oocytes before IVM. After IVM and after single exposure to BCB, ITGB2 was also strongly detected in the cytoplasm. In both cases, after double exposure to BCB both proteins were detected only partially in the cytoplasm. Our results suggest that (i) single exposure to BCB increased the expression of sperm-oocyte interaction genes, (ii) double exposure to BCB leads to only partial expression of pZP3 and ITGB2 in oocyte cytoplasm, (iii) the BCB staining test itself may be a cause of specific pZP3 translocation from the zona pellucida to the cytoplasm, and that (iv) in vitro maturation of oocytes may increase ITGB2 expression and translocation from the zona pellucida to the cytoplasm.
Collapse
Affiliation(s)
- B Kempisty
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Naruse M, Ishikawa R, Sakaya H, Moriyama H, Hoshi M, Matsumoto M. Novel conserved structural domains of acrosome reaction-inducing substance are widespread in invertebrates. Mol Reprod Dev 2011; 78:57-66. [DOI: 10.1002/mrd.21274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Jennings PC, Merriman JA, Beckett EL, Hansbro PM, Jones KT. Increased zona pellucida thickness and meiotic spindle disruption in oocytes from cigarette smoking mice. Hum Reprod 2011; 26:878-84. [PMID: 21233109 DOI: 10.1093/humrep/deq393] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The precise effects of cigarette smoking on female fertility have not yet been clearly defined. We have used a mouse model that mimics human smoking and is able to control for variables that may confound clinical studies to assess the impact of chronic smoking on the quality of mouse oocytes. METHODS Mice received cigarette smoke directly to their lungs for 12 weeks. Lung tissue was analyzed for emphysematous changes and cumulus enclosed oocytes (CEOs) were recovered to study their quality. CEOs were in vitro matured, fixed and stained for chromatin and tubulin. Meiotic spindles, chromatin and the zona pellucida were all examined using confocal microscopy. RESULTS After 12 weeks of cigarette smoking, mice developed alveolar tissue damage that was determined by an increase in destructive index of the lung parenchyma. The numbers of oocytes recovered and the rates of oocyte maturation were not significantly different from non-smoking mice. However, oocytes from smoking mice had a significantly thicker zona pellucida along with shorter and wider meiotic spindles. Furthermore in total, almost a quarter of oocytes from smoking mice were abnormal as assessed by either errors in chromosomal congression or spindle shape. CONCLUSIONS We have used a novel model of inhalational cigarette smoking to show that chronic smoking has a detrimental effect on oocyte quality, and this can be observed even though oocytes are removed from the ovary and cultured in vitro.
Collapse
Affiliation(s)
- Phoebe C Jennings
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | |
Collapse
|
37
|
Chankitisakul V, Tharasanit T, Tasripoo K, Techakumphu M. Chronological Reorganization of Microtubules, Actin Microfilaments, and Chromatin during the First Cell Cycle in Swamp Buffalo (Bubalus bubalis) Embryos. Vet Med Int 2010; 2010:382989. [PMID: 21234419 PMCID: PMC3014712 DOI: 10.4061/2010/382989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/03/2010] [Indexed: 11/20/2022] Open
Abstract
This paper aimed to study the dynamics of early embryonic development, in terms of redistribution of cytoskeleton (microtubules, actin microfilaments) and chromatin configurations during the first cell cycle in swamp buffalo embryos. Oocytes were matured and fertilized in vitro, and they were fixed at various time points after IVF. At 6 h after IVF, 44.4% matured oocytes were penetrated by spermatozoa. Partial ZP digestion, however, did not improve fertilization rate compared to control (P > .05). At 12 h after IVF, the fertilized oocytes progressed to the second meiotic division and formed the female pronucleus simultaneously with the paternal chromatin continued to decondense. A sperm aster was observed radiating from the base of the decondensing sperm head. At 18 h after IVF, most presumptive zygotes had reached the pronuclear stage. The sperm aster was concurrently enlarged to assist the migration and apposition of pronuclei. Cell cleavage was facilitated by microfilaments and firstly observed by 30 h after IVF. In conclusion, the cytoskeleton actively involves with the process of fertilization and cleavage in swamp buffalo oocytes. The centrosomal material is paternally inherited. Fertilization failure is predominantly caused by poor sperm penetration. However, partial digestion of ZP did not improve fertilization rate.
Collapse
Affiliation(s)
- Vibuntita Chankitisakul
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
38
|
From A to Z: apical structures and zona pellucida-domain proteins. Trends Cell Biol 2010; 20:524-32. [DOI: 10.1016/j.tcb.2010.06.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/07/2010] [Accepted: 06/07/2010] [Indexed: 12/29/2022]
|
39
|
D'Cruz SC, Vaithinathan S, Jubendradass R, Mathur PP. Effects of plants and plant products on the testis. Asian J Androl 2010; 12:468-79. [PMID: 20562897 DOI: 10.1038/aja.2010.43] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
For centuries, plants and plant-based products have been used as a valuable and safe natural source of medicines for treating various ailments. The therapeutic potential of most of these plants could be ascribed to their anticancer, antidiabetic, hepatoprotective, cardioprotective, antispasmodic, analgesic and various other pharmacological properties. However, several commonly used plants have been reported to adversely affect male reproductive functions in wildlife and humans. The effects observed with most of the plant and plant-based products have been attributed to the antispermatogenic and/or antisteroidogenic properties of one or more active ingredients. This review discusses the detrimental effects of some of the commonly used plants on various target cells in the testis. A deeper insight into the molecular mechanisms of action of these natural compounds could pave the way for developing therapeutic strategies against their toxicity.
Collapse
Affiliation(s)
- Shereen Cynthia D'Cruz
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | | | | | | |
Collapse
|
40
|
Bhandari B, Bansal P, Talwar P, Gupta SK. Delineation of downstream signalling components during acrosome reaction mediated by heat solubilized human zona pellucida. Reprod Biol Endocrinol 2010; 8:7. [PMID: 20096131 PMCID: PMC2832785 DOI: 10.1186/1477-7827-8-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/23/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Human egg is enveloped by a glycoproteinaceous matrix, zona pellucida (ZP), responsible for binding of the human spermatozoa to the egg and induction of acrosomal exocytosis in the spermatozoon bound to ZP. In the present manuscript, attempts have been made to delineate the downstream signalling components employed by human ZP to induce acrosome reaction. METHODS Heat-solubilized human ZP (SIZP) was used to study the induction of acrosome reaction in capacitated human spermatozoa using tetramethylrhodamine isothiocyanate conjugated Pisum sativum agglutinin (TRITC-PSA) in absence or presence of various pharmacological inhibitors. In addition, intracellular calcium ([Ca2+]i) levels in sperm using Fluo-3 acetoxymethyl ester as fluorescent probe were also estimated in response to SIZP. RESULTS SIZP induces acrosomal exocytosis in capacitated human sperm in a dose dependent manner accompanied by an increase in [Ca2+]i. Human SIZP mediated induction of acrosome reaction depends on extracellular Ca2+ and involves activation of Gi protein-coupled receptor, tyrosine kinase, protein kinases A & C and phosphoinositide 3 (PI3)- kinase. In addition, T-type voltage operated calcium channels and GABA-A receptor associated chloride (Cl-) channels play an important role in SIZP mediated induction of acrosome reaction. CONCLUSIONS Results described in the present study provide a comprehensive account of the various downstream signalling components associated with human ZP mediated acrosome reaction.
Collapse
Affiliation(s)
- Beena Bhandari
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| | - Pankaj Bansal
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| | - Pankaj Talwar
- Assisted Reproduction Technology Centre, Army Hospital Research & Referral, Delhi Cantonment, Delhi-110 010, India
| | - Satish K Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| |
Collapse
|
41
|
Zona Pellucida Domain Proteins Remodel the Apical Compartment for Localized Cell Shape Changes. Dev Cell 2010; 18:64-76. [DOI: 10.1016/j.devcel.2009.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 10/06/2009] [Accepted: 11/13/2009] [Indexed: 11/21/2022]
|
42
|
Dun MD, Mitchell LA, Aitken RJ, Nixon B. Sperm-zona pellucida interaction: molecular mechanisms and the potential for contraceptive intervention. Handb Exp Pharmacol 2010:139-178. [PMID: 20839091 DOI: 10.1007/978-3-642-02062-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
At the moment of insemination, millions of mammalian sperm cells are released into the female reproductive tract with the single goal of finding the oocyte. The spermatozoa subsequently ignore the thousands of cells they make contact with during their journey to the site of fertilization, until they reach the surface of the oocyte. At this point, they bind tenaciously to the acellular coat, known as the zona pellucida, which surrounds the oocyte and orchestrate a cascade of cellular interactions that culminate in fertilization. These exquisitely cell- and species- specific recognition events are among the most strategically important cellular interactions in biology. Understanding the cellular and molecular mechanisms that underpin them has implications for the etiology of human infertility and the development of novel targets for fertility regulation. Herein we describe our current understanding of the molecular basis of successful sperm-zona pellucida binding.
Collapse
Affiliation(s)
- Matthew D Dun
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | | | |
Collapse
|