1
|
Awda BJ, Mahoney IV, Pettitt M, Imran M, Katselis GS, Buhr MM. Existence and importance of Na +K +-ATPase in the plasma membrane of boar spermatozoa. Can J Physiol Pharmacol 2024; 102:254-269. [PMID: 38029410 DOI: 10.1139/cjpp-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Sodium-potassium-ATPase (Na+K+-ATPase), a target to treat congestive heart failure, is the only known receptor for cardiac glycosides implicated in intracellular signaling and additionally functions enzymatically in ion transport. Spermatozoa need transmembrane ion transport and signaling to fertilize, and Na+K+-ATPase is identified here for the first time in boar spermatozoa. Head plasma membrane (HPM) isolated from boar spermatozoa was confirmed pure by marker enzymes acid and alkaline phosphatase (218 ± 23% and 245 ± 38% enrichment, respectively, versus whole spermatozoa). Western immunoblotting detected α and β subunits (isoforms α1, α3, β1, β2, and β3) in different concentrations in whole spermatozoa and HPM. Immunofluorescence of intact sperm only detected α3 on the post-equatorial exterior membrane; methanol-permeabilized sperm also had α3 post-equatorially and other isoforms on the acrosomal ridge and cap. Mass spectrometry confirmed the presence of all isoforms in HPM. Incubating boar sperm in capacitating media to induce the physiological changes preceding fertilization significantly increased the percentage of capacitated sperm compared to 0 h control (33.0 ± 2.6% vs. 19.2 ± 2.6% capacitated sperm, respectively; p = 0.014) and altered the β2 immunofluorescence pattern. These results demonstrate the presence of Na+K+-ATPase in boar sperm HPM and that it changes during capacitation.
Collapse
Affiliation(s)
- Basim J Awda
- Department of Animal and Poultry Science, University of Guelph, ON, N1G 2W1, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Ian V Mahoney
- Department of Animal and Poultry Science, University of Guelph, ON, N1G 2W1, Canada
| | - Murray Pettitt
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Muhammad Imran
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - George S Katselis
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Mary M Buhr
- Department of Animal and Poultry Science, University of Guelph, ON, N1G 2W1, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
2
|
Gonzalez-Castro RA, Carnevale EM. Phospholipase C Zeta 1 (PLCZ1): The Function and Potential for Fertility Assessment and In Vitro Embryo Production in Cattle and Horses. Vet Sci 2023; 10:698. [PMID: 38133249 PMCID: PMC10747197 DOI: 10.3390/vetsci10120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Phospholipase C Zeta 1 (PLCZ1) is considered a major sperm-borne oocyte activation factor. After gamete fusion, PLCZ1 triggers calcium oscillations in the oocyte, resulting in oocyte activation. In assisted fertilization, oocyte activation failure is a major cause of low fertility. Most cases of oocyte activation failures in humans related to male infertility are associated with gene mutations and/or altered PLCZ1. Consequently, PLCZ1 evaluation could be an effective diagnostic marker and predictor of sperm fertilizing potential for in vivo and in vitro embryo production. The characterization of PLCZ1 has been principally investigated in men and mice, with less known about the PLCZ1 impact on assisted reproduction in other species, such as cattle and horses. In horses, sperm PLCZ1 varies among stallions, and sperm populations with high PLCZ1 are associated with cleavage after intracytoplasmic sperm injection (ICSI). In contrast, bull sperm is less able to initiate calcium oscillations and undergo nuclear remodeling, resulting in poor cleavage after ICSI. Advantageously, injections of PLCZ1 are able to rescue oocyte failure in mouse oocytes after ICSI, promoting full development and birth. However, further research is needed to optimize PLCZ1 diagnostic tests for consistent association with fertility and to determine whether PLCZ1 as an oocyte-activating treatment is a physiological, efficient, and safe method for improving assisted fertilization in cattle and horses.
Collapse
Affiliation(s)
| | - Elaine M. Carnevale
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
3
|
Bollwein H, Malama E. Review: Evaluation of bull fertility. Functional and molecular approaches. Animal 2023; 17 Suppl 1:100795. [PMID: 37567681 DOI: 10.1016/j.animal.2023.100795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 08/13/2023] Open
Abstract
With the term "assisted reproduction technologies" in modern cattle farming, one could imply the collection of techniques that aim at the optimal use of bovine gametes to produce animals of high genetic value in a time- and cost-efficient manner. The accurate characterisation of sperm quality plays a critical role for the efficiency of several assisted reproduction-related procedures, such as sperm processing, in vitro embryo production and artificial insemination. Bull fertility is ultimately a collective projection of the ability of a series of ejaculates to endure sperm processing stress, and achieve fertilisation of the oocyte and production of a viable and well-developing embryo. In this concept, the assessment of sperm functional and molecular characteristics is key to bull fertility diagnostics and prognostics. Among others, functional features linked to sperm plasma membrane, acrosome and DNA integrity are usually assessed as a measure of the ability of sperm to express the phenotypes that will allow them to maintain their homeostasis and orchestrate-in a strict temporal manner-the course of events that will enable the delivery of their genetic content to the oocyte upon fertilisation. Nevertheless, measures of sperm functionality are not always adequate indicators of bull fertility. Nowadays, advancements in the field of molecular biology have facilitated the profiling of several biomolecules in male gametes. The molecular profiling of bovine sperm offers a deeper insight into the mechanisms underlying sperm physiology and, thus, can reveal novel candidate markers for bull fertility prognosis. In this review, the importance of three organelles (the nucleus, the plasma membrane and the acrosome) for the characterisation of sperm fertilising capacity and bull fertility is discussed at functional and molecular levels. In particular, information about sperm head morphometry, chromatin structure, viability as well as the ability of sperm to capacitate and undergo the acrosome reaction are presented in relation to the cryotolerance of male gametes and bull fertility. Finally, major spermatozoal coding and non-coding RNAs, and proteins that are involved in the above-mentioned aspects of sperm functionality are also summarised.
Collapse
Affiliation(s)
- H Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - E Malama
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Spermatozoa and seminal plasma proteomics: too many molecules, too few markers. The case of bovine and porcine semen. Anim Reprod Sci 2022; 247:107075. [DOI: 10.1016/j.anireprosci.2022.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/06/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022]
|
5
|
Zhang R, Chu M, Chen Y, Yan P. Heparin-induced and caffeine or ouabain supplemented capacitation of frozen-thawed yak (Bos grunniens) spermatozoa. Reprod Domest Anim 2022; 57:587-597. [PMID: 35171518 DOI: 10.1111/rda.14098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/12/2022] [Indexed: 11/27/2022]
Abstract
Our goal was to investigate heparin-induced capacitation of frozen-thawed yak sperm, and to assess the effects of caffeine or ouabain supplementation with heparin on sperm capacitation. Sperm were incubated with varying heparin concentrations, namely, 0, 12.5, 25, 50 and 100 μg/ml, for 0, 15, 30 and 60min. In every treatment, sperm capacitation was assessed using microscopic examination of the sperm acrosomal status and western blot analysis of the levels of tyrosine phosphorylation (Tyr-P). Based on our results, the optimal condition for frozen-thawed yak sperm capacitation was a 30min exposure to 50 μg/ml heparin. Next, we incubated frozen-thawed yak sperm with 50ug/ml heparin, along with varying concentrations of caffeine supplementation, namely, 0, 2.5, 5, and 10mM for 30min. Interestingly, caffeine significantly increased yak sperm acrosome reaction (AR) and Tyr-P (p < 0.05). The optimal caffeine concentration was 5mM, followed by 2.5mM and 10mM, with the lowest AR and Tyr-P found in sperm cells that did not receive any caffeine. To examine the effects of ouabain on sperm capacitation, we next incubated frozen-thawed yak sperm with 50 μg/ml heparin, along with varying concentrations of ouabain, namely, 0, 25, 50, and 100 µM for 30min. We demonstrated that ouabain supplementation did not alter yak sperm AR or Tyr-P in sperm cells, relative to the control (p>0.05). In summary, our findings suggested that caffeine acts synergistically with heparin to increase yak sperm capacitation, but ouabain does not synergize with heparin to promote yak sperm capacitation.
Collapse
Affiliation(s)
- Renzheng Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural, Lanzhou, 730050, China
| | - Yiwei Chen
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural, Lanzhou, 730050, China
| | - Ping Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
6
|
Favia M, Gerbino A, Notario E, Tragni V, Sgobba MN, Dell’Aquila ME, Pierri CL, Guerra L, Ciani E. The Non-Gastric H+/K+ ATPase (ATP12A) Is Expressed in Mammalian Spermatozoa. Int J Mol Sci 2022; 23:ijms23031048. [PMID: 35162971 PMCID: PMC8835340 DOI: 10.3390/ijms23031048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
H+/K+ ATPase Type 2 is an heteromeric membrane protein involved in cation transmembrane transport and consists of two subunits: a specific α subunit (ATP12A) and a non-specific β subunit. The aim of this study was to demonstrate the presence and establish the localization of ATP12A in spermatozoa from Bubalus bubalis, Bos taurus and Ovis aries. Immunoblotting revealed, in all three species, a major band (100 kDa) corresponding to the expected molecular mass. The ATP12A immunolocalization pattern showed, consistently in the three species, a strong signal at the acrosome. These results, described here for the first time in spermatozoa, are consistent with those observed for the β1 subunit of Na+/K+ ATPase, suggesting that the latter may assemble with the α subunit to produce a functional ATP12A dimer in sperm cells. The above scenario appeared to be nicely supported by 3D comparative modeling and interaction energy calculations. The expression of ATP12A during different stages of bovine sperm maturation progressively increased, moving from epididymis to deferent ducts. Based on overall results, we hypothesize that ATP12A may play a role in acrosome reactions. Further studies will be required in order to address the functional role of this target protein in sperm physiology.
Collapse
|
7
|
Ojaghi M, Varghese J, Kastelic JP, Thundathil JC. Characterization of the Testis-Specific Angiotensin Converting Enzyme (tACE)-Interactome during Bovine Sperm Capacitation. Curr Issues Mol Biol 2022; 44:449-469. [PMID: 35723410 PMCID: PMC8928970 DOI: 10.3390/cimb44010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
A comprehensive understanding of molecular and biochemical changes during sperm capacitation is critical to the success of assisted reproductive technologies. We reported involvement of the testis-specific isoform of Angiotensin Converting Enzyme (tACE) in bovine sperm capacitation. The objective of this study was to characterize the tACE interactome in fresh and heparin-capacitated bovine sperm through immunoprecipitation coupled with mass spectrometry. These interactions were validated by co-localization of tACE with beta-tubulin as an identified interactome constituent. Although interactions between tACE and several proteins remained unchanged in fresh and capacitated sperm, mitochondrial aldehyde dehydrogenase 2 (ALDH2), inactive serine/threonine protein-kinase 3 (VRK3), tubulin-beta-4B chain (TUBB4B), and tubulin-alpha-8 chain (TUBA8) were recruited during capacitation, with implications for cytoskeletal and membrane reorganization, vesicle-mediated transport, GTP-binding, and redox regulation. A proposed tACE interactional network with identified interactome constituents was generated. Despite tACE function being integral to capacitation, the relevance of interactions with its binding partners during capacitation and subsequent events leading to fertilization remains to be elucidated.
Collapse
|
8
|
Sajeevadathan M, Pettitt MJ, Buhr MM. Are isoforms of capacitating Na + K + -ATPase localized to sperm head rafts? Mol Reprod Dev 2021; 88:731-743. [PMID: 34658111 DOI: 10.1002/mrd.23543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 07/05/2021] [Accepted: 10/01/2021] [Indexed: 01/18/2023]
Abstract
Capacitation begins in the sperm head plasma membrane (HPM). Membrane rafts could house signaling molecules, but although these specialized microdomains have been microscopically visualized in sperm heads, rafts have been isolated for study only from homogenized whole sperm or tails, never purified HPM. Sodium/potassium ATPase (Na+ K+ -ATPase) is a membrane-bound signaling protein that induces capacitation in bull sperm in response to the steroid hormone ouabain, and its subunit isoforms α1, α3, β1, β2, and β3 are known in HPM. This study hypothesized that rafts exist in the HPM of bull sperm, with Na+ K+ -ATPase subunit isoforms preferentially localized there. Western immunoblotting (WB) of HPM from fresh, uncapacitated bull sperm (n = 7 ejaculates), and detergent-resistant membranes isolated by density gradient centrifugation from this HPM, contained the raft-marker protein Flotillin-1; the non-raft fraction did not. HPM, raft, and non-raft contained all known Na+ K+ -ATPase isoforms including, for the first time, the previously unknown α2 isoform. Quantification (ImageQuant Software) found α3 and β1 were relatively dominant isoforms in the HPM raft. WB profiles of raft isoforms differed significantly from HPM and non-raft profiles, with unique banding patterns and amounts, hinting that the capacitation signaling in the now-identified HPM rafts may depend on unique sequences within the isoform structure.
Collapse
Affiliation(s)
- Mrudhula Sajeevadathan
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - Murray J Pettitt
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Prairie Swine Centre, Saskatoon, Saskatchewan, Canada
| | - Mary M Buhr
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
9
|
Na,K-ATPase α4, and Not Na,K-ATPase α1, is the Main Contributor to Sperm Motility, But its High Ouabain Binding Affinity Site is Not Required for Male Fertility in Mice. J Membr Biol 2021; 254:549-561. [PMID: 34129092 DOI: 10.1007/s00232-021-00181-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 01/05/2023]
Abstract
Mammalian sperm express two Na,K-ATPase (NKA) isoforms, Na,K-ATPase α4 (NKAα4) and Na,K-ATPase α1 (NKAα1). While NKAα4 is critical to sperm motility, the role of NKAα1 in sperm movement remains unknown. We determined this here using a genetic and pharmacological approach, modifying the affinity of NKAα1 and NKAα4 for the inhibitor ouabain to selectively block the function of each isoform. Sperm from wild-type (WT) mice (naturally containing ouabain-resistant NKAα1 and ouabain-sensitive NKAα4) and three newly generated mouse lines, expressing both NKAα1 and NKAα4 ouabain resistant (OR), ouabain sensitive (OS), and with their ouabain affinity switched (SW) were used. All mouse lines produced normal sperm numbers and were fertile. All sperm types showed NKAα isoform expression levels and activity comparable to WT, and kinetics for ouabain inhibition confirming the expected changes in ouabain affinity for each NKA isoform. Ouabain at 1 μM, which only block ouabain-sensitive NKA, significantly inhibited total, progressive, and hyperactivated sperm motility in WT and OS, but had no significant effect on OR or SW sperm. Higher ouabain (1 mM), which inhibits both ouabain-sensitive and ouabain-resistant NKA, had little additional effect on sperm motility in all mouse lines, including the OR and SW. A similar pattern was found for the effect of ouabain on sperm intracellular sodium ([Na+]i). These results indicate that NKAα4, but not NKAα1 is the main contributor to sperm motility and that the ouabain affinity site in NKA is not an essential requirement for male fertility.
Collapse
|
10
|
Unnikrishnan V, Kastelic JP, Thundathil JC. Ouabain-induced activation of phospholipase C zeta and its contributions to bovine sperm capacitation. Cell Tissue Res 2021; 385:785-801. [PMID: 33885964 DOI: 10.1007/s00441-021-03455-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
The sperm-derived oocyte activating factor, phospholipase C zeta (PLC ζ), is the only PLC isoform reported in cattle. The objectives were to (1) localize PLC ζ in fresh and capacitated bovine sperm and (2) investigate the activation of PLC ζ during bull sperm capacitation and contributions of PLC activity to this process. We confirmed interaction of testis-specific isoform of Na/K-ATPase (ATP1A4) with PLC ζ (immunolocalization and immunoprecipitation) and tyrosine phosphorylation (immunoprecipitation) of PLC ζ (a post-translational protein modification commonly involved in activation of PLC in somatic cells) during capacitation. Furthermore, incubation of sperm under capacitating conditions upregulated PLC-mediated hyperactivated motility, tyrosine phosphoprotein content, acrosome reaction, and F-actin formation (flow cytometry), implying that PLC activity is enhanced during capacitation and contributing to these capacitation processes. In conclusion, we inferred that PLC ζ is activated during capacitation by tyrosine phosphorylation through a mechanism involving ATP1A4, contributing to capacitation-associated biochemical events.
Collapse
Affiliation(s)
- Veena Unnikrishnan
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, CAL, T2N 4N1, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, CAL, T2N 4N1, Canada
| | - Jacob C Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, CAL, T2N 4N1, Canada.
| |
Collapse
|
11
|
Unnikrishnan V, Kastelic J, Thundathil J. Intracytoplasmic Sperm Injection in Cattle. Genes (Basel) 2021; 12:198. [PMID: 33572865 PMCID: PMC7911995 DOI: 10.3390/genes12020198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 10/30/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) involves the microinjection of sperm into a matured oocyte. Although this reproductive technology is successfully used in humans and many animal species, the efficiency of this procedure is low in the bovine species mainly due to failed oocyte activation following sperm microinjection. This review discusses various reasons for the low efficiency of ICSI in cattle, potential solutions, and future directions for research in this area, emphasizing the contributions of testis-specific isoforms of Na/K-ATPase (ATP1A4) and phospholipase C zeta (PLC ζ). Improving the efficiency of bovine ICSI would benefit the cattle breeding industries by effectively utilizing semen from elite sires at their earliest possible age.
Collapse
Affiliation(s)
| | | | - Jacob Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (V.U.); (J.K.)
| |
Collapse
|
12
|
Syeda SS, Sánchez G, McDermott JP, Hong KH, Blanco G, Georg GI. The Na+ and K+ transport system of sperm (ATP1A4) is essential for male fertility and an attractive target for male contraception†. Biol Reprod 2020; 103:343-356. [PMID: 32588885 PMCID: PMC7401355 DOI: 10.1093/biolre/ioaa093] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
One of the mechanisms that cells have developed to fulfil their specialized tasks is to express different molecular variants of a particular protein that has unique functional properties. Na,K-ATPase (NKA), the ion transport mechanism that maintains the transmembrane Na+ and K+ concentrations across the plasma membrane of cells, is one of such protein systems that shows high molecular and functional heterogeneity. Four different isoforms of the NKA catalytic subunit are expressed in mammalian cells (NKAα1, NKAα2, NKAα3, and NKAα4). NKAα4 (ATP1A4) is the isoform with the most restricted pattern of expression, being solely produced in male germ cells of the testis. NKAα4 is abundant in spermatozoa, where it is required for sperm motility and hyperactivation. This review discusses the expression, functional properties, mechanism of action of NKAα4 in sperm physiology, and its role in male fertility. In addition, we describe the use of NKAα4 as a target for male contraception and a potential approach to pharmacologically block its ion transport function to interfere with male fertility.
Collapse
Affiliation(s)
- Shameem Sultana Syeda
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Gladis Sánchez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeffrey P McDermott
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kwon Ho Hong
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
13
|
van Son M, Tremoen NH, Gaustad AH, Våge DI, Zeremichael TT, Myromslien FD, Grindflek E. Transcriptome profiling of porcine testis tissue reveals genes related to sperm hyperactive motility. BMC Vet Res 2020; 16:161. [PMID: 32456687 PMCID: PMC7249385 DOI: 10.1186/s12917-020-02373-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sperm hyperactive motility has previously been shown to influence litter size in pigs, but little is known about the underlying biological mechanisms. The aim of this study was to use RNA sequencing to investigate gene expression differences in testis tissue from Landrace and Duroc boars with high and low levels of sperm hyperactive motility. Boars with divergent phenotypes were selected based on their sperm hyperactivity values at the day of ejaculation (day 0) (contrasts (i) and (ii) for Landrace and Duroc, respectively) and on their change in hyperactivity between day 0 and after 96 h liquid storage at 18 °C (contrast (iii)). RESULTS RNA sequencing was used to measure gene expression in testis. In Landrace boars, 3219 genes were differentially expressed for contrast (i), whereas 102 genes were differentially expressed for contrast (iii). Forty-one differentially expressed genes were identified in both contrasts, suggesting a functional role of these genes in hyperactivity regardless of storage. Zinc finger DNLZ was the most up-regulated gene in contrasts (i) and (iii), whereas the most significant differentially expressed gene for the two contrasts were ADP ribosylation factor ARFGAP1 and solute carrier SLC40A1, respectively. For Duroc (contrast (ii)), the clustering of boars based on their gene expression data did not reflect their difference in sperm hyperactivity phenotypes. No results were therefore obtained for this breed. A case-control analysis of variants identified in the Landrace RNA sequencing data showed that SNPs in NEU3, CHRDL2 and HMCN1 might be important for sperm hyperactivity. CONCLUSIONS Differentially expressed genes were identified in Landrace boars with high and low levels of sperm hyperactivity at the day of ejaculate collection and high and low change in hyperactivity after 96 h of sperm storage. The results point towards important candidate genes, biochemical pathways and sequence variants underlying sperm hyperactivity in pigs.
Collapse
Affiliation(s)
| | - Nina Hårdnes Tremoen
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Ann Helen Gaustad
- Norsvin SA, 2317 Hamar, Norway
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway
| | - Dag Inge Våge
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | | | | |
Collapse
|
14
|
ATP1A3 mutation as a candidate cause of autosomal dominant cone-rod dystrophy. Hum Genet 2020; 139:1391-1401. [PMID: 32440726 DOI: 10.1007/s00439-020-02182-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022]
Abstract
Cone-rod dystrophy (CORD) is an inherited retinal degenerative disease characterized by progressive loss of cone and rod photoreceptors. Although several genes have been reported to cause autosomal dominant CORD (adCORD), the genetic causes of adCORD have not been fully elucidated. Here, we identified the ATP1A3 gene, encoding the α3 subunit of Na+, K+-ATPase, as a novel gene associated with adCORD. Using whole-exome sequencing (WES), we found a candidate mutation of ATP1A3 that co-segregated with the disease in an analysis of two affected patients and one healthy relative in an adCORD family. According to our RNA-seq data, we demonstrated that the Atp1a3 mRNA level was extremely high in the murine retina. Overexpression of mutant ATP1A3 in vitro led to a reduced oxygen consumption rate (OCR), reflecting the limited mitochondrial reserve capacity. Furthermore, we generated transgenic mice expressing the ATP1A3 cDNA with patient variant and found decreased electroretinogram (ERG) responses. Moreover, the mutant ATP1A3 is highly expressed in photoreceptor inner segment, where mitochondria are enriched. These results suggest that the ATP1A3 mutation is a new genetic cause responsible for adCORD and indicate that ATP1A3 plays an important role in retinal function.
Collapse
|
15
|
Saha SR, Sakase M, Fukushima M, Harayama H. Effects of digoxin on full-type hyperactivation in bovine ejaculated spermatozoa with relatively lower survivability for incubation with stimulators of cAMP signaling cascades. Theriogenology 2020; 154:100-109. [PMID: 32540510 DOI: 10.1016/j.theriogenology.2020.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
Previous researches of our laboratory reported that addition of cAMP analog cBiMPS and protein phosphatase inhibitor calyculin A (stimulators of cAMP signaling cascades) improved the capacity of incubation medium to induce full-type hyperactivation in bovine ejaculated spermatozoa. However, this modified medium was valid only for samples with relatively good survivability for incubation with stimulators of cAMP signaling cascades. Thus, it is necessary to make further modified medium for evaluation of potentials to exhibit full-type hyperactivation in bovine sperm samples with relatively lower survivability. Na+/K+-ATPase is an integral membrane protein and involved with the regulation of rodent sperm motility. To make further modification of the medium, we examined effects of Na+/K+-ATPase inhibition with digoxin on motility, full-type hyperactivation and protein tyrosine phosphorylation in bovine ejaculated spermatozoa with relatively lower survivability for incubation with stimulators of cAMP signaling cascades and also performed the immunodetection of bovine sperm Na+/K+-ATPase. The addition of Na+/K+-ATPase inhibitor digoxin to the incubation medium containing cBiMPS and calyculin A had the tendency to lessen the decreases in the percentages of motile spermatozoa in all of 12 samples after the incubation for 1-3 h and significantly increased the percentages of full-type hyperactivation in one group of 4 samples (Sample-A1) and another group of 4 samples (Sample-A2) after 1 and 2 h respectively, though it had no significant effects on full-type hyperactivation in the other group of 4 samples (Sample-B). In addition, incubation time-related changes in the sperm protein tyrosine phosphorylation (a good marker for sperm capacitation) were correlated with those in the percentages of full-type hyperactivation in Sample-A1 containing digoxin. Immunodetection showed that Na+/K+-ATPase is present in the middle and principal pieces of the flagella, indicating that Na+/K+-ATPase has possible relations with sperm motility. These results obtained with bull ejaculated spermatozoa with relatively lower survivability indicate that incubation method using digoxin is useful to evaluate potentials of sperm samples to exhibit full-type hyperactivation, that digoxin has effects on suppressing reduction of sperm motility, and that prolonged incubation with digoxin induces reduction of capacitation state which may suppress the maintenance of full-type hyperactivation.
Collapse
Affiliation(s)
- Soma Rani Saha
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Mitsuhiro Sakase
- Hokubu Agricultural Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Asago, Hyogo, Japan
| | - Moriyuki Fukushima
- Hokubu Agricultural Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Asago, Hyogo, Japan
| | - Hiroshi Harayama
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
16
|
Ojaghi M, Kastelic J, Thundathil JC. Testis-specific isoform of angiotensin-converting enzyme (tACE) as a candidate marker for bull fertility. Reprod Fertil Dev 2019; 30:1584-1593. [PMID: 29898814 DOI: 10.1071/rd17300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 04/27/2018] [Indexed: 01/26/2023] Open
Abstract
Although a traditional bull breeding soundness evaluation is designed to identify bulls that are grossly abnormal, bulls classified as satisfactory potential breeders still vary in fertility, implying submicroscopic differences in sperm characteristics. Testis-specific isozyme of angiotensin-converting enzyme (tACE) is involved in the regulation of sperm function. Therefore, the aim of the present study was to determine tACE content, activity and localisation in bull spermatozoa and their associations with fertility. Semen from low-fertility (LF) and high-fertility (HF) Holstein bulls (n=20) with known FERTSOL rates, which represents the 56-day non-return rate, were used. There was greater tACE content (P<0.05) and tACE activity (P<0.01) in HF versus LF spermatozoa. Based on immunolocalisation, tACE was either in the acrosomal or postacrosomal region of the sperm head, with HF bulls having a higher proportion of spermatozoa with tACE in the acrosomal region than LF bulls (P<0.05). tACE content, activity, localisation to the acrosomal region and progressive motility were significantly correlated with fertility and, based on regression analysis, tACE content was predictive of fertility. tACE content and activity in semen were similar between yearling (10-13 months old) and mature (3-4 years old) bulls. Therefore, tACE has potential as a marker of field fertility in bulls at their earliest possible age.
Collapse
Affiliation(s)
- Mina Ojaghi
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, TRW 2D13, 3280 Hospital Dr, NW T2N 4Z6, Canada
| | - John Kastelic
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, TRW 2D13, 3280 Hospital Dr, NW T2N 4Z6, Canada
| | - Jacob C Thundathil
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, TRW 2D13, 3280 Hospital Dr, NW T2N 4Z6, Canada
| |
Collapse
|
17
|
de Oliveira AS, Câmara DR, Batista AM, Silva RAJA, Arruda LCP, Monteiro MM, Costa JADS, Guerra MMP. Na+, K+-ATPase in ram sperm – Its importance for kinematics, localisation and expression on the sperm surface. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium-and Potassium-Activated Adenosine Triphosphatase (Na +, K +-ATPase) Enzyme Activity: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1427. [PMID: 31010095 PMCID: PMC6518254 DOI: 10.3390/ijerph16081427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
In this study, several lines of evidence are provided to show that Na + , K + -ATPase activity exerts vital roles in normal brain development and function and that loss of enzyme activity is implicated in neurodevelopmental, neuropsychiatric and neurodegenerative disorders, as well as increased risk of cancer, metabolic, pulmonary and cardiovascular disease. Evidence is presented to show that fluoride (F) inhibits Na + , K + -ATPase activity by altering biological pathways through modifying the expression of genes and the activity of glycolytic enzymes, metalloenzymes, hormones, proteins, neuropeptides and cytokines, as well as biological interface interactions that rely on the bioavailability of chemical elements magnesium and manganese to modulate ATP and Na + , K + -ATPase enzyme activity. Taken together, the findings of this study provide unprecedented insights into the molecular mechanisms and biological pathways by which F inhibits Na + , K + -ATPase activity and contributes to the etiology and pathophysiology of diseases associated with impairment of this essential enzyme. Moreover, the findings of this study further suggest that there are windows of susceptibility over the life course where chronic F exposure in pregnancy and early infancy may impair Na + , K + -ATPase activity with both short- and long-term implications for disease and inequalities in health. These findings would warrant considerable attention and potential intervention, not to mention additional research on the potential effects of F intake in contributing to chronic disease.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, P72 YF10 Bandon, Co. Cork, Ireland.
| |
Collapse
|
19
|
Panner Selvam MK, Agarwal A, Pushparaj PN. A quantitative global proteomics approach to understanding the functional pathways dysregulated in the spermatozoa of asthenozoospermic testicular cancer patients. Andrology 2019; 7:454-462. [DOI: 10.1111/andr.12620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | - A. Agarwal
- American Center for Reproductive Medicine Cleveland Clinic Cleveland OH USA
| | - P. N. Pushparaj
- Center of Excellence in Genomic Medicine Research King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
20
|
Interaction of ouabain and progesterone on induction of bull sperm capacitation. Theriogenology 2019; 126:191-198. [DOI: 10.1016/j.theriogenology.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/06/2018] [Accepted: 12/01/2018] [Indexed: 01/16/2023]
|
21
|
Panner Selvam MK, Agarwal A, Dias TR, Martins AD, Samanta L. Presence of Round Cells Proteins do not Interfere with Identification of Human Sperm Proteins from Frozen Semen Samples by LC-MS/MS. Int J Mol Sci 2019; 20:ijms20020314. [PMID: 30646561 PMCID: PMC6359632 DOI: 10.3390/ijms20020314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/22/2022] Open
Abstract
In sperm proteomic experiments round cells and leukocyte proteins are profiled along with sperm proteome. The influence of round cell and leukocyte proteins on the sperm proteome has not been investigated. The objective of this study was to identify if the proteins from round cells, including leukocytes, interfere with the proteomic analysis of spermatozoa in frozen semen samples. Proteomic profiling of sperm was performed using liquid chromatography-tandem mass spectrometry in four groups: Group 1 contained neat semen with round cells and leukocytes ≥ 1 × 106/mL, group 2 contained neat semen with round cells ≥ 1 × 106/mL that was processed by 65% density gradient to remove the round cells and leukocytes, group 3 contained neat semen with round cells < 1 × 106/mL, and group 4 contained neat semen with round cells < 1 × 106/mL that was processed by 65% density gradient to remove the round cells. Pure leukocyte culture was used as control group. A total of 1638, 1393, 1755, and 1404 proteins were identified in groups 1, 2, 3, and 4, respectively. Comparative analysis of group 1 vs. 3 revealed 26 (1.18%) differentially expressed proteins (DEPs). On the other hand, only 6 (0.31%) DEPs were observed with group 2 vs. 4. Expression of these DEPs were either absent or very low in the control group. The results of our proteomics analysis failed to show any influence of non-spermatogenic round cell proteins on sperm proteome identification. These results validate the use of neat semen samples for sperm proteomic studies.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Tânia R Dias
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Universidade da Beira Interior, 6201-001 Covilhã, Portugal.
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, 4050-313 Porto, Portugal.
| | - Ana D Martins
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, 4050-313 Porto, Portugal.
| | - Luna Samanta
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Redox Biology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack 753003, India.
| |
Collapse
|
22
|
Molecular cloning and characterization of porcine Na⁺/K⁺-ATPase isoform α4. Biochimie 2019; 158:149-155. [PMID: 30633937 DOI: 10.1016/j.biochi.2019.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/05/2019] [Indexed: 11/23/2022]
Abstract
Na+/K+-ATPase is responsible for maintaining electrochemical gradients of Na+ and K+, which is essential for a variety of cellular functions including neuronal activity. The α-subunit of the Na+/K+-ATPase is composed of four different polypeptides (α1-α4) encoded by different genes. Na,K-ATPase α4, encoded by the ATP1A4 gene, is expressed in testis and in male germ cells of humans, rats and mice. The α4 polypeptide has an important role in sperm motility, and is essential for male fertility. Here we present the RT-PCR cloning and characterization of the porcine ATP1A4 cDNA coding for Na⁺/K⁺-ATPase polypeptide α4. The Na⁺/K⁺-ATPase polypeptide α4, consisting of 1030 amino acids, displays a high homology with its human counterpart (86%). Phylogenetic analysis demonstrated that porcine Na⁺/K⁺-ATPase polypeptide α4 is closely related to other mammalian counterparts. In addition, the genomic structure of the porcine ATP1A4 gene was determined, and the intron-exon organization was found to be similar to that of the human ATP1A4 gene. The promoter sequence for the porcine ATP1A4 gene was also identified. Investigation of the genetic variation in the porcine ATP1A4 gene revealed a missense A/G SNP in exon 18. This A/G polymorphism results in a substitution of a methionine to a glycine residue (M888G). A very high overall DNA methylation rate of the ATP1A4 gene, 70-80%, was observed in both brain and liver. Expression analysis demonstrated that the porcine ATP1A4 gene is predominantly expressed in testis. The sequence of the porcine ATP1A4 cDNA encoding the Na⁺/K⁺-ATPase α4 protein has been submitted to GenBank under the accession number GenBank Accession No. MG587082.
Collapse
|
23
|
Câmara DR, Kastelic JP, Thundathil JC. Role of the Na +/K +-ATPase ion pump in male reproduction and embryo development. Reprod Fertil Dev 2018; 29:1457-1467. [PMID: 27456939 DOI: 10.1071/rd16091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/19/2016] [Indexed: 12/18/2022] Open
Abstract
Na+/K+-ATPase was one of the first ion pumps studied because of its importance in maintaining osmotic and ionic balances between intracellular and extracellular environments, through the exchange of three Na+ ions out and two K+ ions into a cell. This enzyme, which comprises two main subunits (α and β), with or without an auxiliary polypeptide (γ), can have specific biochemical properties depending on the expression of associated isoforms (α1β1 and/or α2β1) in the cell. In addition to the importance of Na+/K+-ATPase in ensuring the function of many tissues (e.g. brain, heart and kidney), in the reproductive tract this protein is essential for embryo development because of its roles in blastocoel formation and embryo hatching. In the context of male reproduction, the discovery of a very specific subunit (α4), apparently restricted to male germ cells, only expressed after puberty and able to influence sperm function (e.g. motility and capacitation), opened a remarkable field for further investigations regarding sperm biology. Therefore, the present review focuses on the importance of Na+/K+-ATPase on male reproduction and embryo development.
Collapse
Affiliation(s)
- D R Câmara
- Faculdade de Medicina Veterinária, Universidade Federal de Alagoas, Fazenda São Luiz, s/n, Zona Rural do Município de Viçosa, Viçosa-AL, CEP: 57700-000, Brazil
| | - J P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB T2N 4N1, Canada
| | - J C Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
24
|
Ojaghi M, Johnson C, Rizzoto G, Kastelic J, Thundathil JC. Content and activity of the testis-specific isoform of angiotensin-converting enzyme are reduced in frozen-thawed bull spermatozoa. Reprod Fertil Dev 2018; 30:1575-1583. [PMID: 29898818 DOI: 10.1071/rd17219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 04/27/2018] [Indexed: 11/23/2022] Open
Abstract
Sperm cryopreservation and thawing reduces fertility and alters the content and function of various sperm proteins. Previously, we reported that a testes-specific isoform of angiotensin-converting enzyme (tACE) was required for capacitation of bovine spermatozoa. The aim of the present study was to determine effects of sperm cryopreservation and thawing on the content, activity and localisation of tACE in bovine spermatozoa. Relative median fluorescence intensity (flow cytometry) was greater (P<0.01), tACE content (110 kDa protein) in sperm proteins was higher (P<0.01) and there was greater tACE enzyme activity (mean (±s.e.m.) 0.16±0.01 vs 0.06±0.02UmL-1; P<0.01) in fresh versus frozen-thawed spermatozoa (n=6 bulls). In fresh spermatozoa, tACE was immunolocalised in the acrosomal and principal piece regions of the sperm head and tail respectively. However, in frozen-thawed spermatozoa, there were four patterns of localisation: most frozen-thawed spermatozoa (64%) had fluorescence in the acrosomal ridge, whereas in 17% and 9% of spermatozoa the signal was limited to the post-acrosomal region and the equatorial segment respectively; in the remainder (10%), there was no signal. We conclude that cryopreservation and thawing decrease the content and activity of tACE and cause it to be translocated to other parts of the sperm head.
Collapse
Affiliation(s)
- Mina Ojaghi
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, TRW 2D13, 3280 Hospital Dr, NW T2N 4Z6, Canada
| | - Chinju Johnson
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, TRW 2D13, 3280 Hospital Dr, NW T2N 4Z6, Canada
| | - Guilherme Rizzoto
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, TRW 2D13, 3280 Hospital Dr, NW T2N 4Z6, Canada
| | - John Kastelic
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, TRW 2D13, 3280 Hospital Dr, NW T2N 4Z6, Canada
| | - Jacob C Thundathil
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, TRW 2D13, 3280 Hospital Dr, NW T2N 4Z6, Canada
| |
Collapse
|
25
|
Candenas L, Pinto FM, Cejudo-Román A, González-Ravina C, Fernández-Sánchez M, Pérez-Hernández N, Irazusta J, Subirán N. Veratridine-sensitive Na + channels regulate human sperm fertilization capacity. Life Sci 2018; 196:48-55. [PMID: 29307525 DOI: 10.1016/j.lfs.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/14/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
Abstract
AIMS The sperm plasma membrane contains specific ion channels and transporters that initiate changes in Ca2+, Na+, K+ and H+ ions in the sperm cytoplasm. Ion channels are key regulators of the sperm membrane potential, cytoplasmic Ca2+ and intracellular pH (pHi), which leads to regulate motility, capacitation, acrosome reaction and other physiological processes crucial for successful fertilization. Expression of epithelial sodium channels (ENaC) and voltage-gated sodium channels (Nav) in human spermatozoa has been reported, but the role of Na+ fluxes sodium channels in the regulation of sperm cell function remains poorly understood. In this context, we aimed to analyze the physiological role of Nav channels in human sperm. MAIN METHODS Motility and hyperactivation analysis was conducted by CASA analysis. Flow cytometry and spectrophotometry approaches were carried out to measure Capacitation, Acrosome reaction, immunohistochemistry for Tyr-residues phosporylation, [Ca2+]i levels and membrane potential. KEY FINDINGS Functional studies showed that veratridine, a voltage-gated sodium channel activator, increased sperm progressive motility without producing hyperactivation while the Nav antagonist lidocaine did induce hyperactivated motility. Veratridine increased protein tyrosine phosphorylation, an event occurring during capacitation, and its effects were inhibited in the presence of lidocaine and tetrodotoxin. Veratridine had no effect on the acrosome reaction by itself, but was able to block the progesterone-induced acrosome reaction. Moreover, veratridine caused a membrane depolarization and modified the effect of progesterone on [Ca2+]i and sperm membrane potential. SIGNIFICANCE Our results suggest that veratridine-sensitive Nav channels are involved on human sperm fertility acquisition regulating motility, capacitation and the progesterone-induced acrosome reaction in human sperm.
Collapse
Affiliation(s)
- L Candenas
- Instituto de Investigaciones Químicas (L.C., F.M.P., A.C.-R., N.P.), CSIC, Seville, Spain.
| | - F M Pinto
- Instituto de Investigaciones Químicas (L.C., F.M.P., A.C.-R., N.P.), CSIC, Seville, Spain
| | - A Cejudo-Román
- Instituto de Investigaciones Químicas (L.C., F.M.P., A.C.-R., N.P.), CSIC, Seville, Spain
| | - C González-Ravina
- Instituto Valenciano de Infertilidad (C.G.R., M.F.-S.), Seville, Spain
| | | | - N Pérez-Hernández
- Instituto de Investigaciones Químicas (L.C., F.M.P., A.C.-R., N.P.), CSIC, Seville, Spain
| | - J Irazusta
- Departamento de Fisiología, Universidad del País Vasco (J.I., N.S.), Leioa, Bizkaia, Spain
| | - N Subirán
- Departamento de Fisiología, Universidad del País Vasco (J.I., N.S.), Leioa, Bizkaia, Spain.
| |
Collapse
|
26
|
Rajamanickam GD, Kastelic JP, Thundathil JC. Na/K-ATPase regulates bovine sperm capacitation through raft- and non-raft-mediated signaling mechanisms. Mol Reprod Dev 2017; 84:1168-1182. [PMID: 28833817 DOI: 10.1002/mrd.22879] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 08/09/2017] [Indexed: 11/06/2022]
Abstract
Highly dynamic lipid microdomains (rafts) in the sperm plasma membrane contain several signaling proteins that regulate sperm capacitation. Na/K-ATPase isoforms (testis-specific isoform ATP1A4 and ubiquitous isoform ATP1A1) are abundant in bovine sperm plasma membrane. We previously reported that incubation of bovine sperm with ouabain, a specific Na/K-ATPase ligand, induced tyrosine phosphorylation of several sperm proteins during capacitation. The objective of this study was to investigate the roles of lipid rafts and non-rafts in Na/K-ATPase enzyme activity and signaling during bovine sperm capacitation. Content of ATP1A4 and, to a lesser extent, ATP1A1 was increased in raft and non-raft fractions of capacitated sperm, although non-raft enzyme activities of both isoforms were higher than the corresponding activities in rafts from capacitated sperm. Yet, ATP1A4 was the predominant isoform responsible for total Na/K-ATPase activity in both rafts and non-rafts. A comparative increase in phosphorylation of signaling molecules was observed in both raft (CAV1) and non-raft (EGFR and ERK1/2) membrane fractions during capacitation. Although SRC was phosphorylated in both membrane fractions, the non-raft fraction possessed more of this activated form. We also inferred, by immunoprecipitation, that ATP1A4 interacted with CAV1 and EGFR in the raft fraction, whereas interactions of ATP1A4 with SRC, EGFR, and ERK1/2 occurred in the non-raft fraction of ouabain-capacitated sperm; conversely, ATP1A1 interacted only with CAV1 in both fractions of uncapacitated and capacitated sperm. In conclusion, both raft and non-raft cohorts of Na/K-ATPase isoforms contributed to phosphorylation of signaling molecules during bovine sperm capacitation.
Collapse
Affiliation(s)
- Gayathri D Rajamanickam
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, Alberta, Canada
| | - John P Kastelic
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, Alberta, Canada
| | - Jacob C Thundathil
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Ojaghi M, Kastelic J, Thundathil J. Testis-specific isoform of angiotensin-converting enzyme (tACE) is involved in the regulation of bovine sperm capacitation. Mol Reprod Dev 2017; 84:376-388. [PMID: 28244620 DOI: 10.1002/mrd.22790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 11/08/2022]
Abstract
We hypothesized that the testis-specific isoform of angiotensin-converting enzyme (tACE) is released during bovine sperm capacitation, and its peptidase activity is required for capacitation. Specific objectives of this study were to (i) develop an anti-tACE antibody; (ii) characterize expression of tACE in bovine testes and sperm; and (iii) determine the role of tACE in capacitation. A 110-kDa protein, consistent with the mass of tACE, was detected in sperm extract by our anti-tACE immunoserum. This immunotarget localized at the acrosomal region and principal piece, but was only expressed in testis of mature bulls. When bull sperm were incubated in Sp-TALP (0 and 4 hr) plus 10 µg/ml heparin (capacitation group) or 10 µg/ml heparin + 10 µM captopril (an ACE inhibitor) for 4 hr, the number of acrosome-reacted (40.1 vs. 24.0%, respectively) and hyperactivated (15.0 vs. 9.7%) sperm increased, and tyrosine phosphoprotein content were higher (p < 0.05) for sperm in heparin alone. tACE activity was also higher (0.04 U/ml; p < 0.01) in incubation medium of sperm exposed to heparin compared to 0- and 4-hr incubation controls or heparin + captopril conditions (0, 0.005, and 0.009 U/ml, respectively). Furthermore, capacitation-associated shedding of a portion of tACE into the medium decreased sperm content of the 110-kDa tACE, but concurrently increased the abundance of a 60-kDa tACE variant. Thus, a portion of the extracellular region of tACE (containing its catalytic site) is released from bovine sperm during capacitation, and tACE activity may be required for sperm capacitation.
Collapse
Affiliation(s)
- Mina Ojaghi
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - John Kastelic
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - Jacob Thundathil
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
28
|
Harayama H, Minami K, Kishida K, Noda T. Protein biomarkers for male artificial insemination subfertility in bovine spermatozoa. Reprod Med Biol 2017; 16:89-98. [PMID: 29259456 PMCID: PMC5661804 DOI: 10.1002/rmb2.12021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
Background Although artificial insemination (AI) technique is an established biotechnology for bovine reproduction, the results of AI (conception rates) have a tendency to decline gradually. To our annoyance, moreover, AI‐subfertile bulls have been occasionally found in the AI centers. To resolve these serious problems, it is necessary to control the sperm quality more strictly by the examinations of sperm molecules. Methods We reviewed a number of recent articles regarding potentials of bovine sperm proteins as the biomarkers for bull AI‐subfertility and also showed our unpublished supplemental data on the bull AI‐subfertility associated proteins. Main findings Bull AI‐subfertility is caused by the deficiency or dysfunctions of various molecules including regulatory proteins of ATP synthesis, acrosomal proteins, nuclear proteins, capacitation‐related proteins and seminal plasma proteins. Conclusion In order to control the bovine sperm quality more strictly by the molecular examinations, it is necessary to select suitable sperm protein biomarkers for the male reproductive problems which happen in the AI centers.
Collapse
Affiliation(s)
- Hiroshi Harayama
- Division of Animal Science Department of Bioresource Science Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Kenta Minami
- Division of Animal Science Department of Bioresource Science Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Kazumi Kishida
- Department of Obstetrics and Gynecology Shiga University of Medical Science Otsu Japan
| | - Taichi Noda
- Research Institute for Microbial Diseases Osaka University Suita Osaka Japan
| |
Collapse
|
29
|
Sillaste G, Kaplinski L, Meier R, Jaakma Ü, Eriste E, Salumets A. A novel hypothesis for histone-to-protamine transition in Bos taurus spermatozoa. Reproduction 2016; 153:241-251. [PMID: 27899719 PMCID: PMC5184773 DOI: 10.1530/rep-16-0441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 01/03/2023]
Abstract
DNA compaction with protamines in sperm is essential for successful fertilization. However, a portion of sperm chromatin remains less tightly packed with histones, which genomic location and function remain unclear. We extracted and sequenced histone-associated DNA from sperm of nine ejaculates from three bulls. We found that the fraction of retained histones varied between samples, but the variance was similar between samples from the same and different individuals. The most conserved regions showed similar abundance across all samples, whereas in other regions, their presence correlated with the size of histone fraction. This may refer to gradual histone–protamine transition, where easily accessible genomic regions, followed by the less accessible regions are first substituted by protamines. Our results confirm those from previous studies that histones remain in repetitive genome elements, such as centromeres, and added new findings of histones in rRNA and SRP RNA gene clusters and indicated histone enrichment in some spermatogenesis-associated genes, but not in genes of early embryonic development. Our functional analysis revealed significant overrepresentation of cGMP-dependent protein kinase G (cGMP-PKG) pathway genes among histone-enriched genes. This pathway is known for its importance in pre-fertilization sperm events. In summary, a novel hypothesis for gradual histone-to-protamine transition in sperm maturation was proposed. We believe that histones may contribute structural information into early embryo by epigenetically modifying centromeric chromatin and other types of repetitive DNA. We also suggest that sperm histones are retained in genes needed for sperm development, maturation and fertilization, as these genes are transcriptionally active shortly prior to histone-to-protamine transition.
Collapse
Affiliation(s)
| | | | - Riho Meier
- Competence Centre on Health TechnologiesTartu, Estonia.,Institute of Molecular and Cell BiologyChair of Developmental Biology, University of Tartu, Tartu, Estonia
| | - Ülle Jaakma
- Competence Centre on Health TechnologiesTartu, Estonia.,Institute of Veterinary Medicine and Animal SciencesEstonian University of Life Sciences, Tartu, Estonia
| | - Elo Eriste
- Competence Centre on Health TechnologiesTartu, Estonia
| | - Andres Salumets
- Competence Centre on Health TechnologiesTartu, Estonia .,Women's ClinicInstitute of Clinical Medicine.,Institute of Bio- and Translational MedicineUniversity of Tartu, Tartu, Estonia.,Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
30
|
Rajamanickam GD, Kastelic JP, Thundathil JC. Content of testis-specific isoform of Na/K-ATPase (ATP1A4) is increased during bovine sperm capacitation through translation in mitochondrial ribosomes. Cell Tissue Res 2016; 368:187-200. [PMID: 27807702 DOI: 10.1007/s00441-016-2514-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/16/2016] [Indexed: 01/30/2023]
Abstract
Capacitation comprises a series of structural and functional modifications of sperm that confer fertilizing ability. We previously reported that the testis-specific isoform of Na/K-ATPase (ATP1A4) regulated bovine sperm capacitation through signaling mechanisms involving kinases. During subsequent investigations to elucidate mechanisms by which ATP1A4 regulates sperm capacitation, we observed that ATP1A4 was localised in both raft and non-raft fractions of the sperm plasma membrane and that its total content was increased in both membrane fractions during capacitation. The objective of the present study was to investigate mechanism(s) of capacitation-associated increase in the content of ATP1A4. Despite the widely accepted dogma of transcriptional/translational quiescence, incubation of sperm with either ouabain (specific ligand for ATP1A4) or heparin increased ATP1A4 content in raft and non-raft sperm membrane fractions, total sperm protein extracts (immunoblotting) and fixed sperm (flow cytometry), with a concurrent increase in Na/K-ATPase enzyme activity. This capacitation-associated increase in ATP1A4 content was partially decreased by chloramphenicol (mitochondrial translation inhibitor) but not affected by actinomycin D (transcription inhibitor). To demonstrate de novo ATP1A4 synthesis, we evaluated incorporation of bodipy conjugated lysine in this protein during capacitation. A partial decrease in bodipy-lysine incorporation occurred in ATP1A4 from sperm capacitated in the presence of chloramphenicol. Therefore, increased ATP1A4 content during capacitation was attributed to mitochondrial translation of ATP1A4 mRNA present in ejaculated sperm, rather than gene transcription. To our knowledge, this is the first report demonstrating ATP1A4 synthesis during bovine sperm capacitation.
Collapse
Affiliation(s)
- Gayathri D Rajamanickam
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada
| | - Jacob C Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
31
|
Upmanyu N, Dietze R, Kirch U, Scheiner-Bobis G. Ouabain interactions with the α4 isoform of the sodium pump trigger non-classical steroid hormone signaling and integrin expression in spermatogenic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2809-2819. [PMID: 27599714 DOI: 10.1016/j.bbamcr.2016.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/22/2016] [Accepted: 09/01/2016] [Indexed: 01/18/2023]
Abstract
In addition to the ubiquitous α1 isoform of the sodium pump, sperm cells also express a male-specific α4 isoform whose function has been associated with sperm motility, fertility, and capacitation. Here we investigate in the murine spermatogenic cell line GC-2 interactions of the α4 isoform with the cardiotonic steroid ouabain in signaling cascades involved in the non-classical action of steroid hormones. Exposure of GC-2 cells to low concentrations of ouabain stimulates the phosphorylation of Erk1/2 and of the transcription factors CREB and ATF-1. As a consequence of this signaling cascade, ouabain stimulates on the mRNA level the expression of integrins αv, β3 and α5, whose expression is also modulated by the cAMP response element. Increased expression of integrins αv and β3 is also seen in cultures of seminiferous tubules exposed to 10nM ouabain. At the protein level we observed a significant stimulation of β3 integrin expression by ouabain. Abrogation of α4 isoform expression by siRNA leads to the complete suppression of all ouabain-induced signaling mentioned above, including its stimulatory effect on the expression of β3 integrin. The results presented here demonstrate for the first time the induction of signaling cascades through the interaction of ouabain with the α4 isoform in a germ-cell derived cell line. The novel finding that these interactions lead to increased expression of integrins in GC-2 cells and the confirmation of these results in the ex vivo experiments indicate that hormone/receptor-like interactions of ouabain with the α4 isoform might be of significance for male physiology.
Collapse
Affiliation(s)
- Neha Upmanyu
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Raimund Dietze
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Ulrike Kirch
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany.
| |
Collapse
|
32
|
Fertility management of bulls to improve beef cattle productivity. Theriogenology 2016; 86:397-405. [DOI: 10.1016/j.theriogenology.2016.04.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/18/2016] [Accepted: 03/14/2016] [Indexed: 01/18/2023]
|
33
|
Dietze R, Shihan M, Stammler A, Konrad L, Scheiner-Bobis G. Cardiotonic steroid ouabain stimulates expression of blood-testis barrier proteins claudin-1 and -11 and formation of tight junctions in Sertoli cells. Mol Cell Endocrinol 2015; 405:1-13. [PMID: 25666991 DOI: 10.1016/j.mce.2015.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 01/03/2023]
Abstract
The interaction of ouabain with the sodium pump induces signalling cascades resembling those triggered by hormone/receptor interactions. In the rat Sertoli cell line 93RS2, ouabain at low concentrations stimulates the c-Src/c-Raf/Erk1/2 signalling cascade via its interaction with the α4 isoform of the sodium pump expressed in these cells, leading to the activation of the transcription factor CREB. As a result of this signalling sequence, ouabain stimulates expression of claudin-1 and claudin-11, which are also controlled by a CRE promoter. Both of these proteins are known to be essential constituents of tight junctions (TJ) between Sertoli cells, and as a result of the ouabain-induced signalling TJ formation between neighbouring Sertoli cells is significantly enhanced by the steroid. Thus, ouabain-treated cell monolayers display higher transepithelial resistance and reduced free diffusion of FITC-coupled dextran in tracer diffusion assays. Taking into consideration that the formation of TJ is indispensable for the maintenance of the blood-testis barrier (BTB) and therefore for male fertility, the actions of ouabain described here and the fact that this and other related cardiotonic steroids (CTS) are produced endogenously suggest a direct influence of ouabain/sodium pump interactions on the maintenance of the BTB and thereby an effect on male fertility. Since claudin-1 and claudin-11 are also present in other blood-tissue barriers, one can speculate that ouabain and perhaps other CTS influence the dynamics of these barriers as well.
Collapse
Affiliation(s)
- Raimund Dietze
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität, Giessen, Germany
| | - Mazen Shihan
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität, Giessen, Germany
| | - Angelika Stammler
- Zentrum f. Frauenheilkunde und Geburtshilfe, Justus-Liebig-Universität, Giessen, Germany; Institut f. Anatomie und Zellbiologie, Fachbereich Medizin, Justus-Liebig-Universität, Giessen, Germany
| | - Lutz Konrad
- Zentrum f. Frauenheilkunde und Geburtshilfe, Justus-Liebig-Universität, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität, Giessen, Germany.
| |
Collapse
|
34
|
McDermott J, Sánchez G, Nangia AK, Blanco G. Role of human Na,K-ATPase alpha 4 in sperm function, derived from studies in transgenic mice. Mol Reprod Dev 2015; 82:167-81. [PMID: 25640246 DOI: 10.1002/mrd.22454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/10/2014] [Indexed: 01/09/2023]
Abstract
Most of our knowledge on the biological role of the testis-specific Na,K-ATPase alpha 4 isoform derives from studies performed in non-human species. Here, we studied the function of human Na,K-ATPase alpha 4 after its expression in transgenic mice. Using a bacterial artificial chromosome (BAC) construct containing the human ATP1A4 gene locus, we obtained expression of the human α4 transgene specifically in mouse sperm testis and, in the sperm flagellum. The expressed human alpha 4 was active, and compared to wild-type sperm, those from transgenic mice displayed higher Na,K-ATPase alpha 4 activity and greater binding of fluorescently labeled ouabain, which is typical of the alpha 4 isoform. The expression and activity of endogenous alpha 4 and the other Na,K-ATPase alpha isoform present in sperm, alpha 1, remained unchanged. Male mice expressing the human ATP1A4 transgene exhibited similar testis size and morphology, normal sperm number and shape, and no changes in overall fertility compared to wild-type mice. Sperm carrying the human transgene exhibited enhanced total motility and an increase in multiple parameters of sperm movement, including higher sperm hyperactive motility. In contrast, no statistically significant changes in sperm membrane potential, protein tyrosine phosphorylation, or spontaneous acrosome reaction were found between wild-type and transgenic mice. Altogether, these results provide new genetic evidence for an important role of human Na,K-ATPase alpha 4 in sperm motility and hyperactivation, and establishes a new animal model for future studies of this isoform.
Collapse
Affiliation(s)
- Jeffrey McDermott
- Department of Molecular and Integrative Physiology, Department of Urology and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | | |
Collapse
|
35
|
Relationship between ouabain and asthenozoospermia. ACTA ACUST UNITED AC 2014; 34:87-90. [PMID: 24496684 DOI: 10.1007/s11596-014-1236-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/24/2013] [Indexed: 10/25/2022]
Abstract
A growing number of researches have shown that ouabain can regulate mammalian sperm function and male reproduction by modulating the sperm motility, capacitation and acrosome reaction in vitro. This study further examined the relationship between ouabain and asthenozoospermia. In this study, the rat was intraperitoneally injected with ouabain at different concentrations (low-dose ouabain group: 12.5 μg/kg body weight per day, and high-dose ouabain group: 25 μg/kg body weight per day) for 30 days to establish the asthenozoospermia model. The sperms from 60 males with normal fertility were incubated with ouabain of gradient concentrations (10(-7)-10(-2) mol/L) for 4 h. The sperm motility was evaluated under a microscope. Moreover, the endogenous ouabain (EO) level was determined in seminal plasma of mild or severe asthenozoospermia patients and males with normal fertility by competitive inhibition ELISA. The results showed that the sperm motility was significantly diminished in the rats treated with different concentrations of ouabain. The number of motile sperms (grades a and b) was decreased greatly in a time- and dose-dependent manner in 10(-5)-10(-2) mol/L ouabain groups (P<0.01), while no obvious change in sperm motility was observed in 10(-7)-10(-6)mol/L groups even for 4-h incubation (P>0.05). Furthermore, the EO level was significantly increased in asthenozoospermia patients as compared with that in males with normal fertility (25.27±1.71 μg/L in mild asthenozoospermia patients, 26.52±1.82 μg/L in severe asthenozoospermia patients, 19.31±1.45 μg/L in normal fertility men) (P<0.01). In conclusion, rat asthenozoospermia was successfully established by intraperitoneal injection of ouabain, and 10(-5) mol/L ouabain was sufficient enough to inhibit sperm motility in vitro. Moreover, EO, a normal constituent of seminal plasma, was highly expressed in asthenozoospermia males as compared with normal fertility ones.
Collapse
|
36
|
Proteins associated with critical sperm functions and sperm head shape are differentially expressed in morphologically abnormal bovine sperm induced by scrotal insulation. J Proteomics 2013; 82:64-80. [DOI: 10.1016/j.jprot.2013.02.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 01/23/2023]
|
37
|
Dietze R, Konrad L, Shihan M, Kirch U, Scheiner-Bobis G. Cardiac glycoside ouabain induces activation of ATF-1 and StAR expression by interacting with the α4 isoform of the sodium pump in Sertoli cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:511-9. [DOI: 10.1016/j.bbamcr.2012.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/20/2012] [Accepted: 11/26/2012] [Indexed: 01/27/2023]
|
38
|
Thundathil JC, Rajamanickam GD, Kastelic JP, Newton LD. The Effects of Increased Testicular Temperature on Testis-Specific Isoform of Na+/K+-ATPase in Sperm and its Role in Spermatogenesis and Sperm Function. Reprod Domest Anim 2012; 47 Suppl 4:170-7. [DOI: 10.1111/j.1439-0531.2012.02072.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Characterization of Na+K+-ATPase in bovine sperm. Theriogenology 2012; 77:1369-80. [DOI: 10.1016/j.theriogenology.2011.10.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/26/2011] [Accepted: 10/26/2011] [Indexed: 11/22/2022]
|
40
|
Konrad L, Dietze R, Kirch U, Kirch H, Eva A, Scheiner-Bobis G. Cardiotonic steroids trigger non-classical testosterone signaling in Sertoli cells via the α4 isoform of the sodium pump. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2118-24. [DOI: 10.1016/j.bbamcr.2011.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/21/2011] [Accepted: 07/19/2011] [Indexed: 01/09/2023]
|
41
|
Pegge RB, Krishnakumar S, Whiteside D, Elkin B, Parlevliet JM, Thundathil JC. Sperm characteristics in plains (Bison bison bison) versus wood (Bison bison athabascae) bison. Theriogenology 2011; 75:1360-70. [DOI: 10.1016/j.theriogenology.2010.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 11/20/2010] [Accepted: 11/30/2010] [Indexed: 12/30/2022]
|
42
|
Volonteri MC, Ceballos NR. Mechanism of hCG-induced spermiation in the toad Rhinella arenarum (Amphibia, Anura). Gen Comp Endocrinol 2010; 169:197-202. [PMID: 20800063 DOI: 10.1016/j.ygcen.2010.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/28/2010] [Accepted: 08/20/2010] [Indexed: 01/15/2023]
Abstract
In Rhinella arenarum spermiation occurs as a consequence of LH/FSH increase during the amplexus or by a single dose of hCG, among other gonadotropins. The present study employs an in vitro system to study the mechanism of action of hCG in the spermiation of R. arenarum. Testicular fragments were incubated for 2h at 28°C in the presence or absence of 20IU hCG with or without different PKA/PKC inhibitors and activators as well as ouabain and amiloride as Na(+)/K(+) ATPase and transcellular Na(+) transport inhibitors, respectively. Ouabain did not induce spermiation in absence of hCG and inhibited hCG-induced spermiation in a dose-dependent manner, reaching 90% inhibition with the higher concentration. In contrast, amiloride neither affected spermiation nor steroidogenesis. Activation of PKA with 8Br-cAMP induced spermiation in the absence of hCG while its inhibition with H89 blocked hCG action. On the other hand, PKC inhibition with Bi or STP did not affect hCG-induced spermiation although PKC activation significantly decreased hCG-dependent sperm release. These results suggest that PKC inhibits spermiation but also that the inhibition exerted by the kinase could be blocked by hCG. Taken together, these observations could indicate that PKA is involved in the mechanism of the gonadotropin action, mechanism also requiring the activation of a non-pumping Na(+)/K(+) ATPase pathway.
Collapse
Affiliation(s)
- M Clara Volonteri
- Laboratorio de Endocrinología Comparada, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
43
|
Suhail M. Na, K-ATPase: Ubiquitous Multifunctional Transmembrane Protein and its Relevance to Various Pathophysiological Conditions. J Clin Med Res 2010; 2:1-17. [PMID: 22457695 PMCID: PMC3299169 DOI: 10.4021/jocmr2010.02.263w] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2010] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The Na(+), K(+)-ATPase (NKA) is an ubiquitous enzyme consisting of α, β and γ subunits, and is responsible for the creation and maintenance of the Na(+) and K(+) gradients across the cell membrane by transporting 3 Na(+) out and 2 K(+) into the cell. Sodium pump regulation is tissue as well as isoform specific. Intracellular messengers differentially regulate the activity of the individual NKA isozymes. Regulation of specific NKA isozymes gives cells the ability to precisely coordinate NKA activity to their physiological requirements. It is the only known receptor for the cardiac glycosides used to treat congestive heart failure and cardiac arrhythmias. Endogenous ligands structurally similar to cardiac glycosides may act as natural regulators of the sodium pump in heart and other tissues. Identification of naturally occurring regulators of NKA could initiate the discovery of new hormone-like control systems involved in the etiology of selected disease processes, hence the importance of understanding the relation of the sodium pump and its ligands to disease. Diabetes has a marked effect on the metabolism of a variety of tissues and because the NKA is critical for the membrane potential and many transports, a change in its activity in diabetes would have profound consequence in these tissues. NKA is also involved in hypertension, salt balance, cardiovascular and renal disorders, sperm capacitation, cell volume regulation, apoptosis, rheumatoid arthritis, sepsis, neurological disorders, lung edema clearance and preeclampsia. NKA activity and expression in the collecting duct of kidney are modulated physiologically by hormones like aldosterone, vasopressin, and insulin. NKA enzyme activity and subunit levels are reduced in carcinoma, NKA-β levels were highly reduced in an invasive form of human renal clear cell carcinoma, androgen-dependent prostate cancer, in early stages of urothelial cancer, as well as in poorly differentiated, highly motile carcinoma cell lines obtained from various tissues suggesting a functional link between reduced NKA-β expression and cancer progression. It could be a target for the development of anticancer drugs as it serves as a signal transducer, it is a player in cell adhesion and its aberrant expression and activity are implicated in the development and progression of different cancers. KEYWORDS Na(+), K(+)-ATPase (NKA); Cardiotonic steroids (CTS); Diabetes; Hypertension; Cardiovascular and renal disorders; Signal transducer; Anticancer drugs.
Collapse
Affiliation(s)
- Mohd Suhail
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| |
Collapse
|