1
|
Teijeiro JM. Unveiling the role of protein kinase A (PKA) activity in bovine oviductal epithelial cells: implications on apoptotic signaling pathways during the estrous cycle. Cell Tissue Res 2024; 397:275-285. [PMID: 39105776 DOI: 10.1007/s00441-024-03911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
The complex interactome crucial for successful pregnancy is constituted by the intricate network of endocrine and paracrine signaling pathways, involving gametes, embryos, and the female reproductive tract. Specifically, the oviduct exhibits distinct responses to gametes and early embryos during particular phases of the estrus cycle, a process tightly regulated by reproductive hormones. Moreover, these hormones play a pivotal role in orchestrating cyclical changes within oviductal epithelial cells. To unravel the molecular mechanisms underlying these dynamic changes, our study aimed to investigate the involvement of protein kinase A (PKA) in oviductal epithelial cells throughout the estrus cycle and in advanced pregnancy, extending our studies to oviductal epithelial cell in primary culture. By a combination of 2D-gel electrophoresis, Western blotting, and mass spectrometry, we identified 17 proteins exhibiting differential phosphorylation status mediated by PKA. Among these proteins, we successfully validated the phosphorylation status of heat shock 70 kDa protein (HSP70), aconitase 2 (ACO2), and lamin B1 (LMNB1). Our findings unequivocally demonstrate the dynamic regulation of PKA throughout the estrus cycle in oviductal epithelial cells. Also, analysis by bioinformatics tools suggest its pivotal role in mediating cyclical changes possibly through modulation of apoptotic pathways. This research sheds light on the intricate molecular mechanisms underlying reproductive processes, with implications for understanding fertility and reproductive health.
Collapse
Affiliation(s)
- Juan Manuel Teijeiro
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531. S2002LRK, Rosario, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina.
| |
Collapse
|
2
|
Pascua AM, Barbisan G, Nikoloff N, Carranza-Martín AC, Fabra MC, Anchordoquy JP, Balbi M, Giuliodori MJ, Furnus CC, Anchordoquy JM. Effect of estrogen and progesterone on intracellular free zinc and zinc transporter expression in bovine oviduct epithelial cells. Theriogenology 2024; 221:18-24. [PMID: 38521006 DOI: 10.1016/j.theriogenology.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Zinc (Zn) plays essential roles in numerous cellular processes. However, there is limited understanding of Zn homeostasis within the bovine reproductive system. This study investigated the influence of estradiol (E2) and progesterone (P4) on Zn transporter expression and intracellular free Zn levels in bovine oviduct epithelial cells (BOEC). For this purpose, cells were harvested from slaughtered cows and cultured in vitro. Intracellular Zn concentrations were measured using FluoZin-3AM staining, while real-time polymerase chain reaction assessed Zn transporter gene expression and quantification. Overall, our results confirmed the gene expression of all the evaluated Zn transporters (ZIP6, ZIP8, ZIP14, ZnT3, ZnT7 and ZnT9), denoted and the active role of E2 and P4 in intracellular Zn regulation. Our findings suggest an interaction between Zn, E2 and P4.
Collapse
Affiliation(s)
- Ana Malen Pascua
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Gisela Barbisan
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina; YPF Tecnología (Y-TEC), Av. Del Petróleo S/N entre 129 y 143, CP 1923, Berisso, Buenos Aires, Argentina
| | - Noelia Nikoloff
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Ana Cristina Carranza-Martín
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Mariana Carolina Fabra
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Juan Patricio Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina; Cátedra de Fisiología, FCV-UNLP, Argentina
| | - Marianela Balbi
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | | | - Cecilia Cristina Furnus
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Juan Mateo Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina; Cátedra de Fisiología, FCV-UNLP, Argentina.
| |
Collapse
|
3
|
Sheibak N, Zandieh Z, Amjadi F, Aflatoonian R. How sperm protects itself: A journey in the female reproductive system. J Reprod Immunol 2024; 163:104222. [PMID: 38489929 DOI: 10.1016/j.jri.2024.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
Sperm must pass a complex route in the female reproductive tract (FRT) to reach the fertilization site and join the oocyte. Thus, it should employ several mechanisms to survive against the female immune system, fertilize the oocyte, and successfully transmit paternal genes to the next generation. In addition to self-protection, sperm may be involved in the immune tolerance to the developing embryo and regulating the FRT for embryo implantation and subsequent pregnancy. Hence, this review intends to summarize the mechanisms that protect sperm in the FRT: including immunomodulatory factors that are carried by seminal plasma, cell-to-cell and molecular interaction of sperm with epithelial and immune cells of the FRT, high regulated secretions of inflammatory factors such as cytokines, chemokines, and growth factors, inducing immune tolerance to paternal antigens, and specialized expression of cell receptors and binding proteins. In most of these events sperm induces the FRT to protect itself by modulating immune responses for its own benefit. However, not all sperm in the semen are able to trigger the survival mechanisms and only high-quality sperm will overcome this challenge. A clear understanding of the molecular mechanisms that maintain sperm viability and function in the FRT can lead to new knowledge about infertility etiology and a new approach in assisted reproductive technologies for the preparation and selection of the best sperm based on the criteria that physiologically happen in-vivo.
Collapse
Affiliation(s)
- Nadia Sheibak
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Vieira CC, Missio D, Brum DDS, Menezes RD, Cibin FWS, Mesquita FS, Gonçalves PBD, Ferreira R. Motility, oxidative status and morphology of frozen-thawed bovine semen are not impacted by fatty acid exposure in vitro. Reprod Domest Anim 2024; 59:e14510. [PMID: 38013657 DOI: 10.1111/rda.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
While sperm migrate within the reproductive tract of cows experiencing negative energy balance (NEB), they come into contact with elevated concentrations of non-esterified fatty acids (NEFA). For this reason, this study aimed to investigate the effects of three different NEFA - palmitic acid (PA), stearic acid (SA), and oleic acid (OA) - on bovine sperm motility, kinetic parameters, oxidative status, and morphology. Frozen thawed semen samples from Bos taurus bulls were incubated with varying concentrations of each fatty acid, and the sperm's characteristics were analysed at different time points. Computer-Assisted Sperm Analysis (CASA) was employed to assess sperm motility and kinetic parameters. Concurrently, the production of the reactive oxygen species (ROS) and total antioxidant capacity were measured to determine the oxidative status. Additionally, sperm morphology was evaluated. In Experiment 1, different concentrations of PA did not show significant effects on total motility, progressive motility, or any kinetic parameters analysed. Similarly, PA did not have a significant impact on the oxidative status or sperm morphology. In Experiment 2, SA at various concentrations did not lead to significant changes in total motility, progressive motility, or any kinetic parameters evaluated. Furthermore, SA did not affect oxidative status or sperm morphology. In Experiment 3, the concentrations of OA used did not result in significant changes in total motility, progressive motility, or any kinetic parameters studied. Likewise, OA did not induce any alterations in oxidative status or sperm morphology. Overall, the results from all three experiments indicate that PA, SA and OA, at the in vitro conditions and tested concentrations, do not exert detrimental effects on bovine sperm function and morphology. These results provide insights that contribute to our understanding of how fatty acids can impact the reduction of fertility rates in cows facing NEB. This, in turn, lays the foundation for additional critical investigations in this area. Further studies are necessary to validate these findings in vivo.
Collapse
Affiliation(s)
- Camila Cupper Vieira
- Graduate Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Daniele Missio
- Program of Innovative Networks of Strategic Technologies of Rio Grande do Sul (RITEs-RS), Palmeira das Missões, Brazil
| | - Daniela Dos Santos Brum
- Laboratory of Biotechnology of Reproduction, BIOTECH, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Rafaela Dalmolin Menezes
- Laboratory of Biotechnology of Reproduction, BIOTECH, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Fernando Silveira Mesquita
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Rogério Ferreira
- Department of Animal Science, Santa Catarina State University, Chapecó, SC, Brazil
| |
Collapse
|
5
|
Soto-Heras S, Sakkas D, Miller DJ. Sperm selection by the oviduct: perspectives for male fertility and assisted reproductive technologies†. Biol Reprod 2023; 108:538-552. [PMID: 36625382 PMCID: PMC10106845 DOI: 10.1093/biolre/ioac224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The contribution of sperm to embryogenesis is gaining attention with up to 50% of infertility cases being attributed to a paternal factor. The traditional methods used in assisted reproductive technologies for selecting and assessing sperm quality are mainly based on motility and viability parameters. However, other sperm characteristics, including deoxyribonucleic acid integrity, have major consequences for successful live birth. In natural reproduction, sperm navigate the male and female reproductive tract to reach and fertilize the egg. During transport, sperm encounter many obstacles that dramatically reduce the number arriving at the fertilization site. In humans, the number of sperm is reduced from tens of millions in the ejaculate to hundreds in the Fallopian tube (oviduct). Whether this sperm population has higher fertilization potential is not fully understood, but several studies in animals indicate that many defective sperm do not advance to the site of fertilization. Moreover, the oviduct plays a key role in fertility by modulating sperm transport, viability, and maturation, providing sperm that are ready to fertilize at the appropriate time. Here we present evidence of sperm selection by the oviduct with emphasis on the mechanisms of selection and the sperm characteristics selected. Considering the sperm parameters that are essential for healthy embryonic development, we discuss the use of novel in vitro sperm selection methods that mimic physiological conditions. We propose that insight gained from understanding how the oviduct selects sperm can be translated to assisted reproductive technologies to yield high fertilization, embryonic development, and pregnancy rates.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - David J Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Weber WD, Fisher HS. Sexual selection drives the coevolution of male and female reproductive traits in Peromyscus mice. J Evol Biol 2023; 36:67-81. [PMID: 36480400 PMCID: PMC10107626 DOI: 10.1111/jeb.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 12/13/2022]
Abstract
When females mate with multiple partners within a single reproductive cycle, sperm from rival males may compete for fertilization of a limited number of ova, and females may bias the fertilization of their ova by particular sperm. Over evolutionary timescales, these two forms of selection shape both male and female reproductive physiology when females mate multiply, yet in monogamous systems, post-copulatory sexual selection is weak or absent. Here, we examine how divergent mating strategies within a genus of closely related mice, Peromyscus, have shaped the evolution of reproductive traits. We show that in promiscuous species, males exhibit traits associated with increased sperm production and sperm swimming performance, and females exhibit traits that are predicted to limit sperm access to their ova including increased oviduct length and a larger cumulus cell mass surrounding the ova, compared to monogamous species. Importantly, we found that across species, oviduct length and cumulus cell density are significantly correlated with sperm velocity, but not sperm count or relative testes size, suggesting that these female traits may have coevolved with increased sperm quality rather than quantity. Taken together, our results highlight how male and female traits evolve in concert and respond to changes in the level of post-copulatory sexual selection.
Collapse
Affiliation(s)
| | - Heidi S Fisher
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
7
|
de Villiers C, Maree L, Katz AA, van der Horst G. The in-vitro effect of gonadotropin-releasing hormones, GnRH-I and GnRH-II, on the motility, vitality and acrosome integrity of Vervet monkey (Chlorocebus aethiops) spermatozoa. Reprod Domest Anim 2022; 57:1394-1405. [PMID: 35877200 DOI: 10.1111/rda.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
Abstract
Two isoforms of the gonadotropin-releasing hormone (GnRH), GnRH-I and GnRH-II, are expressed in mammals, and the presence of one or more GnRH-like peptides has been demonstrated in the male reproductive tract. GnRH and its receptors (GnRHR) are present in human and non-human primate testis, prostate, epididymis, seminal vesicle, spermatozoa and seminal human plasma. GnRH-II is site-specific and acts directly in an inhibitory or stimulatory fashion. Previous studies speculated that GnRH-II could disrupt specific sperm processes, such as sperm motility or capacitation and could be utilized as an effective contraceptive agent. Our study aimed to investigate the in-vitro effects of GnRH-I and GnRH-II on Vervet monkey sperm function. Electro-ejaculated semen samples from 10 Vervet monkeys (Chlorocebus aethiops) were used to select motile sperm populations. Sperm aliquots were incubated with GnRH-I and GnRH-II at different concentrations for 1 h, where after sperm motility and kinematic parameters were assessed using the automated Sperm Class Analyser. Additional sperm aliquots were incubated with two 10-amino acid control peptides, a non-related peptide and an inactive peptide to exclude the possible influence on sperm motility from other peptides with a structure similar to GnRH. Additionally, a GnRHR-I antagonist (GnRHR-A), Cetrorelix, was tested to establish its antagonistic capability on GnRH. The effect of selected concentrations of GnRH-I and GnRH-II on sperm vitality and acrosome intactness was also evaluated after 10- and 60 min exposure. Analysis of the percentage total sperm motility revealed that different concentrations for GnRH-I and GnRH-II inhibited sperm motility significantly. While sperm progressiveness was also notably affected and a trend of decreased sperm kinematics were evident, no effect was found on sperm vitality or acrosome intactness. The non-related and inactive peptides had no impact on sperm motility. The GnRHR-A demonstrated no effect on sperm motility and effectively blocked the inhibitory outcome on the motility of both GnRH isoforms. While GnRH-I or GnRH-II at low-dose concentrations resulted in in-vitro inhibition of sperm motility, it appears to have no adverse effects on other sperm functional parameters evaluated. These collective observations possibly indicate an essential role for GnRH in the in-vivo process of sperm selection in the female reproductive tract.
Collapse
Affiliation(s)
- Charon de Villiers
- PUDAC-Delft Animal Facility, South African Medical Research Council, Cape Town, South Africa
| | - Liana Maree
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Arieh A Katz
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gerhard van der Horst
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
8
|
Vickram AS, Anbarasu K, Gulothungan G, Thanigaivel S, Nanmaran R, Palanivelu J. Characterization of human prostasomes protein Clusterin (macromolecule) – a novel biomarker for male infertility diagnosis and prognosis. J Biomol Struct Dyn 2022; 40:3979-3988. [DOI: 10.1080/07391102.2020.1852960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- A. S. Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - K. Anbarasu
- Department of Bioinformatics, School of Life Sciences, VISTAS, Chennai, Tamil Nadu, India
| | - G. Gulothungan
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - S. Thanigaivel
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - R. Nanmaran
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Jeyanthi Palanivelu
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu
| |
Collapse
|
9
|
Naidu SJ, Arangasamy A, Selvaraju S, Binsila BK, Reddy IJ, Ravindra JP, Bhatta R. Maternal influence on the skewing of offspring sex ratio: a review. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Jeyendran RS, Graham J, Tharma S, Ivanovic M, Levrant S, Ozornek HM, Fiddler MB. Individual variation of the percentage of Y-chromosome bearing sperm content in human ejaculates. Syst Biol Reprod Med 2021; 67:395-398. [PMID: 34251939 DOI: 10.1080/19396368.2021.1942589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The study aimed to determine the variation of Y-chromosome-bearing sperm content among individual ejaculates. A real-time polymerase chain reaction (qPCR) with unique primers was developed and used to calculate the percentage of Y-chromosome-bearing sperm in individual ejaculates from 50 randomly selected men. There was a significant difference in the overall mean ± SD between the proportion of Y-chromosome-bearing sperm and X-chromosome-bearing sperm (45.36 ± 7.88 vs. 54.42 ± 7.88). Of the 50 ejaculates, 17 had more than, and 14 had less than the 99% confidence interval of the mean of the Y-chromosome-bearing sperm (45.58 ± 2.87). These results suggest that the inconsistency in sperm-based sex-selection outcomes appears to be a function of differences in the ejaculates and highlights the need for further study in environmental and genetic factors contributing to X or Y bearing spermatozoan instability.Abbreviations: qPCR: real-time polymerase chain reaction; ROS: reactive oxygen species; DTT: dithiothreitol; SRY: sex-determining region Y.
Collapse
Affiliation(s)
| | - Jared Graham
- Insight Medical Genetics, Chicago, Illinois, USA
| | | | | | - Seth Levrant
- Partners In Reproductive Health, Tinley Park, Illinois, USA
| | | | | |
Collapse
|
11
|
Missio D, Dos Santos Brum D, Dalle Laste Dacampo L, Weber Santos Cibin F, Silveira Mesquita F, Germano Ferst J, Fiordalisi G, Dias Gonçalves PB, Ferreira R. High concentrations of β-hydroxybutyrate alter the kinetics of bovine spermatozoa. Andrologia 2021; 53:e14148. [PMID: 34171138 DOI: 10.1111/and.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 05/22/2021] [Indexed: 11/27/2022] Open
Abstract
Postpartum cows, mainly with metabolic diseases, such as ketosis, usually experience an increased number of services per conception. During ketosis, high concentrations of β-hydroxybutyrate (BHBA) in follicular, uterine and oviductal fluid have been considered to cause subfertility in cows. However, the effect of sperm exposure to an environment with high BHBA concentration is not known. This study investigated the influence of high levels of BHBA on kinetics, oxidative status and morphology of bovine spermatozoa. To assess the effect of BHBA after sperm selection, bovine spermatozoa were incubated (180 min) with different BHBA concentrations: 0 (Control), 0.8, 2.4 or 5 mM. Sperm kinetics was evaluated after 30, 60, 120 and 180 min, and oxidative status and morphology were analysed at 180 min. Oxidative status was evaluated through the production of reactive oxidative species (ROS), total antioxidant capacity and lipid peroxidation. High concentrations of BHBA decreased the curvilinear velocity, straight line velocity, mean path velocity, linearity, straightness and hyperactivity of spermatozoa. However, there was no effect of BHBA on oxidative and antioxidant capacity as well as on sperm morphology. In conclusion, exposure of bovine spermatozoa to high levels of BHBA impairs sperm kinetics without altering oxidative and antioxidant mechanisms.
Collapse
Affiliation(s)
- Daniele Missio
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, Brazil
| | - Daniela Dos Santos Brum
- Laboratory of Biotechnology of Reproduction - BIOTECH, Federal University of Pampa, Uruguaiana, Brazil
| | - Lucas Dalle Laste Dacampo
- Laboratory of Biotechnology of Reproduction - BIOTECH, Federal University of Pampa, Uruguaiana, Brazil
| | | | - Fernando Silveira Mesquita
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, Brazil
| | - Juliana Germano Ferst
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, Brazil
| | - Giovanna Fiordalisi
- Department of Animal Science, Santa Catarina State University, Chapecó, Brazil
| | - Paulo Bayard Dias Gonçalves
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, Brazil.,Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, Brazil
| | - Rogério Ferreira
- Department of Animal Science, Santa Catarina State University, Chapecó, Brazil
| |
Collapse
|
12
|
Lyons K, Kacev D, Mull CG. An inconvenient tooth: Evaluating female choice in multiple paternity using an evolutionarily and ecologically important vertebrate clade. Mol Ecol 2021; 30:1574-1593. [PMID: 33586211 PMCID: PMC8251896 DOI: 10.1111/mec.15844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/29/2022]
Abstract
Understanding mating systems is a pillar of behavioural ecology, placing the complex interactions between females and males into a reproductive context. The field of multiple paternity, the phenomenon whereby many sires contribute to an individual litter, has traditionally viewed females as passive players in a male–male competitive framework. With the emergence of feminist perspectives in ecological fields, novel alternative mechanisms and evolutionary theories across invertebrate and vertebrate taxa recognize females are active stakeholders in the reproductive process. Despite their evolutionary significance, ecological diversity and myriad reproductive modes, elasmobranch (sharks, skates and rays) research lags behind other fields regarding complex biological processes, such as multiple paternity which is often ascribed to convenience polyandry. Here, we layout hypotheses and resynthesize multiple paternity literature from a female and life history perspective to highlight how alternative mechanisms influence the predominance of multiple paternity across elasmobranchs. We draw upon parallels in other invertebrate and vertebrate taxa to demonstrate how female elasmobranchs can influence multiple paternity outcomes that benefit their reproductive success. Our article challenges dogma that has resulted from years of dismissing the female perspective as important and provides a framework for future advancement using more holistic approaches to studying mating systems.
Collapse
Affiliation(s)
| | - Dovi Kacev
- Scripps Institution of Oceanography, San Diego, CA, USA
| | | |
Collapse
|
13
|
González-Brusi L, Algarra B, Moros-Nicolás C, Izquierdo-Rico MJ, Avilés M, Jiménez-Movilla M. A Comparative View on the Oviductal Environment during the Periconception Period. Biomolecules 2020; 10:E1690. [PMID: 33348856 PMCID: PMC7766821 DOI: 10.3390/biom10121690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The oviduct plays important roles in reproductive events: sperm reservoir formation, final gamete maturation, fertilization and early embryo development. It is well known that the oviductal environment affects gametes and embryos and, ultimately, the health of offspring, so that in vivo embryos are better in terms of morphology, cryotolerance, pregnancy rates or epigenetic profile than those obtained in vitro. The deciphering of embryo-maternal interaction in the oviduct may provide a better understanding of the embryo needs during the periconception period to improve reproductive efficiency. Here, we perform a comparative analysis among species of oviductal gene expression related to embryonic development during its journey through the oviduct, as described to date. Cross-talk communication between the oviduct environment and embryo will be studied by analyses of the secreted or exosomal proteins of the oviduct and the presence of receptors in the membrane of the embryo blastomeres. Finally, we review the data that are available to date on the expression and characterization of the most abundant protein in the oviduct, oviductin (OVGP1), highlighting its fundamental role in fertilization and embryonic development.
Collapse
Affiliation(s)
| | | | | | | | - Manuel Avilés
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, 30100 Murcia, Spain; (L.G.-B.); (B.A.); (C.M.-N.); (M.J.I.-R.)
| | - Maria Jiménez-Movilla
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, 30100 Murcia, Spain; (L.G.-B.); (B.A.); (C.M.-N.); (M.J.I.-R.)
| |
Collapse
|
14
|
Machado SA, Sharif M, Kadirvel G, Bovin N, Miller DJ. Adhesion to oviduct glycans regulates porcine sperm Ca2+ influx and viability. PLoS One 2020; 15:e0237666. [PMID: 32822385 PMCID: PMC7442259 DOI: 10.1371/journal.pone.0237666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Before fertilization, sperm bind to epithelial cells of the oviduct isthmus to form a reservoir that regulates sperm viability and capacitation. The sperm reservoir maintains optimum fertility in species, like swine, in which semen deposition and ovulation may not be well synchronized. We demonstrated previously that porcine sperm bind to two oviductal glycan motifs, a biantennary 6-sialylated N-acetyllactosamine (bi-SiaLN) oligosaccharide and 3-O-sulfated Lewis X trisaccharide (suLeX). Here, we assessed the ability of these glycans to regulate sperm Ca2+ influx, capacitation and affect sperm lifespan. After 24 h, the viability of sperm bound to immobilized bi-SiaLN and suLeX was higher (46% and 41% respectively) compared to viability of free-swimming sperm (10–12%). Ca2+ is a central regulator of sperm function so we assessed whether oviduct glycans could affect the Ca2+ influx that occurs during capacitation. Using a fluorescent intracellular Ca2+ probe, we observed that both oviduct glycans suppressed the Ca2+ increase that occurs during capacitation. Thus, specific oviduct glycans can regulate intracellular Ca2+. Because the increase in intracellular Ca2+ was suppressed by oviduct glycans, we examined whether glycans affected capacitation, as determined by protein tyrosine phosphorylation and the ability to undergo a Ca2+ ionophore-induced acrosome reaction. We found no discernable suppression of capacitation in sperm bound to oviduct glycans. We also detected no effect of oviduct glycans on sperm motility during capacitation. In summary, LeX and bi-SiaLN glycan motifs found on oviduct oligosaccharides suppress the Ca2+ influx that occurs during capacitation and extend sperm lifespan but do not affect sperm capacitation or motility.
Collapse
Affiliation(s)
- Sergio A. Machado
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Momal Sharif
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Govindasamy Kadirvel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - David J. Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
15
|
Tarique I, Tariq M, Bai X, Wenjia Q, Yang P, Huang Y, Sheng Y, Vistro WA, Chen Q. Interaction of Epididymal Epithelia and their Secretions with Spermatozoa Supports Functional and Morphological Changes During Long-Term Storage in the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:542-550. [PMID: 32284081 DOI: 10.1017/s1431927620001373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Post-testicular maturation of spermatozoa is crucial for attaining the morphological and functional capabilities needed for successful fertilization. Epididymal epithelia offer a favorable environment for spermatozoa that are stored long term in the turtle epididymis; however, sperm-epithelial interactions during storage, which are enormously important for sperm functional and morphological maturation, are still largely unknown in turtles. The present study examined the epididymis during the sperm-storage period (November-April) in the Chinese soft-shelled turtle (Pelodiscus sinensis). Light and transmission electron microscopy were used to determine the cellular features of each epididymal segment (caput, corpus, and cauda) and their epithelial interactions with the spermatozoa. Spermatozoa were mainly located in the lumena of caput, corpus, and cauda epididymides. Numerous spermatozoa were bound to apical surfaces of the epithelia, and several were even embedded in the epithelial cytoplasm of the caput and corpus epididymides. No embedded spermatozoa were found in the cauda epididymis. In all epididymal segments, principal and clear cells showed the synthetic activity, evidenced by a well-developed endoplasmic reticulum network and high and low electron-dense secretory materials, respectively. Principal and clear cells in the caput and corpus segments showed embedded spermatozoa in electron-dense secretions and in the lipid droplets within the cytoplasm. No lysosomes were observed around the embedded spermatozoa. The lumena of the caput and corpus segments showed few apocrine and low electron density secretions. In the lumen of the cauda epididymidis, different secretions, such as holocrine with low and high electron density and their fragmentation, apocrine, and dictyosome, were found and are summarized. Altogether, sperm physical interactions with secretions either in the cytoplasm of epithelium or in the lumen may support the viability, morphological maintenance, and transfer of various proteins involved in long-term sperm storage in the turtle. This interaction could help us to understand the mechanisms of long-term sperm storage and provide more insights into the reproductive strategies of turtle sperm preservation.
Collapse
Affiliation(s)
- Imran Tarique
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Mansoor Tariq
- Department of Veterinary Pathology, Sindh Agriculture University, Tandojam, Pakistan
| | - Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Qu Wenjia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Yang Sheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Waseem Ali Vistro
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Quisheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| |
Collapse
|
16
|
Ramal-Sanchez M, Bernabo N, Tsikis G, Blache MC, Labas V, Druart X, Mermillod P, Saint-Dizier M. Progesterone induces sperm release from oviductal epithelial cells by modifying sperm proteomics, lipidomics and membrane fluidity. Mol Cell Endocrinol 2020; 504:110723. [PMID: 31972329 DOI: 10.1016/j.mce.2020.110723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
The sperm reservoir is formed after insemination in mammals, allowing sperm storage in the oviduct until their release. We previously showed that physiological concentrations of progesterone (P4) trigger in vitro the sperm release from bovine oviductal epithelial cells (BOECs), selecting a subpopulation of spermatozoa with a higher fertilizing competence. Here, by using Western-Blot, confocal microscopy and Intact Cell MALDI-TOF-Mass Spectrometry strategies, we elucidated the changes derived by the P4-induced release on sperm cells (BOEC-P4 spz). Our findings show that, compared to controls, BOEC-P4 spz presented a decrease in the abundance of Binder of Sperm Proteins (BSP) -3 and -5, suggesting one mechanism by which spermatozoa may detach from BOECs, and thus triggering the membrane remodeling with an increase of the sperm membrane fluidity. Furthermore, an interesting number of membrane lipids and proteins were differentially abundant in BOEC-P4 spz compared with controls.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France; Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università degli Studi di Teramo, Italy.
| | - Nicola Bernabo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università degli Studi di Teramo, Italy
| | - Guillaume Tsikis
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France
| | - Marie-Claire Blache
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France
| | - Valerie Labas
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France; Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), INRA, CHRU de Tours, Université de Tours, Nouzilly, France
| | - Xavier Druart
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France
| | - Pascal Mermillod
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France
| | - Marie Saint-Dizier
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France; Université de Tours, Faculté des Sciences et des Techniques, Tours, France
| |
Collapse
|
17
|
Teijeiro JM, Marini PE. Hormone-regulated PKA activity in porcine oviductal epithelial cells. Cell Tissue Res 2020; 380:657-667. [PMID: 32112257 DOI: 10.1007/s00441-020-03180-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/28/2020] [Indexed: 11/24/2022]
Abstract
The oviduct is a dynamic organ that suffers changes during the oestrous cycle and modulates gamete and embryo physiology. We analyse the possible existence of Protein kinase A (PKA)-dependent hormone-regulated pathways in porcine ampulla and primary cell cultures by 2D-electrophoresis/Western blot using anti-phospho PKA substrate antibodies. Differential phosphorylation was observed for ten proteins that were identified by mass spectrometry. The results were validated for five of the proteins: Annexin A5, Calumenin, Glyoxalase I and II and Enolase I. Immunofluorescence analyses show that Calumenin, Glyoxalase II and Enolase I change their localisation in the oviductal epithelium through the oestrus cycle. The results demonstrate the existence of PKA hormone-regulated pathways in the ampulla epithelium during the oestrus cycle.
Collapse
Affiliation(s)
- Juan Manuel Teijeiro
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina.
| | - Patricia Estela Marini
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.,Consejo de Investigaciones de la Universidad Nacional de Rosario (CIUNR), Rosario, Argentina.,Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET, Rosario, Argentina
| |
Collapse
|
18
|
Rahman MS, Pang MG. New Biological Insights on X and Y Chromosome-Bearing Spermatozoa. Front Cell Dev Biol 2020; 7:388. [PMID: 32039204 PMCID: PMC6985208 DOI: 10.3389/fcell.2019.00388] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022] Open
Abstract
A spermatozoon is a male germ cell capable of fertilizing an oocyte and carries genetic information for determining the sex of the offspring. It comprises autosomes and an X (X spermatozoa) or a Y chromosome (Y spermatozoa). The origin and maturation of both X and Y spermatozoa are the same, however, certain differences may exist. Previous studies proposed a substantial difference between X and Y spermatozoa, however, recent studies suggest negligible or no differences between these spermatozoa with respect to ratio, shape and size, motility and swimming pattern, strength, electric charge, pH, stress response, and aneuploidy. The only difference between X and Y spermatozoa lies in their DNA content. Moreover, recent proteomic and genomic studies have identified a set of proteins and genes that are differentially expressed between X and Y spermatozoa. Therefore, the difference in DNA content might be responsible for the differential expression of certain genes and proteins between these cells. In this review, we have compiled our present knowledge to compare X and Y spermatozoa with respect to their structural, functional, and molecular features. In addition, we have highlighted several areas that could be explored in future studies in this field.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
19
|
Massa E, Prez G, Zumoffen C, Morente C, Ghersevich S. S100 A9 is expressed and secreted by the oviduct epithelium, interacts with gametes and affects parameters of human sperm capacitation in vitro. J Cell Biochem 2019; 120:17662-17676. [PMID: 31131471 DOI: 10.1002/jcb.29033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 01/20/2023]
Abstract
Our previous findings demonstrate that some oviductal secretion proteins bind to gametes and affect sperm physiology and gamete interaction. One of these proteins possesses an estimated molecular weight of 14 kDa. The objective of this study was to isolate and identify this 14 kDa protein, to localize it in the human oviduct, to detect gamete binding sites for the protein, and to evaluate its effects on sperm capacitation parameters and gamete interaction. Explants from the human oviductal tissues of premenopausal women were cultured in the presence of [35 S]-Methionine-proteins ([35S]-Met-proteins). De novo synthesized secreted [35 S]-Met-proteins were isolated from the culture media by affinity chromatography using their sperm membrane binding ability and analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using liquid chromatography-tandem mass spectrometry peptide sequencing, human S100 A9 was identified as one of the isolated proteins from the 14 kDa protein band. S100 A9 was detected in oviduct epithelium and oviduct secretion using immunohistochemistry and a Western blot. S100 A9 binding to human oocytes and spermatozoa was assessed by indirect immunofluorescence. The acrosome reaction (AR) affected S100 A9 ability to bind sperm cells. The presence of S100 A9 significantly increased both the induced AR and the sperm protein tyrosine phosphorylation, with respect to controls. However, the protein did not affect sperm-zona pellucida interaction. Results indicate that S100 A9 is present in the human oviduct and that it modulates parameters of sperm capacitation in vitro. Hence, the protein might contribute to the regulation of the reproductive process in the oviductal microenvironment.
Collapse
Affiliation(s)
- Estefanía Massa
- Area of Clinical Biochemistry, Department of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Gastón Prez
- Area of Clinical Biochemistry, Department of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Carlos Zumoffen
- Area of Clinical Biochemistry, Department of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Carlos Morente
- Biological Laboratory, Area of Reproduction, PROAR-Assisted Reproduction Program of Rosario, Rosario, Santa Fe, Argentina
| | - Sergio Ghersevich
- Area of Clinical Biochemistry, Department of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| |
Collapse
|
20
|
Almiñana C, Bauersachs S. Extracellular Vesicles in the Oviduct: Progress, Challenges and Implications for the Reproductive Success. Bioengineering (Basel) 2019; 6:bioengineering6020032. [PMID: 31013857 PMCID: PMC6632016 DOI: 10.3390/bioengineering6020032] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
The oviduct is the anatomical part of the female reproductive tract where the early reproductive events take place, from gamete transport, fertilization and early embryo development to the delivery of a competent embryo to the uterus, which can implant and develop to term. The success of all these events rely upon a two-way dialogue between the oviduct (lining epithelium and secretions) and the gametes/embryo(s). Recently, extracellular vesicles (EVs) have been identified as major components of oviductal secretions and pointed to as mediators of the gamete/embryo-maternal interactions. EVs, comprising exosomes and microvesicles, have emerged as important agents of cell-to-cell communication by the transfer of biomolecules (i.e., mRNAs, miRNAs, proteins) that can modulate the activities of recipient cells. Here, we provide the current knowledge of EVs in the oviductal environment, from isolation to characterization, and a description of the EVs molecular content and associated functional aspects in different species. The potential role of oviductal EVs (oEVs) as modulators of gamete/embryo-oviduct interactions and their implications in the success of early reproductive events is addressed. Lastly, we discuss current challenges and future directions towards the potential application of oEVs as therapeutic vectors to improve pregnancy disorders, infertility problems and increase the success of assisted reproductive technologies.
Collapse
Affiliation(s)
- Carmen Almiñana
- Genetics and Functional Genomics Group, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380 Nouzilly, France.
| | - Stefan Bauersachs
- Genetics and Functional Genomics Group, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
21
|
Munuce MJ, Marini PE, Teijeiro JM. Expression profile and distribution of Annexin A1, A2 and A5 in human semen. Andrologia 2019; 51:e13224. [DOI: 10.1111/and.13224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/17/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- María José Munuce
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas; CONICET, Universidad Nacional de Rosario; Rosario Argentina
| | - Patricia Estela Marini
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas; CONICET, Universidad Nacional de Rosario; Rosario Argentina
- Consejo de Investigaciones de la Universidad Nacional de Rosario and Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET; Rosario Argentina
| | - Juan Manuel Teijeiro
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas; CONICET, Universidad Nacional de Rosario; Rosario Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET; Rosario Argentina
| |
Collapse
|
22
|
Saraf KK, Singh RK, Kumaresan A, Nayak S, Chhillar S, Lathika S, Datta TK, Mohanty TK. Sperm functional attributes and oviduct explant binding capacity differs between bulls with different fertility ratings in the water buffalo (Bubalus bubalis). Reprod Fertil Dev 2019; 31:395-403. [DOI: 10.1071/rd17452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
We report here the differences in sperm functional attributes and sperm–oviduct binding index in bulls with different field fertility ratings. Cryopreserved spermatozoa from Murrah buffalo bulls (n=9) with different fertility ratings were evaluated for membrane integrity, capacitation status, acrosome intactness and protein tyrosine phosphorylation status. Frozen–thawed spermatozoa were incubated with oviduct explants for 1h under 5% CO2, 38.5°C with 95% relative humidity and the number of spermatozoa bound to the unit area of oviduct explants (binding index; BI) was assessed using 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) fluorescent staining. The proportion of membrane-intact and acrosome-intact spermatozoa was significantly (P<0.05) higher and the proportion of capacitated spermatozoa was significantly (P<0.05) lower in high-fertile bulls compared with medium- and low-fertile bulls. The relationship between BI and bull fertility was significant and positive (r=0.69; P=0.04). BI was negatively and significantly (r=−0.83; P=0.01) related to membrane-compromised spermatozoa. It was concluded that the sperm–oviduct explant binding index was positively related to (1) the proportion of membrane-intact spermatozoa in a given semen sample and (2) invivo fertility of the buffalo bull, indicating the possibility of developing a fertility prediction tool using a sperm–oviduct explant binding model, once validated on a greater number of bulls.
Collapse
|
23
|
Kumaresan A, Johannisson A, Humblot P, Bergqvist AS. Effect of bovine oviductal fluid on motility, tyrosine phosphorylation, and acrosome reaction in cryopreserved bull spermatozoa. Theriogenology 2018; 124:48-56. [PMID: 30343199 DOI: 10.1016/j.theriogenology.2018.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
This study was conducted to investigate the complex interactions between oviducts and cryopreserved spermatozoa. Herein we report the dynamic changes in bull sperm functions during in vitro incubation with bovine estrus and luteal oviductal fluid. Frozen-thawed bull spermatozoa was incubated either in non-capacitating medium, capacitating medium, non-capacitating medium containing 20% v/v estrus oviductal fluid or non-capacitating medium containing 20% v/v luteal oviductal fluid for 6 h at 38 °C under 5% CO2. At hourly interval spermatozoa were evaluated for kinematics, tyrosine phosphorylation and acrosome reaction. The sperm velocity parameters were higher (P < 0.05) in capacitating medium compared to the other treatments. At 4 and 5 h of incubation, the proportion of live tyrosine phosphorylated spermatozoa was higher (P < 0.05) in estrus oviductal fluid compared to all other treatments. From 4 to 6 h of incubation the proportion of live acrosome reacted spermatozoa was higher (P < 0.05) in estrus oviductal fluid compared to the other treatments. We conclude that estrus oviductal fluid induced tyrosine phosphorylation and acrosome reaction in a higher proportion of frozen-thawed bull spermatozoa compared to luteal oviductal fluid, although sperm kinematics were not significantly influenced by oviductal during incubation.
Collapse
Affiliation(s)
- A Kumaresan
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, P.O. Box 7054, SE-750 07 Uppsala, Sweden
| | - Anders Johannisson
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, P.O. Box 7054, SE-750 07 Uppsala, Sweden
| | - Patrice Humblot
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, P.O. Box 7054, SE-750 07 Uppsala, Sweden
| | - Ann-Sofi Bergqvist
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, P.O. Box 7054, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
24
|
Kumaresan A, Johannisson A, Bergqvist AS. Sperm function during incubation with oestrus oviductal fluid differs in bulls with different fertility. Reprod Fertil Dev 2018; 29:1096-1106. [PMID: 27112984 DOI: 10.1071/rd15474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022] Open
Abstract
Spermatozoa undergo several modifications in the oviduct before acquiring fertilising capacity. Although spermatozoa are exposed to similar conditions in the oviduct, the speed of the response varies with the male and the state of the spermatozoa. We hypothesised that spermatozoa from bulls with different fertility may differ in their ability to respond to oviductal fluid (ODF). Frozen-thawed spermatozoa from four bulls were incubated with oestrus oviductal fluid (OODF) for 6h. Sperm kinematics, tyrosine phosphorylation, phosphorylation patterns, capacitation and acrosome reaction were analysed at hourly intervals. The amplitude of lateral head displacement (ALH) and straightness coefficient (STR) were higher (P<0.05) in bulls with higher fertility compared with those with lower fertility, at 1-4h of incubation. At 4h of incubation and onwards, spermatozoa from bulls with higher fertility showed a lower degree (P<0.05) of tyrosine phosphorylation and higher degree of capacitation and acrosome reaction. At least five tyrosine-phosphorylated sperm proteins were detected in all bulls. However, the expression of two phosphorylated sperm proteins (183 and 109 kDa) was upregulated in bulls with lower fertility. It may be concluded that cryopreserved spermatozoa from high- and low- fertile bulls differ in their ability to respond to OODF. This may help in developing tools for assessing fertility of bulls, once validated in more animals.
Collapse
Affiliation(s)
- A Kumaresan
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, PO Box 7054, SE-750 07 Uppsala, Sweden
| | - A Johannisson
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, PO Box 7054, SE-750 07 Uppsala, Sweden
| | - A-S Bergqvist
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, PO Box 7054, SE-750 07 Uppsala, Sweden
| |
Collapse
|
25
|
Rąpała Ł, Starzyński RR, Trzeciak PZ, Dąbrowski S, Gajewska M, Jurka P, Smolarczyk R, Duszewska AM. Influence of elevated temperature on bovine oviduct epithelial cells (BOECs). PLoS One 2018; 13:e0198843. [PMID: 29906278 PMCID: PMC6003681 DOI: 10.1371/journal.pone.0198843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/25/2018] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to evaluate the influence of elevated temperature on bovine oviduct epithelial cells (BOECs), based on the expression and localization of both heat shock protein 70 (HSP70), responsible for the cellular defence mechanism, and oviduct specific glycoprotein 1 (OVGP1) which is the most important embryotrophic protein. BOECs were cultured alone and co-cultured with cattle embryos at control (38.5°C) and elevated temperature (41°C) for 168 h. The elevated temperature had no effect on the viability of BOECs but exerted a negative effect on embryo development. The elevated temperature increased the expression of HSP70 and decreased the expression of OVGP1 at both mRNA and protein levels in BOECs cultured alone and those co-cultured with embryos. However, the presence of embryos limited the decrease in OVGP1 expression in BOECs at elevated temperature but did not alter the expression of HSP70. These results demonstrate for the first time the influence of elevated temperature on BOECs, consequently providing insights into the interactions between the embryo and the oviduct at elevated temperature.
Collapse
Affiliation(s)
- Łukasz Rąpała
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Rafał R. Starzyński
- Polish Academy of Sciences, Institute of Genetics and Animal Breeding, Jastrzębiec, Poland
| | - Piotr Z. Trzeciak
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sebastian Dąbrowski
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Jurka
- Department of Small Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna M. Duszewska
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
26
|
Dixson A. Copulatory and Postcopulatory Sexual Selection in Primates. Folia Primatol (Basel) 2018; 89:258-286. [DOI: 10.1159/000488105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/04/2018] [Indexed: 12/24/2022]
|
27
|
Lemmens L, Kos S, Beijer C, Braat DDM, Nelen WLDM, Wetzels AMM. Techniques used for IUI: is it time for a change? Hum Reprod 2018; 32:1835-1845. [PMID: 28854719 DOI: 10.1093/humrep/dex223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/04/2017] [Indexed: 12/29/2022] Open
Abstract
STUDY QUESTION Are the guidelines for the technical aspects of IUI (WHO, 2010) still in accordance with the current literature? SUMMARY ANSWER In general, the laboratory guidelines of the World Health Organization (WHO) are a suitable protocol, although the evidence is not always conclusive and some changes are advisable. WHAT IS KNOWN ALREADY Lack of standardization of the technical procedures required for IUI might result in inter-laboratory variation in pregnancy rates. Most centers still use their own materials and methods even though some guidelines are available. STUDY DESIGN, SIZE, DURATION A structural review focusing on the association between pregnancy rates and the procedures of semen collection (e.g. ejaculatory abstinence, collection place), semen processing (e.g. preparation method, temperature during centrifugation/storage), insemination (e.g. timing of IUI, bed rest after IUI) and the equipment used. PARTICIPANTS/MATERIALS, SETTING, METHODS A literature search was performed in Medline and the Cochrane library. When no adequate studies of the impact of a parameter on pregnancy results were found, its association with sperm parameters was reviewed. MAIN RESULTS AND THE ROLE OF CHANCE For most variables, the literature review revealed a low level of evidence, a limited number of studies and/or an inadequate outcome measure. Moreover, the comparison of procedures (i.e. semen preparation technique, time interval between semen, collection, processing and IUI) revealed no consensus about their results. It was not possible to develop an evidence-based, optimal IUI treatment protocol. LIMITATIONS, REASONS FOR CAUTION The included studies exhibited a lack of standardization in inclusion criteria and methods used. WIDER IMPLICATIONS OF THE FINDINGS This review emphasizes the need for more knowledge about and standardization of assisted reproduction technologies. Our literature search indicates that some of the recommendations in the laboratory guidelines could be adapted to improve standardization, comfort, quality control and to cut costs. STUDY FUNDING/COMPETING INTEREST(S) The Dutch Foundation for Quality Assessment in Medical Laboratories (SKML), Nijmegen, The Netherlands. S.K. and W.N. have no conflicts of interest to disclose. C.B. and A.W. are members of the board of the SKML. With a grant from SKML, L.L. was paid for her time to perform the research and write the publication. D.B. received grants from Merck Serono, Ferring and MSD, outside the submitted work. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- L Lemmens
- Fertility Laboratory, Department of Obstetrics and Gynaecology, Radboud University Medical Center Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - S Kos
- Department of Clinical Chemistry, Maasstad Hospital Rotterdam, PO Box 9100, 3007 AC Rotterdam, The Netherlands
| | - C Beijer
- Department of Clinical Chemistry, Atalmedial, Medical Diagnostic Centre, PO Box 69641, 1060 CR Amsterdam, The Netherlands
| | - D D M Braat
- Department of Obstetrics and Gynaecology, Radboud University Medical Center Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - W L D M Nelen
- Department of Obstetrics and Gynaecology, Radboud University Medical Center Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - A M M Wetzels
- Fertility Laboratory, Department of Obstetrics and Gynaecology, Radboud University Medical Center Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
28
|
López-Úbeda R, García-Vázquez FA, Gadea J, Matás C. Oviductal epithelial cells selected boar sperm according to their functional characteristics. Asian J Androl 2018; 19:396-403. [PMID: 27232850 PMCID: PMC5507082 DOI: 10.4103/1008-682x.173936] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The interaction of oviductal epithelial cells (OECs) with the spermatozoa has beneficial effects on the sperm functions. The aim of this study is to evaluate the in vitro fertilizing capacity of incubating spermatozoa previously selected by density gradient in OEC and determinate some sperm characteristics that could explain the results obtained. In this study, we assessed in vitro fertilization (IVF), tyrosine phosphorylation, phosphatidylserine translocation, nuclear DNA fragmentation, and chromatin decondensation. Three experimental sperm groups, previously selected by Percoll gradient, were established according to the origin of the sperm used for IVF: (i) W30 group: spermatozoa were incubated with oocytes in the absence of OEC; (ii) NB group: after sperm incubation in OEC, the unbound spermatozoa were incubated with oocytes, in the absence of OEC; and (iii) B group: after sperm incubation with OEC, the bound spermatozoa were incubated with oocytes in the OEC plates. The results showed that sperm from the NB group led to a lower IVF yield, accompanied by low penetration rates (NB: 19.6%, B: 94.9%, and W30: 62.9%; P < 0.001) and problems of nuclear decondensation. Moreover, higher levels of tyrosine phosphorylation were observed in the NB group compared with the W30 and B groups (NB: 58.7%, B: 2.5%, and W30: 4.5%; P < 0.01). A similar trend was observed in phosphatidylserine translocation (NB: 93.7%, B: 5.7%, and W30: 44.2%; P < 0.01). These results demonstrate that the OEC exerts a rigorous degree of sperm selection, even within an already highly selected population of spermatozoa, and can capture the best functional spermatozoa for fertilization.
Collapse
Affiliation(s)
- Rebeca López-Úbeda
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia 30100, Spain
| | - Francisco A García-Vázquez
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia 30100, Spain.,IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia 30100, Spain.,IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia 30100, Spain.,IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| |
Collapse
|
29
|
Do Gametes Woo? Evidence for Their Nonrandom Union at Fertilization. Genetics 2018; 207:369-387. [PMID: 28978771 DOI: 10.1534/genetics.117.300109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
A fundamental tenet of inheritance in sexually reproducing organisms such as humans and laboratory mice is that gametes combine randomly at fertilization, thereby ensuring a balanced and statistically predictable representation of inherited variants in each generation. This principle is encapsulated in Mendel's First Law. But exceptions are known. With transmission ratio distortion, particular alleles are preferentially transmitted to offspring. Preferential transmission usually occurs in one sex but not both, and is not known to require interactions between gametes at fertilization. A reanalysis of our published work in mice and of data in other published reports revealed instances where any of 12 mutant genes biases fertilization, with either too many or too few heterozygotes and homozygotes, depending on the mutant gene and on dietary conditions. Although such deviations are usually attributed to embryonic lethality of the underrepresented genotypes, the evidence is more consistent with genetically-determined preferences for specific combinations of egg and sperm at fertilization that result in genotype bias without embryo loss. This unexpected discovery of genetically-biased fertilization could yield insights about the molecular and cellular interactions between sperm and egg at fertilization, with implications for our understanding of inheritance, reproduction, population genetics, and medical genetics.
Collapse
|
30
|
Gervasi MG, Visconti PE. Chang's meaning of capacitation: A molecular perspective. Mol Reprod Dev 2018; 83:860-874. [PMID: 27256723 DOI: 10.1002/mrd.22663] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 05/31/2016] [Indexed: 02/04/2023]
Abstract
Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization-competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860-874, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Gracia Gervasi
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts.
| |
Collapse
|
31
|
Lamy J, Gatien J, Dubuisson F, Nadal-Desbarats L, Salvetti P, Mermillod P, Saint-Dizier M. Metabolomic profiling of bovine oviductal fluid across the oestrous cycle using proton nuclear magnetic resonance spectroscopy. Reprod Fertil Dev 2018; 30:1021-1028. [DOI: 10.1071/rd17389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/19/2017] [Indexed: 12/11/2022] Open
Abstract
In the present study we tested whether regulation of the metabolome in bovine oviductal fluid depended on the stage of the oestrous cycle, the side relative to ovulation and local concentrations of steroid hormones. Luminal fluid samples from both oviducts were collected in the preovulatory, postovulatory, mid- and late luteal phases, from cyclic cows at a local abattoir (18–27 cows per stage and side). The metabolomes were assessed by proton nuclear magnetic resonance spectroscopy (H-NMR). In all, 39 metabolites were identified, among which the amino acid glycine and the energy substrates lactate and myoinositol were the most abundant at all stages. The concentrations of 14 metabolites varied according to the stage of the oestrous cycle in at least one side relative to ovulation, of which four (choline, glucose-1-phosphate, glycine and pyruvate) were correlated with intraoviductal progesterone or oestradiol concentrations. Glucose-1-phosphate was most affected by the stage of the cycle, with four- to sixfold higher levels in luteal than periovulatory stages. These results provide new knowledge on the regulation of secretory activity in the oviduct and may help optimise culture media for gamete maturation, IVF and embryo production.
Collapse
|
32
|
Lyons A, Narciandi F, Donnellan E, Romero-Aguirregomezcorta J, Farrelly CO, Lonergan P, Meade KG, Fair S. Recombinant β-defensin 126 promotes bull sperm binding to bovine oviductal epithelia. Reprod Fertil Dev 2018; 30:1472-1481. [DOI: 10.1071/rd17415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Primate β-defensin 126 regulates the ability of spermatozoa to bind to oviductal epithelial cells in vitro. Bovine β-defensin 126 (BBD126) exhibits preferential expression in the cauda epididymis of the bull, but there have been few studies on its functional role in cattle. The aim of the present study was to examine the role of BBD126 in bull sperm binding to bovine oviductal epithelial cell (BOEC) explants. BBD126 has been shown to be highly resistant to the standard methods of dissociation used in other species and, as a result, corpus epididymal spermatozoa, which have not been exposed to the protein, were used to study the functional role of BBD126. Corpus epididymal spermatozoa were incubated with recombinant (r) BBD126 in the absence or presence of anti-BBD126 antibody. Addition of rBBD126 significantly enhanced the ability of epididymal spermatozoa to bind to BOEC explants (P < 0.05). Anti-BBD126 antibody blocked the BBD126-mediated increase in sperm binding capacity. Ejaculated spermatozoa, which are coated with native BBD126 protein but also a large number of seminal plasma proteins in vivo, were incubated with rBBD126 in the absence or presence of the anti-BBD126 antibody. Addition of rBBD126 significantly enhanced the ability of ejaculated spermatozoa to bind to BOEC explants (P < 0.05), whereas rBBD126 also reduced corpus sperm agglutination (P < 0.05). These results suggest that, similar to the role of its analogue in the macaque, spermatozoa with more BBD126 in their acrosome may represent spermatozoa with more oviduct binding capacity.
Collapse
|
33
|
Postcopulatory Reproductive Strategies in Spermatozoa. DIVERSITY AND COMMONALITY IN ANIMALS 2018. [DOI: 10.1007/978-4-431-56609-0_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Desmet KLJ, Marei WFA, Pintelon I, Bols PEJ, Leroy JLMR. The effect of elevated non-esterified fatty acid concentrations on bovine spermatozoa and on oocyte in vitro fertilisation. Reprod Fertil Dev 2018; 30:1553-1565. [DOI: 10.1071/rd17507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/25/2018] [Indexed: 11/23/2022] Open
Abstract
Elevated non-esterified fatty acid (NEFA) concentrations, present in follicular and oviductal fluid, have been postulated as a causative link between metabolic disorders and subfertility. High NEFA conditions can directly disrupt oocyte maturation and developmental capacity after fertilisation. However, their influence on sperm function and the fertilisation process is not known. This study investigated the fertilisation process under high NEFA conditions. To differentiate between effects on both spermatozoa and oocytes or on spermatozoa only, different experiments were conducted. In the first experiment both gametes were simultaneously incubated during IVF under different conditions: (1) NEFA-free, solvent-free control conditions, (2) solvent control, (3) physiological concentrations of oleic (OA), palmitic (PA) and stearic (SA) acids or (4) pathophysiological concentrations of OA, PA and SA. In the second experiment spermatozoa were incubated (4 h) under the same treatment conditions prior to routine IVF. Gamete co-incubation resulted in reduced fertilisation and cleavage rates and increased prevalence of polyspermy. In the second experiment embryo developmental capacity and quality were not affected, although sperm motility and plasma membrane integrity were decreased. In conclusion, lipolytic conditions affected the fertilisation process mainly through an effect on the oocyte. Spermatozoa were still able to fertilise even though these conditions reduced sperm function.
Collapse
|
35
|
Shankar G, Uppangala S, Adiga SK, Willard B, Sagar BKC, Titus RSK, Marathe GK. Proteinaceous sperm motility inhibitory factor from the female Indian garden lizard Calotes versicolor. Reprod Fertil Dev 2017; 30:744-751. [PMID: 29136399 DOI: 10.1071/rd17292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/28/2017] [Indexed: 11/23/2022] Open
Abstract
Female sperm storage is an intriguing adaptation exhibited by a wide array of both vertebrates and invertebrates. The mechanisms underlying female sperm storage have remained elusive. Using the Indian garden lizard Calotes versicolor as a model organism, we investigated the role of low and high molecular weight factors in this phenomenon. Previously, we demonstrated three distinct phases of the reproductive cycle in this animal with live, motile spermatozoa recovered from the uterovaginal region during the reproductive phase. In the present study, we analysed the uterovaginal contents using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified an abundant protein band corresponding to ~55 kDa regardless of the phase of the reproductive cycle. Analysis of the purified protein by liquid chromatography-tandem mass spectrometry suggested a unique protein without any homology to the National Center for Biotechnology Information database. Exogenous addition of this protein to washed spermatozoa derived from the epididymis reversibly inhibited sperm motility in a concentration- and time-dependent manner, suggesting it plays a key role in sperm storage. These studies are likely to offer new avenues to unravel the secrets of female sperm storage seen across the animal taxa and may have novel applications not only in reproductive biology, but also in general cell storage and preserving endangered animal species.
Collapse
Affiliation(s)
- Goutham Shankar
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Shubhashree Uppangala
- Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal 576104, Karnataka, India
| | - Satish K Adiga
- Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal 576104, Karnataka, India
| | - Belinda Willard
- Research Core Services, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Bhadravathi K C Sagar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (Institute of National Importance), Bengaluru 560029, Karnataka, India
| | - Ruth S K Titus
- Department of Zoology, St. Philomena's College, Bannimantap, Mysuru 570015, Karnataka, India
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| |
Collapse
|
36
|
Štiavnická M, Abril-Parreño L, Nevoral J, Králíčková M, García-Álvarez O. Non-Invasive Approaches to Epigenetic-Based Sperm Selection. Med Sci Monit 2017; 23:4677-4683. [PMID: 28961228 PMCID: PMC5633068 DOI: 10.12659/msm.904098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since sperm size and form do not necessarily provide information on internal sperm structures, novel sperm markers need to be found in order to conduct assisted reproductive therapies (ART) successfully. Currently, the priority of andrologists is not only to select those sperm able to fertilize the oocyte, but also a high quality of sperm that will guarantee a healthy embryo. Evidence of this shows us the importance of studying sperm intensively on genetic and epigenetic levels, because these could probably be the cause of a percentage of infertility diagnosed as idiopathic. Thus, more attention is being paid to posttranslational modifications as the key for better understanding of the fertilization process and its impact on embryo and offspring. Advances in the discovery of new sperm markers should go hand in hand with finding appropriate techniques for selecting the healthiest sperm, guaranteeing its non-invasiveness. To date, most sperm selection techniques can be harmful to sperm due to centrifugation or staining procedures. Some methods, such as microfluidic techniques, sperm nanopurifications, and Raman spectroscopy, have the potential to make selection gentle to sperm, tracking small abnormalities undetected by methods currently used. The fact that live cells could be analyzed without harmful effects creates the expectation of using them routinely in ART. In this review, we focus on the combination of sperm epigenetic status (modifications) as quality markers, with non-invasive sperm selection methods as novel approaches to improve ART outcomes.
Collapse
Affiliation(s)
- Miriama Štiavnická
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Laura Abril-Parreño
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Nevoral
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milena Králíčková
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Olga García-Álvarez
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
37
|
Lyons K, Chabot CL, Mull CG, Paterson Holder CN, Lowe CG. Who's My Daddy? Considerations for the influence of sexual selection on multiple paternity in elasmobranch mating systems. Ecol Evol 2017; 7:5603-5612. [PMID: 28808540 PMCID: PMC5551082 DOI: 10.1002/ece3.3086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/05/2017] [Accepted: 04/25/2017] [Indexed: 01/12/2023] Open
Abstract
Polyandry resulting in multiply-sired litters has been documented in the majority of elasmobranch species examined to date. Although commonly observed, reasons for this mating system remain relatively obscure, especially in batoids. The round stingray (Urobatis halleri) is an abundant, well-studied elasmobranch distributed throughout the northeastern Pacific that we used to explore hypotheses regarding multiple paternity in elasmobranchs. Twenty mid- to late-term pregnant females were sampled off the coast of southern California and their litters analyzed for the occurrence of multiple paternity using five nuclear microsatellite loci. In addition, embryo sizes and their position within the female reproductive system (i.e., right or left uterus) were recorded and used to make inferences for patterns of ovulation. Multiple paternity was observed in 90% of litters and male reproductive success within litters was relatively even among sires. High variability in testes mass was observed suggesting that sperm competition is high in this species, although male reproductive success per litter appeared to be relatively even. Using embryo size as a proxy for fertilization, females were found to exhibit a variety of ovulation patterns that could function to limit a male's access to eggs and possibly promote high rates of multiple paternity. Our study highlights that elasmobranch mating systems may be more varied and complex than presumed and further investigation is warranted.
Collapse
Affiliation(s)
- Kady Lyons
- California State University, Long BeachLong BeachCAUSA
| | | | | | | | | |
Collapse
|
38
|
Nixon B, Anderson AL, Smith ND, McLeod R, Johnston SD. The Australian saltwater crocodile (Crocodylus porosus) provides evidence that the capacitation of spermatozoa may extend beyond the mammalian lineage. Proc Biol Sci 2017; 283:rspb.2016.0495. [PMID: 27147099 DOI: 10.1098/rspb.2016.0495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023] Open
Abstract
Although mammalian spermatozoa only acquire functional maturity as they are conveyed through the male (epididymal maturation) and female (capacitation) reproductive tracts, the degree of post-testicular development necessary to achieve fertilization in other vertebrate species remains far less clear. Indeed, despite reports that the epididymis of birds and reptiles is capable of secreting proteins that bind and modify the sperm surface characteristics, it remains unclear whether capacitation is a pre-requisite for fertilization in these species. Using the ancient reptilian Australian saltwater crocodile as a model, this study was undertaken to explore whether reptile sperm do undergo capacitation-like changes following ejaculation. Our studies revealed that crocodile spermatozoa experienced a rapid and sustained, cyclic-AMP mediated increase in progressive motility following incubation under conditions optimized for the induction of capacitation in mammalian species such as the mouse and human. This response was coupled with elevated levels of phosphorylation associated with both protein kinase A and tyrosine kinase substrates, the latter of which were predominantly localized within the sperm flagellum. In findings that also accord with mammalian spermatozoa, we confirmed a homologue of outer dense fibre 2 as one of the principal substrates for tyrosine phosphorylation. Overall, our findings support the concept that crocodile spermatozoa do undergo a process that is homologous to capacitation in preparation for fertilization of an ovum.
Collapse
Affiliation(s)
- Brett Nixon
- School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Amanda L Anderson
- School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, The University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Robby McLeod
- Koorana Crocodile Farm, Coowonga, Queensland 4702, Australia
| | - Stephen D Johnston
- School of Agriculture and Food Science, The University of Queensland, Gatton, Queensland 4343, Australia
| |
Collapse
|
39
|
Smits K, Nelis H, Van Steendam K, Govaere J, Roels K, Ververs C, Leemans B, Wydooghe E, Deforce D, Van Soom A. Proteome of equine oviducal fluid: effects of ovulation and pregnancy. Reprod Fertil Dev 2017; 29:1085-1095. [DOI: 10.1071/rd15481] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/25/2016] [Indexed: 11/23/2022] Open
Abstract
The equine oviduct plays a pivotal role in providing the optimal microenvironment for early embryonic development, but little is known about the protein composition of the oviducal fluid in the horse. The aim of the present study was to provide a large-scale identification of proteins in equine oviducal fluid and to determine the effects of ovulation and pregnancy. Four days after ovulation, the oviducts ipsilateral and contralateral to the ovulation side were collected from five pregnant and five non-pregnant mares. Identification and relative quantification of proteins in the oviducal fluid of the four groups was achieved by isobaric tags for relative and absolute quantification (iTRAQ) labelling and HPLC–tandem mass spectrometry. The presence of an embryo in the ipsilateral oviducal fluid of pregnant mares induced upregulation of 11 and downregulation of two proteins compared with the contralateral side, and upregulation of 19 proteins compared with the ipsilateral side of non-pregnant mares. Several of these upregulated proteins are related to early pregnancy in other species. The present study represents the first high-throughput identification of proteins in the oviducal fluid of the mare. The results support the hypothesis that the equine embryo interacts with the oviduct, affecting the maternal secretion pattern of proteins involved in pregnancy-related pathways.
Collapse
|
40
|
Sperm Storage in the Female Reproductive Tract: A Conserved Reproductive Strategy for Better Fertilization Success. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1001:173-186. [DOI: 10.1007/978-981-10-3975-1_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Abstract
Fertilization is the culminating event of sexual reproduction, which involves the union of the sperm and egg to form a single, genetically distinct organism. Despite the fundamental role of fertilization, the basic mechanisms involved have remained poorly understood. However, these mechanisms must involve an ordered schedule of cellular recognition events between the sperm and egg to ensure successful fusion. In this article, we review recent progress in our molecular understanding of mammalian fertilization, highlighting the areas in which genetic approaches have been particularly informative and focusing especially on the roles of secreted and cell surface proteins, expressed in a sex-specific manner, that mediate sperm-egg interactions. We discuss how the sperm interacts with the female reproductive tract, zona pellucida, and the oolemma. Finally, we review recent progress made in elucidating the mechanisms that reduce polyspermy and ensure that eggs normally fuse with only a single sperm.
Collapse
Affiliation(s)
- Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; ,
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; ,
| |
Collapse
|
42
|
Qiao J, Zhao H, Zhang Y, Peng H, Chen Q, Zhang H, Zheng X, Jin Y, Ni H, Duan E, Guo Y. GPR39 is region-specifically expressed in mouse oviduct correlating with the Zn 2+ distribution. Theriogenology 2016; 88:98-105. [PMID: 27865419 DOI: 10.1016/j.theriogenology.2016.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 01/05/2023]
Abstract
G-protein-coupled receptor 39 (GPR39) plays a role in cellular and physiological processes, including insulin secretion, cell death inhibition, wound healing, and obesity. Increasing evidence suggests that GPR39 is potently stimulated by zinc ions (Zn2+) and is therefore considered a putative Zn2+ receptor. Given the importance of Zn2+ in the reproductive system, we proposed that GPR39 might have a functional role in the reproductive system. However, the localization of GPR39 in the reproductive system remains unknown. Here, we used mice expressing a Gpr39 promoter-driven LacZ reporter system to detect Gpr39 expression in the reproductive system at different phases of the estrous cycle and found an interesting region-specific distribution of Gpr39 in the mouse oviduct epithelium, with strong expression at the ampulla and weak expression at the isthmus, which was consistent with the results using reverse transcription polymerase chain reaction and immunofluorescence. Moreover, using ZnSeAMG staining, we found that Zn2+, the putative ligand of GPR39, also found a distribution similar to GPR39 expression, suggesting that their potential interaction mediates fertilization and embryo transportation.
Collapse
Affiliation(s)
- Jingqiao Qiao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Huashan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongying Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - He Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xueying Zheng
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hemin Ni
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Yong Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
43
|
Sinderewicz E, Grycmacher K, Boruszewska D, Kowalczyk-Zięba I, Yamamoto Y, Yoshimoto Y, Woclawek-Potocka I. Lysophosphatidic Acid Synthesis and its Receptors' Expression in the Bovine Oviduct During the Oestrous Cycle. Reprod Domest Anim 2016; 51:541-9. [PMID: 27335048 DOI: 10.1111/rda.12717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022]
Abstract
Lysophosphatidic acid (LPA) is a naturally occurring simple phospholipid which in the bovine reproductive system can be produced in the endometrium, corpus luteum, ovarian follicle and embryo. In this study, we examined the possibility that LPA receptors are expressed, and LPA synthesized, in the bovine oviduct. We found that the concentration of LPA was highest in infundibulum in the follicular phase of the oestrous cycle and was relatively high during the early-luteal phase in all examined parts of the oviduct. We also documented that LPA synthesis engages both available pathways for LPA production. The autotaxin (ATX) protein expression was significantly higher in the infundibulum compared to the isthmus during the follicular phase of the oestrous cycle. During the early-luteal phase of the oestrous cycle, ATX and phospholipase A2 (PLA2) protein expression was highest in ampulla, although the expression of LPARs was not as dynamic as LPA concentration in the oviduct tissue, and we presume that in the bovine oviduct, the most abundantly expressed receptor is LPAR2. In conclusion, our results indicate that the bovine oviduct is a site of LPA synthesis and a target for LPA action in the bovine reproductive tract. We documented that LPAR2 is the most abundantly expressed in the bovine oviduct. We hypothesize that in the bovine oviduct, LPA may be involved in the transport of gametes, fertilization and cellular signalling between the oviduct and cumulus-oocyte complex.
Collapse
Affiliation(s)
- E Sinderewicz
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - K Grycmacher
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - D Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - I Kowalczyk-Zięba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Y Yamamoto
- Department of Animal Science, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Y Yoshimoto
- Department of Animal Science, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - I Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
44
|
Individual differences in the distribution of sperm acrosome-associated 1 proteins among male patients of infertile couples; their possible impact on outcomes of conventional in vitro fertilization. ZYGOTE 2016; 24:654-61. [PMID: 27185107 DOI: 10.1017/s0967199415000623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aims of this study were to show the existence of individual differences in the distribution of sperm acrosome-associated 1 (SPACA1) among male patients of infertile couples and to examine their possible impact on the outcomes of conventional in vitro fertilization (IVF). The spermatozoa were collected from male patients of infertile couples, washed by centrifugation, collected by the swim-up method, and then used for clinical treatments of conventional IVF. The surplus sperm samples were fixed and stained with an anti-SPACA1 polyclonal antibody for the immunocytochemistry. In the clinical IVF treatments, fertilization rates and blastocyst development rates were evaluated. The immunocytochemical observations revealed that SPACA1 were localized definitely in the acrosomal equatorial segment and variedly in the acrosomal principal segment. Specifically, the detection patterns of SPACA1 in the acrosomal principal segment could be classified into three categories: (A) strong, (B) intermediate or faint, and (C) almost no immunofluorescence. The SPACA1 indexes were largely different among male patients with the wide range from 13 to 199 points. The SPACA1 indexes were significantly correlated with developmental rates of embryos to blastocysts (r = 0.829, P = 0.00162), although they were barely associated with fertilization rates at 19 h after insemination (r = 0.289, P = 0.389). These results suggest that the distribution of SPACA1 in sperm affects the outcomes of conventional IVF. In conclusion, this study provides initial data to promote large-scale clinical investigation to demonstrate that the SPACA1 indexes are valid as molecular biomarkers that can predict the effectiveness of conventional IVF of infertile couples.
Collapse
|
45
|
Proteomics of reproductive systems: Towards a molecular understanding of postmating, prezygotic reproductive barriers. J Proteomics 2016; 135:26-37. [DOI: 10.1016/j.jprot.2015.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 10/11/2015] [Indexed: 11/20/2022]
|
46
|
Smits K, De Coninck DIM, Van Nieuwerburgh F, Govaere J, Van Poucke M, Peelman L, Deforce D, Van Soom A. The Equine Embryo Influences Immune-Related Gene Expression in the Oviduct. Biol Reprod 2016; 94:36. [PMID: 26740593 DOI: 10.1095/biolreprod.115.136432] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/18/2015] [Indexed: 12/19/2022] Open
Abstract
Although the equine oviduct clearly affects early embryo development and the selective transport of equine embryos through the oviduct indicates a reciprocal interaction, the influence of the embryo on gene expression in the oviduct remains to be determined in the horse. The aim of this study was to examine this by means of RNA sequencing. Four days after ovulation, epithelial cells ipsilateral and contralateral to the ovulation side from five cyclic and five pregnant mares were collected from the oviduct. RNA was extracted, samples were sequenced, and data analysis was performed to determine differentially expressed genes (DEGs) (P value ≤0.05 and absolute fold change ≥2) and to provide functional interpretation. A total of 10 743 transcripts were identified and 253 genes were found to be upregulated and 108 to be downregulated in the pregnant ipsilateral oviduct when compared to the cyclic ipsilateral oviduct. Comparison of the ipsilateral and the contralateral oviduct indicated 164 DEGs in pregnant mares and 77 DEGs in cyclic mares. Enriched functional categories were detected only in the comparison of pregnant and cyclic ipsilateral oviducts and showed that the equine embryo affects the expression of immune response-related genes in the oviduct, with marked upregulation of interferon-associated genes. This research represents the foundation for further assessment of the role of specific genes in the early embryo-maternal dialogue of the horse.
Collapse
Affiliation(s)
- Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dieter I M De Coninck
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Jan Govaere
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mario Van Poucke
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
47
|
|
48
|
Gómez-Elías MD, Munuce MJ, Bahamondes L, Cuasnicú PS, Cohen DJ. In vitroandin vivoeffects of ulipristal acetate on fertilization and early embryo development in mice. Hum Reprod 2015; 31:53-9. [DOI: 10.1093/humrep/dev287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022] Open
|
49
|
Abstract
The capacity for sperm storage within the female reproductive tract occurs widely across all groups of vertebrate species and is exceptionally well developed in some reptiles (maximum duration seven years) and fishes (maximum duration >1 year). Although there are many reports on both the occurrence of female sperm storage in diverse species and its adaptive benefits, few studies have been directed toward explaining the mechanisms involved. In this article we review recent findings in birds and mammals in an effort to develop hypotheses that could be translated into research applications in animal breeding technologies. There are pockets of evidence to suggest that the local epithelial cells, sometimes arranged as sperm storage tubules, can respond to spermatozoa by producing heat shock proteins as well as providing an environment rich in antioxidants. Moreover, the local immune system seems to tolerate the arrival of spermatozoa, while retaining the ability to combat the arrival of infectious microorganisms.
Collapse
Affiliation(s)
- William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield S10 2SF, United Kingdom; ;
| | - Alireza Fazeli
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield S10 2SF, United Kingdom; ;
| |
Collapse
|
50
|
Kekäläinen J, Larma I, Linden M, Evans JP. Lectin staining and flow cytometry reveals female-induced sperm acrosome reaction and surface carbohydrate reorganization. Sci Rep 2015; 5:15321. [PMID: 26470849 PMCID: PMC4607886 DOI: 10.1038/srep15321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 09/21/2015] [Indexed: 12/27/2022] Open
Abstract
All cells are covered by glycans, an individually unique layer of oligo- and polysaccharides that are critical moderators of self-recognition and other cellular-level interactions (e.g. fertilization). The functional similarity between these processes suggests that gamete surface glycans may also have an important, but currently overlooked, role in sexual selection. Here we develop a user-friendly methodological approach designed to facilitate future tests of this possibility. Our proposed method is based on flow cytometric quantification of female-induced sperm acrosome reaction and sperm surface glycan modifications in the Mediterranean mussel Mytilus galloprovincialis. In this species, as with many other taxa, eggs release water-soluble factors that attract conspecific sperm (chemoattraction) and promote potentially measurable changes in sperm behavior and physiology. We demonstrate that flow cytometry is able to identify sperm from other seawater particles as well as accurately measure both acrosome reaction and structural modifications in sperm glycans. This methodological approach can increase our understanding of chemically-moderated gamete-level interactions and individual-specific gamete recognition in Mytilus sp. and other taxa with similar, easily identifiable acrosome structure. Our approach is also likely to be applicable to several other species, since carbohydrate-mediated cellular-level interactions between gametes are universal among externally and internally fertilizing species.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- University of Western Australia, Centre for Evolutionary Biology, School of Animal Biology (M092), Crawley, Australia
- University of Eastern Finland, Department of Biology, Joensuu, Finland
| | - Irma Larma
- University of Western Australia, Harry Perkins Institute of Medical Research, Centre for Microscopy, Characterization and Analysis, Crawley, Australia
| | - Matthew Linden
- University of Western Australia, Harry Perkins Institute of Medical Research, Centre for Microscopy, Characterization and Analysis, Crawley, Australia
| | - Jonathan P. Evans
- University of Western Australia, Centre for Evolutionary Biology, School of Animal Biology (M092), Crawley, Australia
| |
Collapse
|