1
|
Xu Z, Shi J, Chen Q, Yang S, Wang Z, Xiao B, Lai Z, Jing Y, Li Y, Li X. Regulation of de novo and maintenance DNA methylation by DNA methyltransferases in postimplantation embryos. J Biol Chem 2024; 301:107990. [PMID: 39542247 DOI: 10.1016/j.jbc.2024.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
DNA methylation is mainly catalyzed by three DNA methyltransferase (DNMT) proteins in mammals. Usually DNMT1 is considered the primary DNMT for maintenance DNA methylation, whereas DNMT3A and DNMT3B function in de novo DNA methylation. Interestingly, we found DNMT3A and DNMT3B exerted maintenance and de novo DNA methylation in postimplantation mouse embryos. Together with DNMT1, they maintained DNA methylation at some pluripotent genes and lineage marker genes. Germline-derived DNA methylation at the imprinting control regions (ICRs) is stably maintained in embryos. DNMT1 maintained DNA methylation at most ICRs in postimplantation embryos. Surprisingly, DNA methylation was increased at five ICRs after implantation, and two DNMT3 proteins maintained the newly acquired DNA methylation at two of these five ICRs. Intriguingly, DNMT3A and DNMT3B maintained preexisting DNA methylation at four other ICRs, similar to what we found in embryonic stem cells before. These results suggest that DNA methylation is more dynamic than originally thought during embryogenesis including the ICRs of the imprinted regions. DNMT3A and DNMT3B exert both de novo and maintenance DNA methylation functions after implantation. They maintain large portions of newly acquired DNA methylation at variable degrees across the genome in mouse embryos, together with DNMT1. Furthermore, they contribute to maintenance of preexisting DNA methylation at a subset of ICRs as well as in the CpG islands and certain lineage marker gene. These findings may have some implications for the important roles of DNMT proteins in development and human diseases.
Collapse
Affiliation(s)
- Zhen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiajia Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qian Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuting Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zilin Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Xiao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhijian Lai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yumeng Jing
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yilin Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
2
|
Vargas LN, Silveira MM, Franco MM. Epigenetic Reprogramming and Somatic Cell Nuclear Transfer. Methods Mol Biol 2023; 2647:37-58. [PMID: 37041328 DOI: 10.1007/978-1-0716-3064-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Epigenetics is an area of genetics that studies the heritable modifications in gene expression and phenotype that are not controlled by the primary sequence of DNA. The main epigenetic mechanisms are DNA methylation, post-translational covalent modifications in histone tails, and non-coding RNAs. During mammalian development, there are two global waves of epigenetic reprogramming. The first one occurs during gametogenesis and the second one begins immediately after fertilization. Environmental factors such as exposure to pollutants, unbalanced nutrition, behavioral factors, stress, in vitro culture conditions can negatively affect epigenetic reprogramming events. In this review, we describe the main epigenetic mechanisms found during mammalian preimplantation development (e.g., genomic imprinting, X chromosome inactivation). Moreover, we discuss the detrimental effects of cloning by somatic cell nuclear transfer on the reprogramming of epigenetic patterns and some molecular alternatives to minimize these negative impacts.
Collapse
Affiliation(s)
- Luna N Vargas
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Márcia M Silveira
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Maurício M Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil.
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Vargas LN, Nochi ARF, de Castro PS, Cunha ATM, Silva TCF, Togawa RC, Silveira MM, Caetano AR, Franco MM. Differentially methylated regions identified in bovine embryos are not observed in adulthood. Anim Reprod 2023; 20:e20220076. [PMID: 36938311 PMCID: PMC10023072 DOI: 10.1590/1984-3143-ar2022-0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
The establishment of epigenetic marks during the reprogramming window is susceptible to environmental influences, and stimuli during this critical stage can cause altered DNA methylation in offspring. In a previous study, we found that low levels of sulphur and cobalt (low S/Co) in the diet offered to oocyte donors altered the DNA methylome of bovine embryos. However, due to the extensive epigenetic reprogramming that occurs during embryogenesis, we hypothesized that the different methylation regions (DMRs) identified in the blastocysts may not maintain in adulthood. Here, we aimed to characterize DMRs previously identified in embryos, in the blood and sperm of adult progenies of two groups of heifers (low S/Co and control). We used six bulls and characterized the DNA methylation levels of KDM2A, KDM5A, KMT2D, and DOT1L genes. Our results showed that all DMRs analysed in both groups and tissues were hypermethylated unlike that noticed in the embryonic methylome profiles. These results suggest that embryo DMRs were reprogrammed during the final stages of de novo methylation during embryogenesis or later in development. Therefore, due to the highly dynamic epigenetic state during early embryonic development, we suggest that is essential to validate the DMRs found in embryos in adult individuals.
Collapse
Affiliation(s)
- Luna Nascimento Vargas
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | | | - Paloma Soares de Castro
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | | | - Thainara Christie Ferreira Silva
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | | | | | | | - Maurício Machaim Franco
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
- Corresponding author:
| |
Collapse
|
4
|
Intrachromosomal Looping and Histone K27 Methylation Coordinately Regulates the lncRNA H19-Fetal Mitogen IGF2 Imprinting Cluster in the Decidual Microenvironment of Early Pregnancy. Cells 2022; 11:cells11193130. [PMID: 36231092 PMCID: PMC9563431 DOI: 10.3390/cells11193130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a highly heterogeneous complication of pregnancy with the underlying mechanisms remaining uncharacterized. Dysregulated decidualization is a critical contributor to the phenotypic alterations related to pregnancy complications. To understand the molecular factors underlying RSA, we explored the role of longnoncoding RNAs (lncRNAs) in the decidual microenvironment where the crosstalk at the fetal–maternal interface occurs. By exploring RNA-seq data from RSA patients, we identified H19, a noncoding RNA that exhibits maternal monoallelic expression, as one of the most upregulated lncRNAs associated with RSA. The paternally expressed fetal mitogen IGF2, which is reciprocally coregulated with H19 within the same imprinting cluster, was also upregulated. Notably, both genes underwent loss of imprinting, as H19 and IGF2 were actively transcribed from both parental alleles in some decidual tissues. This loss of imprinting in decidual tissues was associated with the loss of the H3K27m3 repressive histone marker in the IGF2 promoter, CpG hypomethylation at the central CTCF binding site in the imprinting control center (ICR), and the loss of CTCF-mediated intrachromosomal looping. These data suggest that dysregulation of the H19/IGF2 imprinting pathway may be an important epigenetic factor in the decidual microenvironment related to poor decidualization.
Collapse
|
5
|
Rodrigues JA, Hsieh PH, Ruan D, Nishimura T, Sharma MK, Sharma R, Ye X, Nguyen ND, Nijjar S, Ronald PC, Fischer RL, Zilberman D. Divergence among rice cultivars reveals roles for transposition and epimutation in ongoing evolution of genomic imprinting. Proc Natl Acad Sci U S A 2021; 118:e2104445118. [PMID: 34272287 PMCID: PMC8307775 DOI: 10.1073/pnas.2104445118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Parent-of-origin-dependent gene expression in mammals and flowering plants results from differing chromatin imprints (genomic imprinting) between maternally and paternally inherited alleles. Imprinted gene expression in the endosperm of seeds is associated with localized hypomethylation of maternally but not paternally inherited DNA, with certain small RNAs also displaying parent-of-origin-specific expression. To understand the evolution of imprinting mechanisms in Oryza sativa (rice), we analyzed imprinting divergence among four cultivars that span both japonica and indica subspecies: Nipponbare, Kitaake, 93-11, and IR64. Most imprinted genes are imprinted across cultivars and enriched for functions in chromatin and transcriptional regulation, development, and signaling. However, 4 to 11% of imprinted genes display divergent imprinting. Analyses of DNA methylation and small RNAs revealed that endosperm-specific 24-nt small RNA-producing loci show weak RNA-directed DNA methylation, frequently overlap genes, and are imprinted four times more often than genes. However, imprinting divergence most often correlated with local DNA methylation epimutations (9 of 17 assessable loci), which were largely stable within subspecies. Small insertion/deletion events and transposable element insertions accompanied 4 of the 9 locally epimutated loci and associated with imprinting divergence at another 4 of the remaining 8 loci. Correlating epigenetic and genetic variation occurred at key regulatory regions-the promoter and transcription start site of maternally biased genes, and the promoter and gene body of paternally biased genes. Our results reinforce models for the role of maternal-specific DNA hypomethylation in imprinting of both maternally and paternally biased genes, and highlight the role of transposition and epimutation in rice imprinting evolution.
Collapse
Affiliation(s)
- Jessica A Rodrigues
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Deling Ruan
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Toshiro Nishimura
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Manoj K Sharma
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Rita Sharma
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - XinYi Ye
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Nicholas D Nguyen
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Sukhranjan Nijjar
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
- Department of Cell and Developmental Biology, The John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
6
|
Zfp57 inactivation illustrates the role of ICR methylation in imprinted gene expression during neural differentiation of mouse ESCs. Sci Rep 2021; 11:13802. [PMID: 34226608 PMCID: PMC8257706 DOI: 10.1038/s41598-021-93297-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/23/2021] [Indexed: 12/05/2022] Open
Abstract
ZFP57 is required to maintain the germline-marked differential methylation at imprinting control regions (ICRs) in mouse embryonic stem cells (ESCs). Although DNA methylation has a key role in genomic imprinting, several imprinted genes are controlled by different mechanisms, and a comprehensive study of the relationship between DMR methylation and imprinted gene expression is lacking. To address the latter issue, we differentiated wild-type and Zfp57-/- hybrid mouse ESCs into neural precursor cells (NPCs) and evaluated allelic expression of imprinted genes. In mutant NPCs, we observed a reduction of allelic bias of all the 32 genes that were imprinted in wild-type cells, demonstrating that ZFP57-dependent methylation is required for maintaining or acquiring imprinted gene expression during differentiation. Analysis of expression levels showed that imprinted genes expressed from the non-methylated chromosome were generally up-regulated, and those expressed from the methylated chromosome were down-regulated in mutant cells. However, expression levels of several imprinted genes acquiring biallelic expression were not affected, suggesting the existence of compensatory mechanisms that control their RNA level. Since neural differentiation was partially impaired in Zfp57-mutant cells, this study also indicates that imprinted genes and/or non-imprinted ZFP57-target genes are required for proper neurogenesis in cultured ESCs.
Collapse
|
7
|
Li J, Chen W, Li D, Gu S, Liu X, Dong Y, Jin L, Zhang C, Li S. Conservation of Imprinting and Methylation of MKRN3, MAGEL2 and NDN Genes in Cattle. Animals (Basel) 2021; 11:1985. [PMID: 34359112 PMCID: PMC8300276 DOI: 10.3390/ani11071985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
Genomic imprinting is the epigenetic mechanism of transcriptional regulation that involves differential DNA methylation modification. Comparative analysis of imprinted genes between species can help us to investigate the biological significance and regulatory mechanisms of genomic imprinting. MKRN3, MAGEL2 and NDN are three maternally imprinted genes identified in the human PWS/AS imprinted locus. This study aimed to assess the allelic expression of MKRN3, MAGEL2 and NDN and to examine the differentially methylated regions (DMRs) of bovine PWS/AS imprinted domains. An expressed single-nucleotide polymorphism (SNP)-based approach was used to investigate the allelic expression of MKRN3, MAGEL2 and NDN genes in bovine adult tissues and placenta. Consistent with the expression in humans and mice, we found that the MKRN3, MAGEL2 and NDN genes exhibit monoallelic expression in bovine somatic tissues and the paternal allele expressed in the bovine placenta. Three DMRs, PWS-IC, MKRN3 and NDN DMR, were identified in the bovine PWS/AS imprinted region by analysis of the DNA methylation status in bovine tissues using the bisulfite sequencing method and were located in the promoter and exon 1 of the SNRPN gene, NDN promoter and 5' untranslated region (5'UTR) of MKRN3 gene, respectively. The PWS-IC DMR is a primary DMR inherited from the male or female gamete, but NDN and MKRN3 DMR are secondary DMRs that occurred after fertilization by examining the methylation status in gametes.
Collapse
Affiliation(s)
- Junliang Li
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Weina Chen
- Department of Traditional Chinese Medicine, Hebei University, Baoding 071000, China;
| | - Dongjie Li
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050081, China;
| | - Shukai Gu
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Xiaoqian Liu
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Yanqiu Dong
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Lanjie Jin
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Cui Zhang
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Shijie Li
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| |
Collapse
|
8
|
Abstract
ZFP57 is a master regulator of genomic imprinting. It has both maternal and zygotic functions that are partially redundant in maintaining DNA methylation at some imprinting control regions (ICRs). In this study, we found that DNA methylation was lost at most known ICRs in Zfp57 mutant embryos. Furthermore, loss of ZFP57 caused loss of parent-of-origin-dependent monoallelic expression of the target imprinted genes. The allelic expression switch occurred in the ZFP57 target imprinted genes upon loss of differential DNA methylation at the ICRs in Zfp57 mutant embryos. Specifically, upon loss of ZFP57, the alleles of the imprinted genes located on the same chromosome with the originally methylated ICR switched their expression to mimic their counterparts on the other chromosome with unmethylated ICR. Consistent with our previous study, ZFP57 could regulate the NOTCH signaling pathway in mouse embryos by impacting allelic expression of a few regulators in the NOTCH pathway. In addition, the imprinted Dlk1 gene that has been implicated in the NOTCH pathway was significantly down-regulated in Zfp57 mutant embryos. Our allelic expression switch models apply to the examined target imprinted genes controlled by either maternally or paternally methylated ICRs. Our results support the view that ZFP57 controls imprinted expression of its target imprinted genes primarily through maintaining differential DNA methylation at the ICRs.
Collapse
|
9
|
Low levels of sulfur and cobalt during the pre- and periconceptional periods affect the oocyte yield of donors and the DNA methylome of preimplantation bovine embryos. J Dev Orig Health Dis 2021; 13:231-243. [PMID: 33941306 DOI: 10.1017/s2040174421000222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal nutrition is critical in mammalian development, influencing the epigenetic reprogramming of gametes, embryos, and fetal programming. We evaluated the effects of different levels of sulfur (S) and cobalt (Co) in the maternal diet throughout the pre- and periconceptional periods on the biochemical and reproductive parameters of the donors and the DNA methylome of the progeny in Bos indicus cattle. The low-S/Co group differed from the control with respect to homocysteine, folic acid, B12, insulin growth factor 1, and glucose. The oocyte yield was lower in heifers from the low S/Co group than that in the control heifers. Embryos from the low-S/Co group exhibited 2320 differentially methylated regions (DMRs) across the genome compared with the control embryos. We also characterized candidate DMRs linked to the DNMT1 and DNMT3B genes in the blood and sperm cells of the adult progeny. A DMR located in DNMT1 that was identified in embryos remained differentially methylated in the sperm of the progeny from the low-S/Co group. Therefore, we associated changes in specific compounds in the maternal diet with DNA methylation modifications in the progeny. Our results help to elucidate the impact of maternal nutrition on epigenetic reprogramming in livestock, opening new avenues of research to study the effect of disturbed epigenetic patterns in early life on health and fertility in adulthood. Considering that cattle are physiologically similar to humans with respect to gestational length, our study may serve as a model for studies related to the developmental origin of health and disease in humans.
Collapse
|
10
|
Montalbán-Loro R, Lassi G, Lozano-Ureña A, Perez-Villalba A, Jiménez-Villalba E, Charalambous M, Vallortigara G, Horner AE, Saksida LM, Bussey TJ, Trejo JL, Tucci V, Ferguson-Smith AC, Ferrón SR. Dlk1 dosage regulates hippocampal neurogenesis and cognition. Proc Natl Acad Sci U S A 2021; 118:e2015505118. [PMID: 33712542 PMCID: PMC7980393 DOI: 10.1073/pnas.2015505118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurogenesis in the adult brain gives rise to functional neurons, which integrate into neuronal circuits and modulate neural plasticity. Sustained neurogenesis throughout life occurs in the subgranular zone (SGZ) of the dentate gyrus in the hippocampus and is hypothesized to be involved in behavioral/cognitive processes such as memory and in diseases. Genomic imprinting is of critical importance to brain development and normal behavior, and exemplifies how epigenetic states regulate genome function and gene dosage. While most genes are expressed from both alleles, imprinted genes are usually expressed from either the maternally or the paternally inherited chromosome. Here, we show that in contrast to its canonical imprinting in nonneurogenic regions, Delta-like homolog 1 (Dlk1) is expressed biallelically in the SGZ, and both parental alleles are required for stem cell behavior and normal adult neurogenesis in the hippocampus. To evaluate the effects of maternally, paternally, and biallelically inherited mutations within the Dlk1 gene in specific behavioral domains, we subjected Dlk1-mutant mice to a battery of tests that dissociate and evaluate the effects of Dlk1 dosage on spatial learning ability and on anxiety traits. Importantly, reduction in Dlk1 levels triggers specific cognitive abnormalities that affect aspects of discriminating differences in environmental stimuli, emphasizing the importance of selective absence of imprinting in this neurogenic niche.
Collapse
Affiliation(s)
- Raquel Montalbán-Loro
- ERI Biotecmed-Departamento de Biología Celular, Universidad de Valencia, 46010 Valencia,Spain
| | - Glenda Lassi
- Genetics and Epigenetics of Behaviour (GEB) Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Translational Science and Experimental Medicine Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Anna Lozano-Ureña
- ERI Biotecmed-Departamento de Biología Celular, Universidad de Valencia, 46010 Valencia,Spain
| | - Ana Perez-Villalba
- ERI Biotecmed-Departamento de Biología Celular, Universidad de Valencia, 46010 Valencia,Spain
- Faculty of Psychology, Laboratory of Animal Behavior Phenotype (LABP), Universidad Católica de Valencia, 46100 Valencia, Spain
| | | | - Marika Charalambous
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | | | - Alexa E Horner
- Synome Ltd, Babraham, Cambridge CB22 3AT, United Kingdom
| | - Lisa M Saksida
- Department of Psychology, Medical Research Council and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Molecular Medicine Research Laboratories, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5K8, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- The Brain and Mind Institute, Western University, London, ON N6A 5B7, Canada
| | - Timothy J Bussey
- Department of Psychology, Medical Research Council and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Molecular Medicine Research Laboratories, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5K8, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- The Brain and Mind Institute, Western University, London, ON N6A 5B7, Canada
| | - José Luis Trejo
- Department of Translational Neuroscience, Cajal Institute, The Spanish National Research Council, Madrid 28002, Spain
| | - Valter Tucci
- Genetics and Epigenetics of Behaviour (GEB) Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | | | - Sacri R Ferrón
- ERI Biotecmed-Departamento de Biología Celular, Universidad de Valencia, 46010 Valencia,Spain;
| |
Collapse
|
11
|
Lozano-Ureña A, Jiménez-Villalba E, Pinedo-Serrano A, Jordán-Pla A, Kirstein M, Ferrón SR. Aberrations of Genomic Imprinting in Glioblastoma Formation. Front Oncol 2021; 11:630482. [PMID: 33777782 PMCID: PMC7994891 DOI: 10.3389/fonc.2021.630482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
In human glioblastoma (GBM), the presence of a small population of cells with stem cell characteristics, the glioma stem cells (GSCs), has been described. These cells have GBM potential and are responsible for the origin of the tumors. However, whether GSCs originate from normal neural stem cells (NSCs) as a consequence of genetic and epigenetic changes and/or dedifferentiation from somatic cells remains to be investigated. Genomic imprinting is an epigenetic marking process that causes genes to be expressed depending on their parental origin. The dysregulation of the imprinting pattern or the loss of genomic imprinting (LOI) have been described in different tumors including GBM, being one of the earliest and most common events that occurs in human cancers. Here we have gathered the current knowledge of the role of imprinted genes in normal NSCs function and how the imprinting process is altered in human GBM. We also review the changes at particular imprinted loci that might be involved in the development of the tumor. Understanding the mechanistic similarities in the regulation of genomic imprinting between normal NSCs and GBM cells will be helpful to identify molecular players that might be involved in the development of human GBM.
Collapse
Affiliation(s)
- Anna Lozano-Ureña
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Valencia, Spain.,Departamento de Biología Celular, Universidad de Valencia, Valencia, Spain
| | | | | | | | - Martina Kirstein
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Valencia, Spain.,Departamento de Biología Celular, Universidad de Valencia, Valencia, Spain
| | - Sacri R Ferrón
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Valencia, Spain.,Departamento de Biología Celular, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
12
|
Folic acid supplementation during oocytes maturation influences in vitro production and gene expression of bovine embryos. ZYGOTE 2021; 29:342-349. [PMID: 33685547 DOI: 10.1017/s0967199421000022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Embryos that are produced in vitro frequently present epigenetic modifications. However, maternal supplementation with folic acid (FA) may improve oocyte maturation and embryo development, preventing epigenetic errors in the offspring. We sought to evaluate the influence of FA supplementation during in vitro maturation of grade I (GI) and grade III (GIII) bovine oocytes on embryo production rate and the expression of IGF2 and KCNQ1OT1 genes. The oocytes were matured in vitro with different concentrations of FA (0, 10, 30 and 100 μM), followed by in vitro fertilization and embryo culture. On the seventh day (D7) of culture, embryo production was evaluated and gene expression was measured using real-time qPCR. Supplementation with 10 μM of FA did not affect embryo production for GI and GIII oocytes. Moderate supplementation (30 μM) seemed to be a positive influence, increasing embryo production for GIII (P = 0.012), while the highest dose (100 μM) reduced embryo production (P = 0.010) for GI, and IGF2 expression was not detected. In GIII, only embryos whose oocyte maturation was not supplemented with FA demonstrated detected IGF2 expression. The lowest concentration of FA (10 μM) reduced KCNQ1OT1 expression (P = 0.05) on embryos from GIII oocytes. Different FA concentrations induced different effects on bovine embryo production and gene expression that was related to oocyte quality. Despite the epigenetic effects of FA, supplementation seems to be a promising factor to improve bovine embryo production if used carefully, as concentration is an important factor, especially in oocytes with impaired quality.
Collapse
|
13
|
Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev 2020; 32:65-81. [PMID: 32188559 DOI: 10.1071/rd19276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Procedures used in assisted reproduction have been under constant scrutiny since their inception with the goal of improving the number and quality of embryos produced. However, invitro production of embryos is not without complications because many fertilised oocytes fail to become blastocysts, and even those that do often differ in the genetic output compared with their invivo counterparts. Thus only a portion of those transferred complete normal fetal development. An unwanted consequence of bovine assisted reproductive technology (ART) is the induction of a syndrome characterised by fetal overgrowth and placental abnormalities, namely large offspring syndrome; a condition associated with inappropriate control of the epigenome. Epigenetics is the study of chromatin and its effects on genetic output. Establishment and maintenance of epigenetic marks during gametogenesis and embryogenesis is imperative for the maintenance of cell identity and function. ARTs are implemented during times of vast epigenetic reprogramming; as a result, many studies have identified ART-induced deviations in epigenetic regulation in mammalian gametes and embryos. This review describes the various layers of epigenetic regulation and discusses findings pertaining to the effects of ART on the epigenome of bovine gametes and the preimplantation embryo.
Collapse
Affiliation(s)
- Rocío Melissa Rivera
- Division of Animal Science University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
14
|
Abstract
Genomic imprinting is a parent-of-origin dependent phenomenon that restricts transcription to predominantly one parental allele. Since the discovery of the first long noncoding RNA (lncRNA), which notably was an imprinted lncRNA, a body of knowledge has demonstrated pivotal roles for imprinted lncRNAs in regulating parental-specific expression of neighboring imprinted genes. In this Review, we will discuss the multiple functionalities attributed to lncRNAs and how they regulate imprinted gene expression. We also raise unresolved questions about imprinted lncRNA function, which may lead to new avenues of investigation. This Review is dedicated to the memory of Denise Barlow, a giant in the field of genomic imprinting and functional lncRNAs. With her passion for understanding the inner workings of science, her indominable spirit and her consummate curiosity, Denise blazed a path of scientific investigation that made many seminal contributions to genomic imprinting and the wider field of epigenetic regulation, in addition to inspiring future generations of scientists.
Collapse
Affiliation(s)
- William A. MacDonald
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mellissa R. W. Mann
- Department of Obstetrics, Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Wang X, Qu J, Li J, He H, Liu Z, Huan Y. Epigenetic Reprogramming During Somatic Cell Nuclear Transfer: Recent Progress and Future Directions. Front Genet 2020; 11:205. [PMID: 32256519 PMCID: PMC7093498 DOI: 10.3389/fgene.2020.00205] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) has broad applications but is limited by low cloning efficiency. In this review, we mainly focus on SCNT-mediated epigenetic reprogramming in livestock and also describe mice data for reference. This review presents the factors contributing to low cloning efficiency, demonstrates that incomplete epigenetic reprogramming leads to the low developmental potential of cloned embryos, and further describes the regulation of epigenetic reprogramming by long non-coding RNAs, which is a new research perspective in the field of SCNT-mediated epigenetic reprogramming. In conclusion, this review provides new insights into the epigenetic regulatory mechanism during SCNT-mediated nuclear reprogramming, which could have great implications for improving cloning efficiency.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiadan Qu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Department of Cadre Health Care, Qingdao Municipal Hospital, Qingdao, China
| | - Hongbin He
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhonghua Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
16
|
Calegare BFA, Azzolini A, Silva Vallim JR, Turco EGL, Tempaku PF, Silva VC, Tufik S, D'Almeida V. Sleep deprivation decreases the reproductive capacity by affecting the arrival of morulas in the uterus. Genesis 2020; 58:e23350. [DOI: 10.1002/dvg.23350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
| | - Augusto Azzolini
- Department of UrologyUniversidade Federal de São Paulo São Paulo Brazil
| | | | | | | | | | - Sergio Tufik
- Department of PsychobiologyUniversidade Federal de São Paulo São Paulo Brazil
| | - Vânia D'Almeida
- Department of PsychobiologyUniversidade Federal de São Paulo São Paulo Brazil
| |
Collapse
|
17
|
Li MJ, Li X. Three paternally imprinted regions are sequentially required in prenatal and postnatal mouse development. SCIENCE CHINA. LIFE SCIENCES 2020; 63:165-168. [PMID: 31705361 DOI: 10.1007/s11427-019-1561-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Max Jiahua Li
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiajun Li
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
18
|
Kindsfather AJ, Czekalski MA, Pressimone CA, Erisman MP, Mann MRW. Perturbations in imprinted methylation from assisted reproductive technologies but not advanced maternal age in mouse preimplantation embryos. Clin Epigenetics 2019; 11:162. [PMID: 31767035 PMCID: PMC6878706 DOI: 10.1186/s13148-019-0751-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Over the last several decades, the average age of first-time mothers has risen steadily. With increasing maternal age comes a decrease in fertility, which in turn has led to an increase in the use of assisted reproductive technologies by these women. Assisted reproductive technologies (ARTs), including superovulation and embryo culture, have been shown separately to alter imprinted DNA methylation maintenance in blastocysts. However, there has been little investigation on the effects of advanced maternal age, with or without ARTs, on genomic imprinting. We hypothesized that ARTs and advanced maternal age, separately and together, alter imprinted methylation in mouse preimplantation embryos. For this study, we examined imprinted methylation at three genes, Snrpn, Kcnq1ot1, and H19, which in humans are linked to ART-associated methylation errors that lead to imprinting disorders. Results Our data showed that imprinted methylation acquisition in oocytes was unaffected by increasing maternal age. Furthermore, imprinted methylation was normally acquired when advanced maternal age was combined with superovulation. Analysis of blastocyst-stage embryos revealed that imprinted methylation maintenance was also not affected by increasing maternal age. In a comparison of ARTs, we observed that the frequency of blastocysts with imprinted methylation loss was similar between the superovulation only and the embryo culture only groups, while the combination of superovulation and embryo culture resulted in a higher frequency of mouse blastocysts with maternal imprinted methylation perturbations than superovulation alone. Finally, the combination of increasing maternal age with ARTs had no additional effect on the frequency of imprinted methylation errors. Conclusion Collectively, increasing maternal age with or without superovulation had no effect of imprinted methylation acquisition at Snrpn, Kcnq1ot1, and H19 in oocytes. Furthermore, during preimplantation development, while ARTs generated perturbations in imprinted methylation maintenance in blastocysts, advanced maternal age did not increase the burden of imprinted methylation errors at Snrpn, Kcnq1ot1, and H19 when combined with ARTs. These results provide cautious optimism that advanced maternal age is not a contributing factor to imprinted methylation errors in embryos produced in the clinic. Furthermore, our data on the effects of ARTs strengthen the need to advance clinical methods to reduce imprinted methylation errors in in vitro-produced embryos.
Collapse
Affiliation(s)
- Audrey J Kindsfather
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Megan A Czekalski
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Catherine A Pressimone
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Margaret P Erisman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Mellissa R W Mann
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA, 15213, USA. .,Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
19
|
Li X, Li MJ, Yang Y, Bai Y. Effects of reprogramming on genomic imprinting and the application of pluripotent stem cells. Stem Cell Res 2019; 41:101655. [PMID: 31734645 DOI: 10.1016/j.scr.2019.101655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/27/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells are considered to be the ideal candidates for cell-based therapies in humans. In this regard, both nuclear transfer embryonic stem (ntES) cells and induced pluripotent stem (iPS) cells are particularly advantageous because patient-specific autologous ntES and iPS cells can avoid immunorejection and other side effects that may be present in the allogenic pluripotent stem cells derived from unrelated sources. However, they have been found to contain deleterious genetic and epigenetic changes that may hinder their therapeutic applications. Indeed, deregulation of genomic imprinting has been frequently observed in reprogrammed ntES and iPS cells. We will survey the recent studies on genomic imprinting in pluripotent stem cells, particularly in iPS cells. In a previous study published about six years ago, genomic imprinting was found to be variably lost in mouse iPS clones. Intriguingly, de novo DNA methylation also occurred at the previously unmethylated imprinting control regions (ICRs) in a high percentage of iPS clones. These unexpected results were confirmed by a recent independent study with a similar approach. Since dysregulation of genomic imprinting can cause many human diseases including cancer and neurological disorders, these recent findings on genomic imprinting in reprogramming may have some implications for therapeutic applications of pluripotent stem cells.
Collapse
Affiliation(s)
- Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Max Jiahua Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yun Bai
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
20
|
Nowialis P, Lopusna K, Opavska J, Haney SL, Abraham A, Sheng P, Riva A, Natarajan A, Guryanova O, Simpson M, Hlady R, Xie M, Opavsky R. Catalytically inactive Dnmt3b rescues mouse embryonic development by accessory and repressive functions. Nat Commun 2019; 10:4374. [PMID: 31558711 PMCID: PMC6763448 DOI: 10.1038/s41467-019-12355-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/04/2019] [Indexed: 01/19/2023] Open
Abstract
DNA methylation regulates gene expression in a variety of processes, including mouse embryonic development. Four catalytically active enzymes function in mice as DNA methyltransferases (Dnmts) and as transcriptional regulators. Inactivation of Dnmt3b results in mouse embryonic lethality, but which activities are involved is unclear. Here we show that catalytically inactive Dnmt3b restores a majority of methylation and expression changes deregulated in the absence of Dnmt3b, and as a result, mice survive embryonic development. Thus, Dnmt3b functions as an accessory cofactor supporting catalytic activities performed by other Dnmts. We further demonstrate that Dnmt3b is linked to a control of major developmental pathways, including Wnt and hedgehog signaling. Dnmt3b directly represses Wnt9b whose aberrant up-regulation contributes to embryonic lethality of Dnmt3b knockout embryos. Our results highlight that Dnmt3b is a multifaceted protein that serves as an enzyme, an accessory factor for other methyltransferases, and as a transcriptional repressor in mouse embryogenesis.
Collapse
Affiliation(s)
- Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Katarina Lopusna
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Jana Opavska
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Staci L Haney
- Department of Internal Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ajay Abraham
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 263, Gainesville, FL, 32610, USA
| | - Alberto Riva
- ICBR Bioinformatics, Cancer and Genetics Research Complex, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Amarnath Natarajan
- University of Nebraska Medical Center, The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, 986805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Olga Guryanova
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 260, Gainesville, FL, 32610, USA
| | - Melanie Simpson
- Molecular and Structural Biochemistry, NC State University, Raleigh, NC, 27695, USA
| | - Ryan Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55901, USA
| | - Mingyi Xie
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 263, Gainesville, FL, 32610, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
21
|
Mendonça ADS, Silveira MM, Rios ÁFL, Mangiavacchi PM, Caetano AR, Dode MAN, Franco MM. DNA methylation and functional characterization of the XIST gene during in vitro early embryo development in cattle. Epigenetics 2019; 14:568-588. [PMID: 30925851 DOI: 10.1080/15592294.2019.1600828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
XIST, in association with the shorter ncRNA RepA, are essential for the initiation of X chromosome inactivation (XCI) in mice. The molecular mechanisms controlling XIST and RepA expression are well characterized in that specie. However, little is known in livestock. We aimed to characterize the DNA methylation status along the 5' portion of XIST and to characterize its transcriptional profile during early development in cattle. Three genomic regions of XIST named here as promoter, RepA and DMR1 had their DNA methylation status characterized in gametes and embryos. Expression profile of XIST was evaluated, including sense and antisense transcription. Oocytes showed higher levels of methylation than spermatozoa that was demethylated. DMR1 was hypermethylated throughout oogenesis. At the 8-16-cell embryo stage DMR1 was completed demethylated. Interestingly, RepA gain methylation during oocyte maturation and was demethylated at the blastocyst stage, later than DMR1. These results suggest that DMR1 and RepA are transient differentially methylated regions in cattle. XIST RNA was detected in matured oocytes and in single cells from the 2-cell to the morula stage, confirming the presence of maternal and embryonic transcripts. Sense and antisense transcripts were detected along the XIST in blastocyst. In silico analysis identified 63 novel transcript candidates at bovine XIST locus from both the plus and minus strands. Taking together these results improve our understanding of the molecular mechanisms involved in XCI initiation in cattle. This information may be useful for the improvement of assisted reproductive technologies in livestock considering that in vitro conditions may impair epigenetic reprogramming.
Collapse
Affiliation(s)
- Anelise Dos Santos Mendonça
- a Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,b Institute of Genetics and Biochemistry , Federal University of Uberlândia , Umuarama , Brazil.,c Federal Institute of Education, Science and Technology of Piauí , Uruçuí Campus , Portal dos Cerrados , Brazil
| | - Márcia Marques Silveira
- a Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,b Institute of Genetics and Biochemistry , Federal University of Uberlândia , Umuarama , Brazil
| | - Álvaro Fabrício Lopes Rios
- d Biotechnology Laboratory, Center of Biosciences and Biotechnology , North Fluminense State University , Campos dos Goytacazes , Brazil
| | - Paula Magnelli Mangiavacchi
- e Laboratory of Reproduction and Animal Genetic Improvement, Center for Agricultural Sciences and Technologies , North Fluminense State University , Campos dos Goytacazes , Brazil
| | - Alexandre Rodrigues Caetano
- f Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,g School of Agriculture and Veterinary Medicine , University of Brasília, Darcy Ribeiro Campus , Brasília , Brazil
| | - Margot Alves Nunes Dode
- a Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,g School of Agriculture and Veterinary Medicine , University of Brasília, Darcy Ribeiro Campus , Brasília , Brazil
| | - Maurício Machaim Franco
- a Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,b Institute of Genetics and Biochemistry , Federal University of Uberlândia , Umuarama , Brazil.,h Faculty of Veterinary Medicine , Federal University of Uberlândia , Umuarama , Brazil
| |
Collapse
|
22
|
SanMiguel JM, Bartolomei MS. DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod 2018; 99:252-262. [PMID: 29462489 PMCID: PMC6044325 DOI: 10.1093/biolre/ioy036] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 01/05/2023] Open
Abstract
DNA methylation is an essential epigenetic mark crucial for normal mammalian development. This modification controls the expression of a unique class of genes, designated as imprinted, which are expressed monoallelically and in a parent-of-origin-specific manner. Proper parental allele-specific DNA methylation at imprinting control regions (ICRs) is necessary for appropriate imprinting. Processes that deregulate DNA methylation of imprinted loci cause disease in humans. DNA methylation patterns dramatically change during mammalian development: first, the majority of the genome, with the exception of ICRs, is demethylated after fertilization, and subsequently undergoes genome-wide de novo DNA methylation. Secondly, after primordial germ cells are specified in the embryo, another wave of demethylation occurs, with ICR demethylation occurring late in the process. Lastly, ICRs reacquire DNA methylation imprints in developing germ cells. We describe the past discoveries and current literature defining these crucial dynamics in relation to imprinted genes and the rest of the genome.
Collapse
Affiliation(s)
- Jennifer M SanMiguel
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Marshall KL, Rivera RM. The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo. Mol Reprod Dev 2018; 85:90-105. [PMID: 29280527 DOI: 10.1002/mrd.22951] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
A societal preference of delaying maternal age at first childbirth has increased reliance on assisted reproductive technologies/therapies (ART) to conceive a child. Oocytes that have undergone physiologic aging (≥35 years for humans) are now commonly used for ART, yet evidence is building that suboptimal reproductive environments associated with aging negatively affect oocyte competence and embryo development-although the mechanisms underlying these relationship are not yet well understood. Epigenetic programming of the oocyte occurs during its growth within a follicle, so the ovarian stimulation protocols that administer exogenous hormones, as part of the first step for all ART procedures, may prevent the gamete from establishing an appropriate epigenetic state. Therefore, understanding how oocyte. Therefore, understanding how hormone stimulation and oocyte physiologic age independently and synergistically physiologic age independently and synergistically affect the epigenetic programming of these gametes, and how this may affect their developmental competence, are crucial to improved ART outcomes. Here, we review studies that measured the developmental outcomes affected by superovulation and aging, focusing on how the epigenome (i.e., global and imprinted DNA methylation, histone modifications, and epigenetic modifiers) of gametes and embryos acquired from females undergoing physiologic aging and exogenous ovarian stimulation is affected.
Collapse
Affiliation(s)
- Kira L Marshall
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | |
Collapse
|
24
|
Two approaches reveal a new paradigm of 'switchable or genetics-influenced allele-specific DNA methylation' with potential in human disease. Cell Discov 2017; 3:17038. [PMID: 29387450 PMCID: PMC5787696 DOI: 10.1038/celldisc.2017.38] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Imprinted genes are vulnerable to environmental influences during early embryonic development, thereby contributing to the onset of disease in adulthood. Monoallelic methylation at several germline imprints has been reported as DNMT1-dependent. However, which of these two epigenetic attributes, DNMT1-dependence or allelic methylation, renders imprinted genes susceptible to environmental stressors has not been determined. Herein, we developed a new approach, referred to as NORED, to identify 2468 DNMT1-dependent DNA methylation patterns in the mouse genome. We further developed an algorithm based on a genetic variation-independent approach (referred to as MethylMosaic) to detect 2487 regions with bimodal methylation patterns. Two approaches identified 207 regions, including known imprinted germline allele-specific methylation patterns (ASMs), that were both NORED and MethylMosaic regions. Examination of methylation in four independent mouse embryonic stem cell lines shows that two regions identified by both NORED and MethylMosaic (Hcn2 and Park7) did not display parent-of-origin-dependent allelic methylation. In these four F1 hybrid cell lines, genetic variation in Cast allele at Hcn2 locus introduces a transcription factor binding site for MTF-1 that may predispose Cast allelic hypomethylation in a reciprocal cross with either C57 or 129 strains. In contrast, each allele of Hcn2 ASM in J1 inbred cell line and Park7 ASM in four F1 hybrid cell lines seems to exhibit similar propensity to be either hypo- or hypermethylated, suggesting a ‘random, switchable’ ASM. Together with published results, our data on ASMs prompted us to propose a hypothesis of regional ‘autosomal chromosome inactivation (ACI)’ that may control a subset of autosomal genes. Therefore, our results open a new avenue to understand monoallelic methylation and provide a rich resource of candidate genes to examine in environmental and nutritional exposure models.
Collapse
|
25
|
Gu H, Gao J, Guo W, Zhou Y, Kong Q. The expression of DNA methyltransferases3A is specifically downregulated in chorionic villi of early embryo growth arrest cases. Mol Med Rep 2017; 16:591-596. [PMID: 28560437 PMCID: PMC5482127 DOI: 10.3892/mmr.2017.6650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 03/14/2017] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to investigate the expression pattern of four DNA methyltransferases (DNMT1, DNMT3A, DNMT3B and DNMT3L) in placenta chorionic villi of early embryo growth arrest patients. Chorionic villous specimens were obtained from 40 pregnant patients diagnosed with early embryo growth arrest and 40 healthy women who underwent selective pregnancy termination. Reverse transcription-quantitative polymerase chain reaction, immunohistochemistry and western blot analysis were performed to characterize the mRNA and protein expression of DNMTs in chorionic villous cells. It was identified, among the four DNMTs, DNMT3B presented the highest level of protein expression in both patient groups. Although the mRNA expressions of the four DNMTs were comparable, the DNMT3A protein was specifically downregulated in patients with early embryo growth arrest. Therefore, the current study suggests that an abnormal decrease in DNMT3A protein levels may be involved in the pathogenesis of early embryo growth arrest.
Collapse
Affiliation(s)
- Huating Gu
- Department of Physiology and Pathophysiology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jing Gao
- Department of Reproductive Medicine Center, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Weiwei Guo
- Department of Pathology, Yantaishan Hospital, Affiliated to Medical College of Qingdao University, Yantai, Shandong 264001, P.R. China
| | - Yu Zhou
- Department of Physiology and Pathophysiology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Qingnuan Kong
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
26
|
Singh VB, Sribenja S, Wilson KE, Attwood KM, Hillman JC, Pathak S, Higgins MJ. Blocked transcription through KvDMR1 results in absence of methylation and gene silencing resembling Beckwith-Wiedemann syndrome. Development 2017; 144:1820-1830. [PMID: 28428215 PMCID: PMC5450836 DOI: 10.1242/dev.145136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/23/2017] [Indexed: 12/30/2022]
Abstract
The maternally methylated KvDMR1 ICR regulates imprinted expression of a cluster of maternally expressed genes on human chromosome 11p15.5. Disruption of imprinting leads to Beckwith-Wiedemann syndrome (BWS), an overgrowth and cancer predisposition condition. In the majority of individuals with BWS, maternal-specific methylation at KvDMR1 is absent and genes under its control are repressed. We analyzed a mouse model carrying a poly(A) truncation cassette inserted to prevent RNA transcripts from elongation through KvDMR1. Maternal inheritance of this mutation resulted in absence of DNA methylation at KvDMR1, which led to biallelic expression of Kcnq1ot1 and suppression of maternally expressed genes. This study provides further evidence that transcription is required for establishment of methylation at maternal gametic DMRs. More importantly, this mouse model recapitulates the molecular phenotypic characteristics of the most common form of BWS, including loss of methylation at KvDMR1 and biallelic repression of Cdkn1c, suggesting that deficiency of maternal transcription through KvDMR1 may be an underlying cause of some BWS cases.
Collapse
Affiliation(s)
- Vir B Singh
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Sirinapa Sribenja
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Kayla E Wilson
- Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Kristopher M Attwood
- Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Joanna C Hillman
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Shilpa Pathak
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Michael J Higgins
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
27
|
The influence of in vitro fertilization and embryo culture on the embryo epigenetic constituents and the possible consequences in the bovine model. J Dev Orig Health Dis 2017; 8:411-417. [PMID: 28260557 DOI: 10.1017/s2040174417000125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Medically assisted reproductive technologies, such as in vitro embryo production, are increasingly being used to palliate infertility. Eggs are produced following a hormonal regimen that stimulates the ovaries to produce a large number of oocytes. Collected oocytes are then fertilized in vitro and allowed to develop in vitro until they are either frozen or transferred to mothers. There are controversial reports on the adverse impacts of these technologies on early embryos and their potential long-term effects. Using newly developed technological platforms that enable global gene expression and global DNA methylation profiling, we evaluated gene perturbations caused by such artificial procedures. We know that cells in the early embryo produce all cells in the body and are able to respond to their in vitro environment. However, it is not known whether gene perturbations are part of a normal response to the environment or are due to distress and will have long-term impacts. While the mouse is an established genetic model used for quality control of culture media in clinics, the bovine is a large mono-ovulating mammal with similar embryonic kinetics as humans during the studied developmental window. These model systems are critical to understand the effects of assisted reproduction without the confounding impact of infertility and without the limitations imposed by the scarcity of donated human samples and ethical issues. The data presented in this review come mostly from our own experimentation, publications, and collaborations. Together they demonstrate that the in vitro environment has a significant impact on embryos at the transcriptomic level and at the DNA methylation level.
Collapse
|
28
|
Genetics of the human placenta: implications for toxicokinetics. Arch Toxicol 2016; 90:2563-2581. [DOI: 10.1007/s00204-016-1816-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
|
29
|
Bunkar N, Pathak N, Lohiya NK, Mishra PK. Epigenetics: A key paradigm in reproductive health. Clin Exp Reprod Med 2016; 43:59-81. [PMID: 27358824 PMCID: PMC4925870 DOI: 10.5653/cerm.2016.43.2.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/06/2016] [Accepted: 03/16/2016] [Indexed: 12/17/2022] Open
Abstract
It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signatures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is an important area of reproductive health research.
Collapse
Affiliation(s)
- Neha Bunkar
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
| | - Neelam Pathak
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India.; Reproductive Physiology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Nirmal Kumar Lohiya
- Reproductive Physiology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Pradyumna Kumar Mishra
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India.; Department of Molecular Biology, National Institute for Research in Environmental Health (ICMR), Bhopal, India
| |
Collapse
|
30
|
Chavatte-Palmer P, Robles M, Tarrade A, Duranthon V. Gametes, Embryos, and Their Epigenome: Considerations for Equine Embryo Technologies. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Riso V, Cammisa M, Kukreja H, Anvar Z, Verde G, Sparago A, Acurzio B, Lad S, Lonardo E, Sankar A, Helin K, Feil R, Fico A, Angelini C, Grimaldi G, Riccio A. ZFP57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells. Nucleic Acids Res 2016; 44:8165-78. [PMID: 27257070 PMCID: PMC5041456 DOI: 10.1093/nar/gkw505] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/26/2016] [Indexed: 01/14/2023] Open
Abstract
ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts. By using an allele-specific RNA-seq approach, we demonstrate that ZFP57 loss results in derepression of the imprinted allele of multiple genes in the imprinted clusters. We also find marked epigenetic differences between ICRBS and non-ICRBS suggesting that different cis-acting regulatory functions are repressed by ZFP57 at these two classes of target loci. Overall, these data demonstrate that ZFP57 is pivotal to maintain the allele-specific epigenetic modifications of ICRs that in turn are necessary for maintaining the imprinted expression over long distances. At non-ICRBS, ZFP57 inactivation results in acquisition of epigenetic features that are characteristic of poised enhancers, suggesting that another function of ZFP57 in early embryogenesis is to repress cis-acting regulatory elements whose activity is not yet required.
Collapse
Affiliation(s)
- Vincenzo Riso
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Marco Cammisa
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Harpreet Kukreja
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Zahra Anvar
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Gaetano Verde
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Angela Sparago
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Basilia Acurzio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Shraddha Lad
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Enza Lonardo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Aditya Sankar
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark Center for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark The Danish Stem Cell Center (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS, 34293 Montpellier, France University of Montpellier, 34090 Montpellier, France
| | - Annalisa Fico
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo 'Mauro Picone' (IAC), CNR, 80131 Naples, Italy
| | - Giovanna Grimaldi
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Ceinge Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Andrea Riccio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| |
Collapse
|
32
|
Abstract
Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings.
Collapse
Affiliation(s)
- Jessica A Rodrigues
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
33
|
Nilsen FM, Parrott BB, Bowden JA, Kassim BL, Somerville SE, Bryan TA, Bryan CE, Lange TR, Delaney JP, Brunell AM, Long SE, Guillette LJ. Global DNA methylation loss associated with mercury contamination and aging in the American alligator (Alligator mississippiensis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:389-97. [PMID: 26748003 PMCID: PMC4972023 DOI: 10.1016/j.scitotenv.2015.12.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 04/13/2023]
Abstract
Mercury is a widespread environmental contaminant with exposures eliciting a well-documented catalog of adverse effects. Yet, knowledge regarding the underlying mechanisms by which mercury exposures are translated into biological effects remains incomplete. DNA methylation is an epigenetic modification that is sensitive to environmental cues, and alterations in DNA methylation at the global level are associated with a variety of diseases. Using a liquid chromatography tandem mass spectrometry-based (LC-MS/MS) approach, global DNA methylation levels were measured in red blood cells of 144 wild American alligators (Alligator mississippiensis) from 6 sites with variable levels of mercury contamination across Florida's north-south axis. Variation in mercury concentrations measured in whole blood was highly associated with location, allowing the comparison of global DNA methylation levels across different "treatments" of mercury. Global DNA methylation in alligators across all locations was weakly associated with increased mercury exposure. However, a much more robust relationship was observed in those animals sampled from locations more highly contaminated with mercury. Also, similar to other vertebrates, global DNA methylation appears to decline with age in alligators. The relationship between age-associated loss of global DNA methylation and varying mercury exposures was examined to reveal a potential interaction. These findings demonstrate that global DNA methylation levels are associated with mercury exposure, and give insights into interactions between contaminants, aging, and epigenetics.
Collapse
Affiliation(s)
- Frances M Nilsen
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States.
| | - Benjamin B Parrott
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - John A Bowden
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Brittany L Kassim
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Stephen E Somerville
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Teresa A Bryan
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Colleen E Bryan
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Ted R Lange
- Florida Fish and Wildlife Conservation Commission, 601 W. Woodward Ave, Eustis, FL 32726, United States
| | - J Patrick Delaney
- Deseret Ranches- 13754 Deseret Lane, St. Cloud, Florida 34773-9381, United States
| | - Arnold M Brunell
- Florida Fish and Wildlife Conservation Commission, 601 W. Woodward Ave, Eustis, FL 32726, United States
| | - Stephen E Long
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Louis J Guillette
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| |
Collapse
|
34
|
Yuan B, Gu H, Xu B, Tang Q, Wu W, Ji X, Xia Y, Hu L, Chen D, Wang X. Effects of Gold Nanorods on Imprinted Genes Expression in TM-4 Sertoli Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030271. [PMID: 26938548 PMCID: PMC4808934 DOI: 10.3390/ijerph13030271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
Abstract
Gold nanorods (GNRs) are among the most commonly used nanomaterials. However, thus far, little is known about their harmful effects on male reproduction. Studies from our laboratory have demonstrated that GNRs could decrease glycine synthesis, membrane permeability, mitochondrial membrane potential and disrupt blood-testis barrier factors in TM-4 Sertoli cells. Imprinted genes play important roles in male reproduction and have been identified as susceptible loci to environmental insults by chemicals because they are functionally haploid. In this original study, we investigated the extent to which imprinted genes become deregulated in TM-4 Sertoli cells when treated with low dose of GNRs. The expression levels of 44 imprinted genes were analyzed by quantitative real-time PCR in TM-4 Sertoli cells after a low dose of (10 nM) GNRs treatment for 24 h. We found significantly diminished expression of Kcnq1, Ntm, Peg10, Slc22a2, Pwcr1, Gtl2, Nap1l5, Peg3 and Slc22a2, while Plagl1 was significantly overexpressed. Additionally, four (Kcnq1, Slc22a18, Pwcr1 and Peg3) of 10 abnormally expressed imprinted genes were found to be located on chromosome 7. However, no significant difference of imprinted miRNA genes was observed between the GNRs treated group and controls. Our study suggested that aberrant expression of imprinted genes might be an underlying mechanism for the GNRs-induced reproductive toxicity in TM-4 Sertoli cells.
Collapse
Affiliation(s)
- Beilei Yuan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Hao Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Qiuqin Tang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China.
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Xiaoli Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Lingqing Hu
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Daozhen Chen
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
35
|
Chavatte-Palmer P, Vialard F, Tarrade A, Dupont C, Duranthon V, Lévy R. [DOHaD and pre- or peri-conceptional programming]. Med Sci (Paris) 2016; 32:57-65. [PMID: 26850608 DOI: 10.1051/medsci/20163201010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pre- and peri-conceptional periods (before and just after fertilization, until the blastocyst stage) are critical in the context of the Developmental Origins of Health and Disease (DOHaD). Maternal in vivo environment, in particular nutrition, can disturb the apposition of epigenetic marks throughout gametogenesis, fertilization and the first steps of embryonic development, which are times during which major epigenetic changes take place. The in vitro environment, in the case of assisted reproduction techniques, also affects epigenetic marks. Whilst the embryo is a target of these changes, female and male gametes are both target and vector of these epigenetic changes, thus leading to multigenerational effects. Long term consequences on the phenotype of offspring vary according to the sex of the vector parent, the sex of the individual and the generation.
Collapse
Affiliation(s)
- Pascale Chavatte-Palmer
- UMR BDR, INRA, ENVA, Université Paris Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - François Vialard
- Unité Gamète-Implantation-Gestation, EA7404 Université de Versailles Saint-Quentin-en-Yvelines et Centre hospitalier intercommunal de Poissy St-Germain, laboratoire assistance médicale à la procréation-cytogénétique, France
| | - Anne Tarrade
- UMR BDR, INRA, ENVA, Université Paris Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Charlotte Dupont
- UMR BDR, INRA, ENVA, Université Paris Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France - APHP, hôpital Jean Verdier, 93140, Bondy, France
| | - Véronique Duranthon
- UMR BDR, INRA, ENVA, Université Paris Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Rachel Lévy
- APHP, hôpital Jean Verdier, 93140, Bondy, France
| |
Collapse
|
36
|
Wang JQ, Cao WG. Key Signaling Events for Committing Mouse Pluripotent Stem Cells to the Germline Fate. Biol Reprod 2015; 94:24. [PMID: 26674564 DOI: 10.1095/biolreprod.115.135095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023] Open
Abstract
The process of germline development carries genetic information and preparatory totipotency across generations. The last decade has witnessed remarkable successes in the generation of germline cells from mouse pluripotent stem cells, especially induced germline cells with the capacity for producing viable offspring, suggesting clinical applications of induced germline cells in humans. However, to date, the culture systems for germline induction with accurate sex-specific meiosis and epigenetic reprogramming have not been well-established. In this study, we primarily focus on the mouse model to discuss key signaling events for germline induction. We review mechanisms of competent regulators on primordial germ cell induction and discuss current achievements and difficulties in inducing sex-specific germline development. Furthermore, we review the developmental identities of mouse embryonic stem cells and epiblast stem cells under certain defined culture conditions as it relates to the differentiation process of becoming germline cells.
Collapse
Affiliation(s)
- Jian-Qi Wang
- Transgenic and Stem Cell Core, Institute of Animal Sciences and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen-Guang Cao
- Transgenic and Stem Cell Core, Institute of Animal Sciences and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation. PLoS One 2015; 10:e0134155. [PMID: 26275310 PMCID: PMC4537176 DOI: 10.1371/journal.pone.0134155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/06/2015] [Indexed: 11/19/2022] Open
Abstract
Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown.
Collapse
|
38
|
Koppes E, Himes KP, Chaillet JR. Partial Loss of Genomic Imprinting Reveals Important Roles for Kcnq1 and Peg10 Imprinted Domains in Placental Development. PLoS One 2015; 10:e0135202. [PMID: 26241757 PMCID: PMC4524636 DOI: 10.1371/journal.pone.0135202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/19/2015] [Indexed: 01/24/2023] Open
Abstract
Mutations in imprinted genes or their imprint control regions (ICRs) produce changes in imprinted gene expression and distinct abnormalities in placental structure, indicating the importance of genomic imprinting to placental development. We have recently shown that a very broad spectrum of placental abnormalities associated with altered imprinted gene expression occurs in the absence of the oocyte-derived DNMT1o cytosine methyltransferase, which normally maintains parent-specific imprinted methylation during preimplantation. The absence of DNMT1o partially reduces inherited imprinted methylation while retaining the genetic integrity of imprinted genes and their ICRs. Using this novel system, we undertook a broad and inclusive approach to identifying key ICRs involved in placental development by correlating loss of imprinted DNA methylation with abnormal placental phenotypes in a mid-gestation window (E12.5-E15.5). To these ends we measured DNA CpG methylation at 15 imprinted gametic differentially methylated domains (gDMDs) that overlap known ICRs using EpiTYPER-mass array technology, and linked these epigenetic measurements to histomorphological defects. Methylation of some imprinted gDMDs, most notably Dlk1, was nearly normal in mid-gestation DNMT1o-deficient placentas, consistent with the notion that cells having lost methylation on these DMDs do not contribute significantly to placental development. Most imprinted gDMDs however showed a wide range of methylation loss among DNMT1o-deficient placentas. Two striking associations were observed. First, loss of DNA methylation at the Peg10 imprinted gDMD associated with decreased embryonic viability and decreased labyrinthine volume. Second, loss of methylation at the Kcnq1 imprinted gDMD was strongly associated with trophoblast giant cell (TGC) expansion. We conclude that the Peg10 and Kcnq1 ICRs are key regulators of mid-gestation placental function.
Collapse
Affiliation(s)
- Erik Koppes
- Magee-Womens Research Institute, Program in Integrative Molecular Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Katherine P. Himes
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - J. Richard Chaillet
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Golding MC, Snyder M, Williamson GL, Veazey KJ, Peoples M, Pryor JH, Westhusin ME, Long CR. Histone-lysine N-methyltransferase SETDB1 is required for development of the bovine blastocyst. Theriogenology 2015; 84:1411-22. [PMID: 26279314 DOI: 10.1016/j.theriogenology.2015.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 01/10/2023]
Abstract
Transcripts derived from select clades of transposable elements are among the first to appear in early mouse and human embryos, indicating transposable elements and the mechanisms that regulate their activity are fundamental to the establishment of the founding mammalian lineages. However, the mechanisms by which these parasitic sequences are involved in directing the developmental program are still poorly characterized. Transposable elements are regulated through epigenetic means, where combinatorial patterns of DNA methylation and histone 3 lysine 9 trimethylation (H3K9me3) suppress their transcription. From studies in rodents, SET domain bifurcated 1 (SETDB1) has emerged as the core methyltransferase responsible for marking transposable elements with H3K9me3 and temporally regulating their transcriptional activity. SETDB1 loss of function studies in mice reveal that although extraembryonic tissues do not require this methyltransferase, establishment of the embryo proper fails without it. As the bovine embryo initiates the processes of epigenetic programming earlier in the preimplantation phase, we sought to determine whether suppressing SETDB1 would block the formation of the inner cell mass. We report here that bovine SETDB1 transcripts are present throughout preimplantation development, and RNA interference-based depletion blocks embryo growth at the morula stage of development. Although we did not observe alterations in global histone methylation or transposable element transcription, we did observe increased global levels of H3K27 acetylation, an epigenetic mark associated with active enhancers. Our observations suggest that SETDB1 might interact with the epigenetic machinery controlling enhancer function and that suppression of this methyltransferase may disrupt the bovine developmental program.
Collapse
Affiliation(s)
- Michael C Golding
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.
| | - Matthew Snyder
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Gayle L Williamson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Kylee J Veazey
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Michael Peoples
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jane H Pryor
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mark E Westhusin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
40
|
MacDonald WA, Sachani SS, White CR, Mann MRW. A role for chromatin topology in imprinted domain regulation. Biochem Cell Biol 2015. [PMID: 26222733 DOI: 10.1139/bcb-2015-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.
Collapse
Affiliation(s)
- William A MacDonald
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| | - Saqib S Sachani
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| | - Carlee R White
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| | - Mellissa R W Mann
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| |
Collapse
|
41
|
The impact of assisted reproductive technologies on genomic imprinting and imprinting disorders. Curr Opin Obstet Gynecol 2015; 26:210-21. [PMID: 24752003 DOI: 10.1097/gco.0000000000000071] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Genomic imprinting refers to preferential allele-specific gene expression. DNA methylation-based molecular mechanisms regulate establishment and maintenance of parental imprints during early embryo development and gametogenesis. Because of the coincident timing, a potential association between assisted reproductive technology (ART) procedures and imprinting defects has been investigated in various studies. In this review, we provide an overview of genomic imprinting and present a summary of the relevant clinical data. RECENT FINDINGS ART procedures affect DNA methylation pattern, parental imprinting status, and imprinted gene expression in the mouse embryo. In humans, several case series suggested an association between ART and imprinting disorders, with a three-fold to six-fold higher prevalence of ART use among children born with Beckwith-Wiedemann syndrome compared to the general population. However, more recent studies failed to support these findings and could not demonstrate an association between imprinting disorders and ARTs, independent of subfertility. SUMMARY ART procedures may affect methylation status of imprinted regions in the DNA, leading to imprinting disorders. Although the low prevalence of imprinting disorders makes it challenging to perform conclusive clinical trials, further studies in large registries are required to determine the real impact of ARTs on their occurrence.
Collapse
|
42
|
Grybek V, Aubry L, Maupetit-Méhouas S, Le Stunff C, Denis C, Girard M, Linglart A, Silve C. Methylation and transcripts expression at the imprinted GNAS locus in human embryonic and induced pluripotent stem cells and their derivatives. Stem Cell Reports 2014; 3:432-43. [PMID: 25241742 PMCID: PMC4266011 DOI: 10.1016/j.stemcr.2014.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Data from the literature indicate that genomic imprint marks are disturbed in human pluripotent stem cells (PSCs). GNAS is an imprinted locus that produces one biallelic (Gsα) and four monoallelic (NESP55, GNAS-AS1, XLsα, and A/B) transcripts due to differential methylation of their promoters (DMR). To document imprinting at the GNAS locus in PSCs, we studied GNAS locus DMR methylation and transcript (NESP55, XLsα, and A/B) expression in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) derived from two human fibroblasts and their progenies. Results showed that (1) methylation at the GNAS locus DMRs is DMR and cell line specific, (2) changes in allelic transcript expression can be independent of a change in allele-specific DNA methylation, and (3) interestingly, methylation at A/B DMR is correlated with A/B transcript expression. These results indicate that these models are valuable to study the mechanisms controlling GNAS methylation, factors involved in transcript expression, and possibly mechanisms involved in the pathophysiology of pseudohypoparathyroidism type 1B. GNAS locus methylation is DMR and cell line specific in human pluripotent stem cells Allelic transcript expression can be independent of allele-specific DNA methylation A/B transcript expression, a key for PHP1B, is correlated with A/B DMR methylation
Collapse
Affiliation(s)
- Virginie Grybek
- INSERM U986, Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France
| | - Laetitia Aubry
- UEVE UMR 861, I-Stem, AFM, Evry 91030, France; INSERM UMR 861, I-Stem, AFM, Evry 91030, France
| | | | | | - Cécile Denis
- CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry 91030, France
| | - Mathilde Girard
- CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry 91030, France
| | - Agnès Linglart
- INSERM U986, Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France; Service d'Endocrinologie Pédiatrique, Hôpital Bicêtre-AP-HP, Le Kremlin Bicêtre 94276, France; Centre de Référence des Maladies Rares du Métabolisme Phospho-Calcique Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France
| | - Caroline Silve
- INSERM U986, Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France; Centre de Référence des Maladies Rares du Métabolisme Phospho-Calcique Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France; Laboratoire de Biochimie Hormonale et Génétique, Hôpital Bichat Claude Bernard-AP-HP, Paris 75018, France.
| |
Collapse
|
43
|
van der Zwan YG, Rijlaarsdam MA, Rossello FJ, Notini AJ, de Boer S, Watkins DN, Gillis AJM, Dorssers LCJ, White SJ, Looijenga LHJ. Seminoma and embryonal carcinoma footprints identified by analysis of integrated genome-wide epigenetic and expression profiles of germ cell cancer cell lines. PLoS One 2014; 9:e98330. [PMID: 24887064 PMCID: PMC4041891 DOI: 10.1371/journal.pone.0098330] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/30/2014] [Indexed: 12/12/2022] Open
Abstract
Background Originating from Primordial Germ Cells/gonocytes and developing via a precursor lesion called Carcinoma In Situ (CIS), Germ Cell Cancers (GCC) are the most common cancer in young men, subdivided in seminoma (SE) and non-seminoma (NS). During physiological germ cell formation/maturation, epigenetic processes guard homeostasis by regulating the accessibility of the DNA to facilitate transcription. Epigenetic deregulation through genetic and environmental parameters (i.e. genvironment) could disrupt embryonic germ cell development, resulting in delayed or blocked maturation. This potentially facilitates the formation of CIS and progression to invasive GCC. Therefore, determining the epigenetic and functional genomic landscape in GCC cell lines could provide insight into the pathophysiology and etiology of GCC and provide guidance for targeted functional experiments. Results This study aims at identifying epigenetic footprints in SE and EC cell lines in genome-wide profiles by studying the interaction between gene expression, DNA CpG methylation and histone modifications, and their function in the pathophysiology and etiology of GCC. Two well characterized GCC-derived cell lines were compared, one representative for SE (TCam-2) and the other for EC (NCCIT). Data were acquired using the Illumina HumanHT-12-v4 (gene expression) and HumanMethylation450 BeadChip (methylation) microarrays as well as ChIP-sequencing (activating histone modifications (H3K4me3, H3K27ac)). Results indicate known germ cell markers not only to be differentiating between SE and NS at the expression level, but also in the epigenetic landscape. Conclusion The overall similarity between TCam-2/NCCIT support an erased embryonic germ cell arrested in early gonadal development as common cell of origin although the exact developmental stage from which the tumor cells are derived might differ. Indeed, subtle difference in the (integrated) epigenetic and expression profiles indicate TCam-2 to exhibit a more germ cell-like profile, whereas NCCIT shows a more pluripotent phenotype. The results provide insight into the functional genome in GCC cell lines.
Collapse
Affiliation(s)
- Yvonne G. van der Zwan
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martin A. Rijlaarsdam
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fernando J. Rossello
- Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Amanda J. Notini
- Centre for Genetic Diseases, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Suzan de Boer
- Centre for Genetic Diseases, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - D. Neil Watkins
- Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Ad J. M. Gillis
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lambert C. J. Dorssers
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Stefan J. White
- Centre for Genetic Diseases, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Leendert H. J. Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|