1
|
Guo J, Zhou W, Sacco M, Downing P, Dimitriadis E, Zhao F. Using organoids to investigate human endometrial receptivity. Front Endocrinol (Lausanne) 2023; 14:1158515. [PMID: 37693361 PMCID: PMC10484744 DOI: 10.3389/fendo.2023.1158515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/13/2023] [Indexed: 09/12/2023] Open
Abstract
The human endometrium is only receptive to an implanting blastocyst in the mid-secretory phase of each menstrual cycle. Such time-dependent alterations in function require intricate interplay of various factors, largely coordinated by estrogen and progesterone. Abnormal endometrial receptivity is thought to contribute to two-thirds of the implantation failure in humans and therefore significantly hindering IVF success. Despite the incontrovertible importance of endometrial receptivity in implantation, the precise mechanisms involved in the regulation of endometrial receptivity remain poorly defined. This is mainly due to a lack of proper in vitro models that recapitulate the in vivo environment of the receptive human endometrium. Organoids were recently established from human endometrium with promising features to better mimic the receptive phase. Endometrial organoids show long-term expandability and the capability to preserve the structural and functional characteristics of the endometrial tissue of origin. This three-dimensional model maintains a good responsiveness to steroid hormones in vitro and replicates key morphological features of the receptive endometrium in vivo, including pinopodes and pseudostratified epithelium. Here, we review the current findings of endometrial organoid studies that have been focused on investigating endometrial receptivity and place an emphasis on methods to further refine and improve this model.
Collapse
Affiliation(s)
- Junhan Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Michaela Sacco
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Poppy Downing
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Feifei Zhao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Muhandiram S, Dissanayake K, Orro T, Godakumara K, Kodithuwakku S, Fazeli A. Secretory Proteomic Responses of Endometrial Epithelial Cells to Trophoblast-Derived Extracellular Vesicles. Int J Mol Sci 2023; 24:11924. [PMID: 37569298 PMCID: PMC10418763 DOI: 10.3390/ijms241511924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Synchronized crosstalk between the embryo and endometrium during the periconception period is integral to pregnancy establishment. Increasing evidence suggests that the exchange of extracellular vesicles (EVs) of both embryonic and endometrial origin is a critical component of embryo-maternal communication during peri-implantation. Here, we investigated whether embryonic signals in the form of EVs can modulate the endometrial epithelial cell secretome. Receptive endometrial analog RL95-2 cells were supplemented with trophoblast analog JAr cell-derived EVs, and the secretory protein changes occurring in the RL95-2 cells were analyzed using mass spectrometry. EVs of non-trophoblastic origin (HEK 293 cells) were used as the control EV source to supplement endometrial cells. Trophoblast cell-derived EVs enriched endometrial epithelial cell secretions with proteins that support embryo development, attachment, or implantation, whereas control EVs were unable to induce the same effect. The present study suggests that embryonic signals in the form of EVs may prime receptive endometrial epithelial cells to enrich their secretory proteome with critical proteomic molecules with functional importance for periconception milieu formation.
Collapse
Affiliation(s)
- Subhashini Muhandiram
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (S.M.); (K.D.); (T.O.); (K.G.); (S.K.)
| | - Keerthie Dissanayake
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (S.M.); (K.D.); (T.O.); (K.G.); (S.K.)
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14B, 50411 Tartu, Estonia
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Kandy 20400, Sri Lanka
| | - Toomos Orro
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (S.M.); (K.D.); (T.O.); (K.G.); (S.K.)
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (S.M.); (K.D.); (T.O.); (K.G.); (S.K.)
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (S.M.); (K.D.); (T.O.); (K.G.); (S.K.)
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Kandy 20400, Sri Lanka
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (S.M.); (K.D.); (T.O.); (K.G.); (S.K.)
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14B, 50411 Tartu, Estonia
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
3
|
Emerging in vitro platforms and omics technologies for studying the endometrium and early embryo-maternal interface in humans. Placenta 2022; 125:36-46. [DOI: 10.1016/j.placenta.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 01/09/2022] [Indexed: 12/11/2022]
|
4
|
Fernando SR, Lee CL, Wong BP, Cheng KW, Lee YL, Chan MC, Ng EH, Yeung WS, Lee KF. Expression of membrane protein disulphide isomerase A1 (PDIA1) disrupt a reducing microenvironment in endometrial epithelium for embryo implantation. Exp Cell Res 2021; 405:112665. [PMID: 34111473 DOI: 10.1016/j.yexcr.2021.112665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Various proteins in the endometrial epithelium are differentially expressed in the receptive phase and play a pivotal role in embryo implantation. The Protein Disulphide Isomerase (PDI) family contains 21 members that function as chaperone proteins through their redox activities. Although total PDIA1 protein expression was high in four common receptive (Ishikawa and RL95-2) and non-receptive (HEC1-B and AN3CA) endometrial epithelial cell lines, significantly higher membrane PDIA1 expression was found in non-receptive AN3CA cells. In Ishikawa cells, oestrogen up-regulated while progesterone down-regulated membrane PDIA1 expression. Moreover, mid-luteal phase hormone treatment down-regulated membrane PDIA1 expression. Furthermore, oestrogen at 10 nM reduced spheroid attachment on Ishikawa cells. Interestingly, inhibition of PDIA1 function by bacitracin or 16F16 increased the spheroid attachment rate onto non-receptive AN3CA cells. Over-expression of PDIA1 in receptive Ishikawa cells reduced the spheroid attachment rate and significantly down-regulated integrin β3 levels, but not integrin αV and E-cadherin. Addition of reducing agent TCEP induced a sulphydryl-rich microenvironment and increased spheroid attachment onto AN3CA cells and human primary endometrial epithelial cells collected at LH+7/8 days. The luminal epithelial cells from human endometrial biopsies had higher PDIA1 protein expression in the proliferative phase than in the secretory phase. Our findings suggest oestrogen and progesterone regulate PDIA1 expression, resulting in the differential expressions of membrane PDIA1 protein to modulate endometrial receptivity. This suggests that membrane PDIA1 expression prior to embryo transfer could be used to predict endometrial receptivity and embryo implantation in women undergoing assisted reproduction treatment.
Collapse
Affiliation(s)
- Sudini R Fernando
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Animal Science, Faculty of Animal Science & Export Agriculture, Uva Wellassa University, Badulla, 50000, Sri Lanka
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - Benancy Pc Wong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kiu-Wai Cheng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yin-Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - Ming-Chung Chan
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Ernest Hy Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - William Sb Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China.
| |
Collapse
|
5
|
Fernando SR, Kottawatta KSA, Jiang L, Chen X, Cheng KW, Wong BPC, Ng EHY, Yeung WSB, Lee KF. Differential expression of protein disulfide isomerase (PDI) in regulating endometrial receptivity in humans. Reprod Biol 2021; 21:100498. [PMID: 33677360 DOI: 10.1016/j.repbio.2021.100498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022]
Abstract
Estrogen and progesterone regulate the expression of endometrial proteins that determine endometrial receptivity for embryo implantation. The protein disulfide isomerase (PDI) family of proteins play a diverse role in regulating protein modification and redox function. Although the role of PDIs in cancer progression has been widely studied, their role in endometrial receptivity is largely unknown. We have focused on the expressions of PDIA1, PDIA2, PDIA3, PDIA4, PDIA5, and PDIA6 isoforms in endometrial epithelium under the influence of estrogen and progesterone and investigated their functional role in regulating endometrial receptivity. We found PDIA1-6 transcripts were expressed in endometrial epithelial Ishikawa, RL95-2, AN3CA, and HEC1-B cell lines. The expression of PDIA1 was low and PDIA5 was high in HEC1-B cells, whereas PDIA2 was high in both AN3CA and HEC1-B cells. In Ishikawa cells, estrogen (10 and 100 nM) upregulated PDIA1 and PDIA6, whereas estrogen (100 nM) downregulated PDIA4 and PDIA5; and progesterone (0.1 and 1 μM) downregulated transcript expressions of PDIA1-6. In human endometrial samples, significantly lowered transcript expressions of PDIA2 and PDIA5 were observed in the secretory phase compared with the proliferative phase, whereas no change was observed in the other studied transcripts throughout the cycle. Inhibition of PDI by PDI antibody (5 and 10 μg/mL) and PDI inhibitor bacitracin (1 and 5 mM) significantly increased the attachment of Jeg-3 spheroids onto AN3CA cells. Taken together, our study suggests a role of PDI in regulating endometrial receptivity and the possibility of using PDI inhibitors to enhance endometrial receptivity.
Collapse
Affiliation(s)
- Sudini Ranshaya Fernando
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - Kottawattage Sanda Arunika Kottawatta
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, The University of Peradeniya, Peradeniya, Sri Lanka
| | - Luhan Jiang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xian Chen
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Kiu-Wai Cheng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Benancy Po-Chau Wong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Ernest Hung-Yu Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - William Shu-Biu Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China.
| |
Collapse
|
6
|
Ojosnegros S, Seriola A, Godeau AL, Veiga A. Embryo implantation in the laboratory: an update on current techniques. Hum Reprod Update 2021; 27:501-530. [PMID: 33410481 DOI: 10.1093/humupd/dmaa054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The embryo implantation process is crucial for the correct establishment and progress of pregnancy. During implantation, the blastocyst trophectoderm cells attach to the epithelium of the endometrium, triggering intense cell-to-cell crosstalk that leads to trophoblast outgrowth, invasion of the endometrial tissue, and formation of the placenta. However, this process, which is vital for embryo and foetal development in utero, is still elusive to experimentation because of its inaccessibility. Experimental implantation is cumbersome and impractical in adult animal models and is inconceivable in humans. OBJECTIVE AND RATIONALE A number of custom experimental solutions have been proposed to recreate different stages of the implantation process in vitro, by combining a human embryo (or a human embryo surrogate) and endometrial cells (or a surrogate for the endometrial tissue). In vitro models allow rapid high-throughput interrogation of embryos and cells, and efficient screening of molecules, such as cytokines, drugs, or transcription factors, that control embryo implantation and the receptivity of the endometrium. However, the broad selection of available in vitro systems makes it complicated to decide which system best fits the needs of a specific experiment or scientific question. To orient the reader, this review will explore the experimental options proposed in the literature, and classify them into amenable categories based on the embryo/cell pairs employed.The goal is to give an overview of the tools available to study the complex process of human embryo implantation, and explain the differences between them, including the advantages and disadvantages of each system. SEARCH METHODS We performed a comprehensive review of the literature to come up with different categories that mimic the different stages of embryo implantation in vitro, ranging from initial blastocyst apposition to later stages of trophoblast invasion or gastrulation. We will also review recent breakthrough advances on stem cells and organoids, assembling embryo-like structures and endometrial tissues. OUTCOMES We highlight the most relevant systems and describe the most significant experiments. We focus on in vitro systems that have contributed to the study of human reproduction by discovering molecules that control implantation, including hormones, signalling molecules, transcription factors and cytokines. WIDER IMPLICATIONS The momentum of this field is growing thanks to the use of stem cells to build embryo-like structures and endometrial tissues, and the use of bioengineering to extend the life of embryos in culture. We propose to merge bioengineering methods derived from the fields of stem cells and reproduction to develop new systems covering a wider window of the implantation process.
Collapse
Affiliation(s)
- Samuel Ojosnegros
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Seriola
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Amélie L Godeau
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Veiga
- B arcelona Stem Cell Bank, Regenerative Medicine Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain.,Reproductive Medicine Service, Dexeus Mujer, Hospital Universitari Dexeus, Barcelona, Spain
| |
Collapse
|
7
|
Kakar-Bhanot R, Brahmbhatt K, Chauhan B, Katkam RR, Bashir T, Gawde H, Mayadeo N, Chaudhari UK, Sachdeva G. Rab11a drives adhesion molecules to the surface of endometrial epithelial cells. Hum Reprod 2020; 34:519-529. [PMID: 30597006 DOI: 10.1093/humrep/dey365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/11/2018] [Accepted: 11/24/2018] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION Is Rab11a GTPase, a regulator of intracellular trafficking, of significance in endometrial functions? SUMMARY ANSWER Rab11a is an important component of the cascades involved in equipping the endometrial epithelium (EE) with 'adhesiveness' and 'cohesiveness'. WHAT IS KNOWN ALREADY Cell adhesion molecules (CAMs) have been investigated extensively for modulation in their endometrial expression during the peri-implantation phase. However, the mechanisms by which CAMs are transported to the EE surface have not received the same attention. Rab11a facilitates transport of specific proteins to the plasma membrane in endothelial cells, fibroblasts, embryonic ectodermal cells, etc. However, its role in the transport of CAMs in EE remains unexplored. STUDY DESIGN, SIZE, DURATION In-vitro investigations were directed towards deciphering the role of Rab11a in trafficking of CAMs (integrins and E-cadherin) to the cell surface of Ishikawa, an EE cell line. Towards this, Rab11a stable knockdown (Rab-kd) and control clones of Ishikawa were generated. JAr (human trophoblastic cell line) cells were used to form multicellular spheroids. Pre-receptive (n = 6) and receptive (n = 6) phase endometrial tissues from women with proven fertility and receptive phase (n = 6) endometrial tissues from women with unexplained infertility were used. PARTICIPANTS/MATERIALS, SETTING, METHODS Rab-kd and control clones were used for in-vitro assays. Live cells were used for biotinylation, JAr spheroid assays, flow cytometry, trans-epithelial electrical resistance assays and wound-healing assays. Lysosome and Golgi membranes were isolated by ultracentrifugation. Confocal microscopy, immunoblotting, qRT-PCR and immunohistochemistry were employed for assessing the expression of Rab11a, integrins and E-cadherin. MAIN RESULTS AND THE ROLE OF CHANCE shRNA-mediated attenuation of Rab11a expression led to a significant (P < 0.01) decline in the surface localization of αVβ3 integrin. Cell surface protein extracts of Rab-kd clones showed a significant (P < 0.05) reduction in the levels of αV integrin. Further, a significant (P < 0.01) decrease was observed in the percent JAr spheroids attached to Rab-kd clones, compared to control clones. Rab-kd clones also showed a significant (P < 0.001) decline in the total levels of E-cadherin. This was caused neither by reduced transcription nor by increased lysosomal degradation. The role of Rab11a in maintaining the epithelial nature of the cells was evident by a significant increase in the migratory potential, presence of stress-fibres and a decrease in the trans-epithelial resistance in Rab-kd monolayers. Further, the levels of endometrial Rab11a and E-cadherin in the receptive phase were found to be significantly (P < 0.05) lower in women with unexplained infertility compared to that in fertile women. Taken together, these observations hint at a key role of Rab11a in the trafficking of αVβ3 integrin and maintenance of E-cadherin levels at the surface of EE cells. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The in-vitro setting of the study is a limitation. Further immunohistochemical localizations of Rab11a and CAMs were conducted on a limited number of human endometrial samples. WIDER IMPLICATIONS OF THE FINDINGS Rab11a-mediated trafficking of endometrial CAMs in EE cells can be explored further for its potential as a target for fertility regulation or infertility management. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the Indian Council of Medical Research (ICMR), the Department of Science and Technology (DST), the Council of Scientific and Industrial Research (CSIR), Government of India. No competing interests are declared.
Collapse
Affiliation(s)
- Ruchi Kakar-Bhanot
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Krupanshi Brahmbhatt
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Bhagyashree Chauhan
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - R R Katkam
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - T Bashir
- Molecular Immunology and Microbiology Laboratory, ICMR-NIRRH, Mumbai, India
| | - H Gawde
- Genetic Research Centre, ICMR-NIRRH, Mumbai, India
| | - N Mayadeo
- Department of Gynecology and Obstetrics, Seth G.S. Medical College and King Edward Memorial Hospital, Parel, Mumbai, India
| | - U K Chaudhari
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Geetanjali Sachdeva
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| |
Collapse
|
8
|
Moraes JGN, Behura SK, Bishop JV, Hansen TR, Geary TW, Spencer TE. Analysis of the uterine lumen in fertility-classified heifers: II. Proteins and metabolites†. Biol Reprod 2020; 102:571-587. [PMID: 31616912 PMCID: PMC7331878 DOI: 10.1093/biolre/ioz197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
Survival and growth of the bovine conceptus is dependent on endometrial secretions or histotroph. Previously, serial blastocyst transfer was used to classify heifers as high fertile (HF), subfertile (SF), or infertile (IF). Here, we investigated specific histotroph components (proteins and metabolites) in the uterine lumen of day 17 fertility-classified heifers. Interferon tau (IFNT) was more abundant in uterine lumenal fluid (ULF) of pregnant HF than SF animals as the conceptus was longer in HF heifers. However, no differences in endometrial expression of selected classical and nonclassical interferon-stimulated genes (ISGs) were observed, suggesting that IFNT signaling in the endometrium of pregnant HF and SF heifers was similar. Pregnancy significantly increased the abundance of several proteins in ULF. Based on functional annotation, the abundance of a number of proteins involved in energy metabolism, oxidative stress, amino acid metabolism, and cell proliferation and differentiation were greater in the ULF of pregnant HF than SF heifers. Metabolomics analysis found that pregnancy only changed the metabolome composition of ULF from HF heifers. The majority of the metabolites that increased in the ULF of pregnant HF as compared to SF heifers were associated with energy and amino acid metabolism. The observed differences in ULF proteome and metabolome are hypothesized to influence uterine receptivity with consequences on conceptus development and survival in fertility-classified heifers.
Collapse
Affiliation(s)
- Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jeanette V Bishop
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA and
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA and
| | - Thomas W Geary
- USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, Montana, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
9
|
Kosteria I, Anagnostopoulos AK, Kanaka-Gantenbein C, Chrousos GP, Tsangaris GT. The Use of Proteomics in Assisted Reproduction. In Vivo 2017; 31:267-283. [PMID: 28438852 PMCID: PMC5461434 DOI: 10.21873/invivo.11056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023]
Abstract
Despite the explosive increase in the use of Assisted Reproductive Technologies (ART) over the last 30 years, their success rates remain suboptimal. Proteomics is a rapidly-evolving technology-driven science that has already been widely applied in the exploration of human reproduction and fertility, providing useful insights into its physiology and leading to the identification of numerous proteins that may be potential biomarkers and/or treatment targets of a successful ART pregnancy. Here we present a brief overview of the techniques used in proteomic analyses and attempt a comprehensive presentation of recent data from mass spectrometry-based proteomic studies in humans, regarding all components of ARTs, including the male and female gamete, the derived zygote and embryo, the endometrium and, finally, the ART offspring both pre- and postnatally.
Collapse
Affiliation(s)
- Ioanna Kosteria
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George T Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
10
|
ADAMTS-3, -13, -16, and -19 levels in patients with habitual abortion. Kaohsiung J Med Sci 2017; 33:30-35. [DOI: 10.1016/j.kjms.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/09/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023] Open
|
11
|
Mukherjee S, Bandyopadhyay A. Proteomics in India: the clinical aspect. Clin Proteomics 2016; 13:21. [PMID: 27822170 PMCID: PMC5097398 DOI: 10.1186/s12014-016-9122-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Proteomics has emerged as a highly promising bioanalytical technique in various aspects of applied biological research. In Indian academia, proteomics research has grown remarkably over the last decade. It is being extensively used for both basic as well as translation research in the areas of infectious and immune disorders, reproductive disorders, cardiovascular diseases, diabetes, eye disorders, human cancers and hematological disorders. Recently, some seminal works on clinical proteomics have been reported from several laboratories across India. This review aims to shed light on the increasing use of proteomics in India in a variety of biological conditions. It also highlights that India has the expertise and infrastructure needed for pursuing proteomics research in the country and to participate in global initiatives. Research in clinical proteomics is gradually picking up pace in India and its future seems very bright.
Collapse
Affiliation(s)
- Somaditya Mukherjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| | - Arun Bandyopadhyay
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| |
Collapse
|
12
|
Terayama H, Hirai S, Naito M, Qu N, Katagiri C, Nagahori K, Hayashi S, Sasaki H, Moriya S, Hiramoto M, Miyazawa K, Hatayama N, Li ZL, Sakabe K, Matsushita M, Itoh M. Specific autoantigens identified by sera obtained from mice that are immunized with testicular germ cells alone. Sci Rep 2016; 6:35599. [PMID: 27752123 PMCID: PMC5067510 DOI: 10.1038/srep35599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
There are various autoimmunogenic antigens (AIs) in testicular germ cells (TGCs) recognized as foreign by the body's immune system. However, there is little information of TGC-specific AIs being available. The aim of this study is to identify TGC-specific AIs. We have previously established that immunization using viable syngeneic TGC can also induce murine experimental autoimmune orchitis (EAO) without using any adjuvant. This study is to identify TGC-specific AIs by TGC liquid chromatography-tandem mass spectrometry analysis, followed by two-dimensional gel electrophoresis that reacted with serum IgG from EAO mice. In this study, we identified 11 TGC-specific AIs that reacted with serum from EAO mice. Real-time RT-PCR analysis showed that the mRNA expressions of seven TGC-specific AIs were significantly higher in only mature testis compared to other organs. Moreover, the recombinant proteins of identified 10 (except unnamed protein) TGC-specific AIs were created by using human embryonic kidney 293 (HEK293) cells and these antigencities were reconfirmed by Western blot using EAO serum reaction. These results indicated Atp6v1a, Hsc70t, Fbp1 and Dazap1 were candidates for TGC-specific AIs. Identification of these AIs will facilitate new approaches for understanding infertility and cancer pathogenesis and may provide a basis for the development of novel therapies.
Collapse
Affiliation(s)
- Hayato Terayama
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan.,Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Shuichi Hirai
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Munekazu Naito
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Ning Qu
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Chiaki Katagiri
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kenta Nagahori
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Shogo Hayashi
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Hiraku Sasaki
- Department of Health Science, School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Naoyuki Hatayama
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Zhong-Lian Li
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Kou Sakabe
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
13
|
Zingde SM. Has Proteomics come of age in India? J Proteomics 2015; 127:3-6. [PMID: 25748142 DOI: 10.1016/j.jprot.2015.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/25/2015] [Indexed: 12/24/2022]
|