1
|
Fernández Míguez M, Presa P, Puvanendran V, Tveiten H, Hansen ØJ, Pérez M. Gene Expression and Phenotypic Assessment of Egg Quality across Developmental Stages of Atlantic Cod throughout the Spawning Season. Int J Mol Sci 2024; 25:7488. [PMID: 39000593 PMCID: PMC11242223 DOI: 10.3390/ijms25137488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Egg quality in fishes is commonly determined by fertilisation success and cleavage patterns as a phenotypic outcome of underlying regulatory mechanisms. Although these phenotypic estimators of egg quality are useful in farming conditions, these "good quality" egg batches do not always translate to good larval growth and survival. The identification of genes involved in embryonic development may help find links between genetic factors of maternal origin and egg quality. Herein, the relative expression of seven stage-specific developmental genes of Atlantic cod was analysed using quantitative PCR to understand the function during embryogenesis and its relationship with egg quality. Genes ccnb2 and pvalb1 showed significant differential expression between developmental stages and significant upregulation from blastula and somite stages, respectively. The comparison of spawning batches showed that the relative gene expression of genes ccnb2, acta, tnnt3 and pvalb1 was significantly higher from the middle of the spawning season where phenotypic quality estimators establish the best egg quality. Moreover, a positive significant correlation was observed between quality estimators based on egg morphology and the genetic expression of genes acta and acta1 during somitogenesis. This study suggests that the combination of quality estimators, genetics and batch timing could help optimise reproductive protocols for commercial stocks of Atlantic cod.
Collapse
Affiliation(s)
- María Fernández Míguez
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
- Laboratory of Marine Genetic Resources, ReXenMar, CIM, Universidade de Vigo, 36310 Vigo, Spain;
- AQUACOV, Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), 36202 Vigo, Spain;
| | - Pablo Presa
- Laboratory of Marine Genetic Resources, ReXenMar, CIM, Universidade de Vigo, 36310 Vigo, Spain;
| | - Velmurugu Puvanendran
- Department of Production Biology, Centre for Marine Aquaculture, Nofima AS, 9291 Tromsø, Norway; (V.P.); (Ø.J.H.)
| | - Helge Tveiten
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, The Arctic University of Norway (UiT), 9019 Tromsø, Norway;
| | - Øyvind J. Hansen
- Department of Production Biology, Centre for Marine Aquaculture, Nofima AS, 9291 Tromsø, Norway; (V.P.); (Ø.J.H.)
| | - Montse Pérez
- AQUACOV, Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), 36202 Vigo, Spain;
| |
Collapse
|
2
|
Chen F, Wang Y, He J, Smith C, Xue G, Zhao Y, Peng Y, Zhang J, Liu J, Chen J, Xie P. Alternative signal pathways underly fertilization and egg activation in a fish with contrasting modes of spawning. BMC Genomics 2023; 24:167. [PMID: 37016278 PMCID: PMC10074663 DOI: 10.1186/s12864-023-09244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The processes of fertilization and egg activation are vital for early embryogenesis. However, while the mechanisms associated with key events during these processes differ among species and modes of spawning, the signal pathways underlying these processes are opaque for many fishes, including economically important species. RESULTS We investigated phenotypic traits, ultrastructure and protein expression levels in the eggs of the topmouth culter (Culter alburnus), a protected and economically important freshwater fish that exhibits two spawning modes, producing semi-buoyant eggs and adhesive eggs. Unfertilized eggs of C. alburnus were examined, as well as eggs at fertilization and 30 min post fertilization. Our results showed that in semi-buoyant eggs, energy metabolism was activated at fertilization, followed by elevated protein expression of cytoskeleton and extracellular matrix (ECM)-receptor interactions that resulted in rapid egg swelling; a recognized adaptation for lotic habitats. In contrast, in adhesive eggs fertilization initiated the process of sperm-egg fusion and blocking of polyspermy, followed by enhanced protein expression of lipid metabolism and the formation of egg envelope adhesion and hardening, which are adaptive in lentic habitats. CONCLUSION Our findings indicate that alternative signal pathways differ between modes of spawning and timing during the key processes of fertilization and egg activation, providing new insights into the molecular mechanisms involved in adaptive early embryonic development in teleost fishes.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Donghu Experimental Station of Lake Ecosystems, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Yeke Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Donghu Experimental Station of Lake Ecosystems, Chinese Academy of Sciences, 430072, Wuhan, China
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jun He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Donghu Experimental Station of Lake Ecosystems, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Carl Smith
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Ge Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Donghu Experimental Station of Lake Ecosystems, Chinese Academy of Sciences, 430072, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Donghu Experimental Station of Lake Ecosystems, Chinese Academy of Sciences, 430072, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanghui Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Donghu Experimental Station of Lake Ecosystems, Chinese Academy of Sciences, 430072, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Donghu Experimental Station of Lake Ecosystems, Chinese Academy of Sciences, 430072, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiarui Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Donghu Experimental Station of Lake Ecosystems, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Jun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Donghu Experimental Station of Lake Ecosystems, Chinese Academy of Sciences, 430072, Wuhan, China.
| | - Ping Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Donghu Experimental Station of Lake Ecosystems, Chinese Academy of Sciences, 430072, Wuhan, China.
- Institute of Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environment, Yunnan University, 650500, Kunming, China.
| |
Collapse
|
3
|
Ramos-Júdez S, Danis T, Angelova N, Tsakogiannis A, Giménez I, Tsigenopoulos CS, Duncan N, Manousaki T. Transcriptome analysis of flathead grey mullet ( Mugil cephalus) ovarian development induced by recombinant gonadotropin hormones. Front Physiol 2022; 13:1033445. [PMID: 36388126 PMCID: PMC9664002 DOI: 10.3389/fphys.2022.1033445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023] Open
Abstract
Background: Treatment with recombinant gonadotropin hormones (rGths), follicle-stimulating hormone (rFsh) and luteinizing hormone (rLh), was shown to induce and complete vitellogenesis to finally obtain viable eggs and larvae in the flathead grey mullet (Mugil cephalus), a teleost arrested at early stages of gametogenesis in intensive captivity conditions. This study aimed to investigate the transcriptomic changes that occur in the ovary of females during the rGths-induced vitellogenesis. Methods: Ovarian samples were collected through biopsies from the same five females at four stages of ovarian development. RNASeq libraries were constructed for all stages studied, sequenced on an Illumina HiSeq4000, and a de novo transcriptome was constructed. Differentially expressed genes (DEGs) were identified between stages and the functional properties of DEGs were characterized by comparison with the gene ontology and Kyoto Encyclopedia. An enrichment analysis of molecular pathways was performed. Results: The de novo transcriptome comprised 287,089 transcripts after filtering. As vitellogenesis progressed, more genes were significantly upregulated than downregulated. The rFsh application induced ovarian development from previtellogenesis to early-to-mid-vitellogenesis with associated pathways enriched from upregulated DEGs related to ovarian steroidogenesis and reproductive development, cholesterol metabolism, ovarian growth and differentiation, lipid accumulation, and cell-to-cell adhesion pathways. The application of rFsh and rLh at early-to-mid-vitellogenesis induced the growth of oocytes to late-vitellogenesis and, with it, the enrichment of pathways from upregulated DEGs related to the production of energy, such as the lysosomes activity. The application of rLh at late-vitellogenesis induced the completion of vitellogenesis with the enrichment of pathways linked with the switch from vitellogenesis to oocyte maturation. Conclusion: The DEGs and enriched molecular pathways described during the induced vitellogenesis of flathead grey mullet with rGths were typical of natural oogenesis reported for other fish species. Present results add new knowledge to the rGths action to further raise the possibility of using rGths in species that present similar reproductive disorders in aquaculture, the aquarium industry as well as the conservation of endangered species.
Collapse
Affiliation(s)
| | - Theodoros Danis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - Nelina Angelova
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - Alexandros Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | | | - Costas S. Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | | | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| |
Collapse
|
4
|
Wang X, Zhao N, Wang T, Du S, Liu Q, Li J. Transcriptome Analysis Provides Insights into Copulation, Fertilization, and Gestation in Sebastes schlegelii. Genes (Basel) 2022; 13:genes13101812. [PMID: 36292697 PMCID: PMC9601582 DOI: 10.3390/genes13101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Among the viviparous marine teleosts of China, the black rockfish (Sebastes schlegelii Hilgendorf) is one of the most economically important. In addition to copulation and internal fertilization, it features lengthy sperm storage in the female ovary as well as a high rate of abortion. A network of gene regulation is necessary for these processes. To elucidate the mechanisms of copulation, fertilization, and gestation, it is essential to determine the genetic basis of viviparous teleost oogenesis and embryogenesis. In this study, we analyzed the transcriptome of the ovary during different developmental phases to investigate the dynamic changes that occur. We constructed 24 ovary transcriptomes. In order to investigate the regulation of embryogenesis, differentially expressed genes (DEGs) with specific expression patterns were subjected to gene ontology annotation, pathway analyses, and weighted gene co-expression network analysis (WGCNA). The up-regulated genes were significantly enriched in focal adhesion, regulation of the actin cytoskeleton, Wnt, and ECM-receptor interaction signaling pathways. As a result of our study, we provide omics evidence for copulation, fertilization, and gestation in viviparous marine teleosts. Decoding the S. schlegelii gene regulation network, as well as providing new insights into embryogenesis, is highly valuable to researchers in the marine teleost reproduction sciences.
Collapse
Affiliation(s)
- Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Qingdao Agricultural University, Qingdao 266237, China
| | - Shuran Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Qingdao Agricultural University, Qingdao 266237, China
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Correspondence: ; Tel./Fax: +86-532-82898718
| |
Collapse
|
5
|
Babio L, Lokman PM, Damsteegt EL, Dutoit L. Are Cell Junctions Implicated in the Regulation of Vitellogenin Uptake? Insights from an RNAseq-Based Study in Eel, Anguilla australis. Cells 2022; 11:550. [PMID: 35159359 PMCID: PMC8834532 DOI: 10.3390/cells11030550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
At the onset of puberty, ovarian follicles become competent to incorporate large amounts of vitellogenin (Vtg). Using an RNAseq-based approach, transcriptomes from pre-vitellogenic (PV) and early vitellogenic (EV) ovaries from wild-caught eel, Anguilla australis, were compared to investigate the expression of specific genes encoding cell junction proteins that could be involved in regulating Vtg uptake. Partial support was found for the mechanical barrier hypothesis proposing that the access of Vtg to the oolemma is restricted by a tight junction (TJ) network within the granulosa cell layer, which changes between the PV and EV stage. Among 25 genes encoding TJ-constituting proteins, five were down-regulated and two were up-regulated. A chemical barrier hypothesis stating that gap junctions (GJs) are involved in modulating Vtg uptake was not supported, as only five GJs were found to be expressed in the ovary with no significant changes in expression between stages. Furthermore, the endocytic pathway was found to be up-regulated during the PV-EV transition. Finally, the study showed that gene expression patterns may help identify suitable candidates involved in the regulation of Vtg uptake, and provided novel sequence data for A. australis, including putative Vtg receptors corresponding to Lr8 and Lrp13 members of the low-density lipoprotein receptor family.
Collapse
Affiliation(s)
- Lucila Babio
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin 9054, New Zealand; (P.M.L.); (E.L.D.); (L.D.)
| | | | | | | |
Collapse
|
6
|
Commensal and Opportunistic Bacteria Present in the Microbiota in Atlantic Cod ( Gadus morhua) Larvae Differentially Alter the Hosts' Innate Immune Responses. Microorganisms 2021; 10:microorganisms10010024. [PMID: 35056473 PMCID: PMC8779962 DOI: 10.3390/microorganisms10010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 12/28/2022] Open
Abstract
The roles of host-associated bacteria have gained attention lately, and we now recognise that the microbiota is essential in processes such as digestion, development of the immune system and gut function. In this study, Atlantic cod larvae were reared under germ-free, gnotobiotic and conventional conditions. Water and fish microbiota were characterised by 16S rRNA gene analyses. The cod larvae’s transcriptional responses to the different microbial conditions were analysed by a custom Agilent 44 k oligo microarray. Gut development was assessed by transmission electron microscopy (TEM). Water and fish microbiota differed significantly in the conventional treatment and were dominated by different fast-growing bacteria. Our study indicates that components of the innate immune system of cod larvae are downregulated by the presence of non-pathogenic bacteria, and thus may be turned on by default in the early larval stages. We see indications of decreased nutrient uptake in the absence of bacteria. The bacteria also influence the gut morphology, reflected in shorter microvilli with higher density in the conventional larvae than in the germ-free larvae. The fact that the microbiota alters innate immune responses and gut morphology demonstrates its important role in marine larval development.
Collapse
|
7
|
Neurodevelopment vs. the immune system: Complementary contributions of maternally-inherited gene transcripts and proteins to successful embryonic development in fish. Genomics 2021; 113:3811-3826. [PMID: 34508856 DOI: 10.1016/j.ygeno.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the respective contribution of maternally-inherited mRNAs and proteins to egg molecular cargo and to its developmental competence in fish using pikeperch as a model. Our study provides novel insights into the understanding of type-specific roles of maternally-inherited molecules in fish. Here we show, for the first time, that transcripts and proteins have distinct, yet complementary, functions in the egg of teleost fish. Maternally-inherited mRNAs would shape embryo neurodevelopment, while maternally-inherited proteins would rather be responsible for protecting the embryo against pathogens. Additionally, we observed that processes directly preceding ovulation may considerably affect the reproductive success by modifying expression level of genes crucial for proper embryonic development, being novel fish egg quality markers (e.g., smarca4 or h3f3a). These results are of major importance for understanding the influence of external factors on reproductive fitness in both captive and wild-type fish species.
Collapse
|
8
|
Transcriptome Analysis of Maternal Gene Transcripts in Unfertilized Eggs of Misgurnus anguillicaudatus and Identification of Immune-Related Maternal Genes. Int J Mol Sci 2020; 21:ijms21113872. [PMID: 32485896 PMCID: PMC7312655 DOI: 10.3390/ijms21113872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Maternal genes are important in directing early development and determining egg quality in fish. We here report the de novo transcriptome from four tissue libraries of the cyprinid loach, Misgurnus anguillicaudatus, and for the first time identified maternal gene transcripts in unfertilized eggs and suggest their immune system involvement. Expression profiles and functional enrichment revealed a total 24,116 transcripts were expressed as maternal transcripts in unfertilized eggs, which were involved in a wide range of biological functions and pathways. Comparison expression profiles and analysis of tissue specificity revealed that the large numbers of maternal transcripts were stored in unfertilized eggs near the late phase of ovarian maturation and before ovulation. Functional classification showed a total of 279 maternal immune-related transcripts classified with immune system process GO term and immune system KEGG pathway. qPCR analysis showed that transcript levels of identified maternal immune-related candidate genes were dynamically modulated during development and early ontogeny of M. anguillicaudatus. Taken together, this study could not only provide knowledge on the protective roles of maternal immune-related genes during early life stage of M. anguillicaudatus but could also be a valuable transcriptomic/genomic resource for further analysis of maternally provisioned genes in M. anguillicaudatus and other related teleost fishes.
Collapse
|
9
|
Bizuayehu TT, Mommens M, Sundaram AYM, Dhanasiri AKS, Babiak I. Postovulatory maternal transcriptome in Atlantic salmon and its relation to developmental potential of embryos. BMC Genomics 2019; 20:315. [PMID: 31014241 PMCID: PMC6480738 DOI: 10.1186/s12864-019-5667-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Background Early development of an oviparous organism is based on maternally stocked structural, nutritional and regulatory components. These components influence the future developmental potential of an embryo, which is referred to as egg quality. Until zygotic genome activation, translational activity in a fish early embryo is limited to parentally inherited transcripts only. In this study, we asked whether egg transcriptome is associated with egg quality in Atlantic salmon (Salmo salar), which is capable of storing ovulated eggs in its abdominal cavity for a long time before spawning. Results We analyzed messenger RNA (mRNA) and micro RNA (miRNA) transcriptomes throughout the post-ovulatory egg retention period in batches of eggs from two quality groups, good and poor, classified based on the future developmental performance. We identified 28,551 protein-coding genes and 125 microRNA families, with 200 mRNAs and 5 miRNAs showing differential abundance between egg quality groups and/or among postovulatory ages. Transcriptome dynamics during the egg retention period was different in the two egg quality groups. We identified only a single gene, hepcidin-1, as a potential marker for Atlantic salmon egg quality evaluation. Conclusion The overlapping effect of post-ovulatory age on intrinsic egg developmental competence makes the quantification of egg quality difficult when based on transcripts abundance only. Electronic supplementary material The online version of this article (10.1186/s12864-019-5667-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teshome Tilahun Bizuayehu
- Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway.,Present address: Sars Center, University of Bergen, N-5006, Bergen, Norway
| | - Maren Mommens
- Aqua Gen AS, P.O.Box 1240, Sluppen, N-7462, Trondheim, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, P. O. Box 4956, Nydalen, 0424, Oslo, Norway
| | | | - Igor Babiak
- Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway.
| |
Collapse
|
10
|
Enerstvedt KS, Sydnes MO, Pampanin DM. Study of the plasma proteome of Atlantic cod (Gadus morhua): Changes due to crude oil exposure. MARINE ENVIRONMENTAL RESEARCH 2018; 138:46-54. [PMID: 29692335 DOI: 10.1016/j.marenvres.2018.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Oil contamination is an environmental issue of great concern and the necessity for background studies and monitoring programs to continuously evaluate the levels of oil pollution is required. In this study, Atlantic cod (Gadus morhua) were exposed to dispersed crude oil for 1 and 4 weeks to simulate environmental contamination. Fractionated plasma samples were then analysed by tandem mass spectrometry. In total, 717 proteins were identified and 10 new protein biomarker candidates were found. The significant proteome changes were related to the immune response by alterations in the levels of specific immunoglobulins, alpha-2-macroglobulin and galectin-3-binding proteins. After 4 weeks of oil exposure, a lowered level of a NLRC3-like protein was also observed. The results from this study provide insight into the Atlantic cod plasma proteome and into the toxicological effects and potential response mechanisms of short and long-term exposure to crude oil.
Collapse
Affiliation(s)
- Karianne S Enerstvedt
- International Research Institute of Stavanger (IRIS) - Environment Department, Mekjarvik 12, NO-4070 Randaberg, Norway; Faculty of Science and Technology, Department of Chemistry Bioscience and Environmental Engineering, University of Stavanger, NO-4036 Stavanger, Norway
| | - Magne O Sydnes
- Faculty of Science and Technology, Department of Chemistry Bioscience and Environmental Engineering, University of Stavanger, NO-4036 Stavanger, Norway
| | - Daniela M Pampanin
- International Research Institute of Stavanger (IRIS) - Environment Department, Mekjarvik 12, NO-4070 Randaberg, Norway; Faculty of Science and Technology, Department of Chemistry Bioscience and Environmental Engineering, University of Stavanger, NO-4036 Stavanger, Norway.
| |
Collapse
|
11
|
Vestrum RI, Attramadal KJK, Winge P, Li K, Olsen Y, Bones AM, Vadstein O, Bakke I. Rearing Water Treatment Induces Microbial Selection Influencing the Microbiota and Pathogen Associated Transcripts of Cod ( Gadus morhua) Larvae. Front Microbiol 2018; 9:851. [PMID: 29765364 PMCID: PMC5938384 DOI: 10.3389/fmicb.2018.00851] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/13/2018] [Indexed: 12/15/2022] Open
Abstract
We have previously shown that K-selection and microbial stability in the rearing water increases survival and growth of Atlantic cod (Gadus morhua) larvae, and that recirculating aquaculture systems (RAS) are compatible with this. Here, we have assessed how water treatment influenced the larval microbiota and host responses at the gene expression level. Cod larvae were reared with two different rearing water systems: a RAS and a flow-through system (FTS). The water microbiota was examined using a 16S rDNA PCR/DGGE strategy. RNA extracted from larvae at 8, 13, and 17 days post hatching was used for microbiota and microarray gene expression analysis. Bacterial cDNA was synthesized and used for 16S rRNA amplicon 454 pyrosequencing of larval microbiota. Both water and larval microbiota differed significantly between the systems, and the larval microbiota appeared to become more dissimilar between systems with time. In total 4 phyla were identified for all larvae: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The most profound difference in larval microbiota was a high abundance of Arcobacter (Epsilonproteobacteria) in FTS larvae (34 ± 9% of total reads). Arcobacter includes several species that are known pathogens for humans and animals. Cod larval transcriptome responses were investigated using an oligonucleotide gene expression microarray covering approximately 24,000 genes. Interestingly, FTS larvae transcriptional profiles revealed an overrepresentation of upregulated transcripts associated with responses to pathogens and infections, such as c1ql3-like, pglyrp-2-like and zg16, compared to RAS larvae. In conclusion, distinct water treatment systems induced differences in the larval microbiota. FTS larvae showed up-regulation of transcripts associated with responses to microbial stress. These results are consistent with the hypothesis that RAS promotes K-selection and microbial stability by maintaining a microbial load close to the carrying capacity of the system, and ensuring long retention times for both bacteria and water in the system.
Collapse
Affiliation(s)
- Ragnhild I Vestrum
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kari J K Attramadal
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Keshuai Li
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yngvar Olsen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle M Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Bakke
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
12
|
Rojo-Bartolomé I, Martínez-Miguel L, Lafont AG, Vílchez MC, Asturiano JF, Pérez L, Cancio I. Molecular markers of oocyte differentiation in European eel during hormonally induced oogenesis. Comp Biochem Physiol A Mol Integr Physiol 2017; 211:17-25. [PMID: 28579534 DOI: 10.1016/j.cbpa.2017.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023]
Abstract
Reproduction in captivity is a key study issue in Anguilla anguilla as a possible solution for its dwindling population. Understanding the mechanisms controlling the production of ribosomal building blocks during artificially induced oocyte maturation could be particularly interesting. Transcription levels of ribosomal biogenesis associated genes could be used as markers to monitor oogenesis. Eels from the Albufera Lagoon were injected with carp pituitary extract for 15weeks and ovaries in previtellogenic (PV) stage (non-injected), in early-, mid-, late-vitellogenesis (EV, MV, LV), as well as in migratory nucleus stage (MN) were analysed. 5S rRNA and related genes were highly transcribed in ovaries with PV oocytes. As oocytes developed, transcriptional levels of genes related to 5S rRNA production (gtf3a), accumulation (gtf3a, 42sp43) and nucleocytoplasmic transport (rpl5, rpl11) and the 5S/18S rRNA index decreased (PV>EV>MV>LV>MN). On the contrary, 18S rRNA was at its highest at MN stage while ubtf1 in charge of activating RNA-polymerase I and synthesising 18S rRNA behaved as 5S related genes. Individuals that did not respond (NR) to the treatment showed 5S/18S index values similar to PV females, while studied genes showed EV/LV-like transcription levels. Therefore, NR females fail to express the largest rRNAs, which could thus be taken as markers of successful vitellogenesis progression. In conclusion, we have proved that the transcriptional dynamics of ribosomal genes provides useful tools to characterize induced ovarian development in European eels. In the future, such markers should be studied as putative indicators of response to hormonal treatments and of the quality of obtained eel oocytes.
Collapse
Affiliation(s)
- Iratxe Rojo-Bartolomé
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology of Plentzia (PIE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza, z/g, E-48620 Plentzia, Basque Country, Spain
| | - Leticia Martínez-Miguel
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology of Plentzia (PIE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza, z/g, E-48620 Plentzia, Basque Country, Spain
| | - Anne-Gaëlle Lafont
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208, IRD 207, UPMC, UCN, UA, Paris, France
| | - M Carmen Vílchez
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Edificio 7G, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Juan F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Edificio 7G, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Luz Pérez
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Edificio 7G, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Ibon Cancio
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology of Plentzia (PIE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza, z/g, E-48620 Plentzia, Basque Country, Spain.
| |
Collapse
|
13
|
Rocha A, Zanuy S, Gómez A. Conserved Anti-Müllerian Hormone: Anti-Müllerian Hormone Type-2 Receptor Specific Interaction and Intracellular Signaling in Teleosts. Biol Reprod 2016; 94:141. [PMID: 27226310 DOI: 10.1095/biolreprod.115.137547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/29/2016] [Indexed: 12/24/2022] Open
Abstract
In higher vertebrates, anti-Müllerian hormone (AMH) is required for Müllerian duct regression in fetal males. AMH is also produced during postnatal life in both sexes regulating steroidogenesis and early stages of folliculogenesis. Teleosts lack Müllerian ducts, but Amh has been identified in several species including European sea bass. However, information on Amh type-2 receptor (Amhr2), the specific receptor for Amh binding, is restricted to a couple of fish species. Here, we report on cloning sea bass amhr2, the production of a recombinant sea bass Amh, and the functional analysis of this ligand-receptor couple. Phylogenetic analysis revealed that sea bass amhr2 segregates with Amhr2 from other vertebrates. This piscine receptor is capable of activating Smad proteins. Antibodies raised against sea bass Amh were used to study native and recombinant Amh, revealing proteins in the range of 66-70 kDa corresponding to the full length Amh. Once proteolytically treated, recombinant sea bass Amh generates a 12 kDa C-terminal mature protein, suggesting that contrary to what has been described for other fish Amh proteins, this protein is processed in a similar way as mammalian AMH. The mature sea bass Amh is a biologically active protein able to bind sea bass Amhr2 and, surprisingly, also human AMHR2. In prepubertal sea bass testes, Amh was detected by immunohistochemistry mostly in Sertoli cells surrounding early germ-cell generations. During spermatogenesis, a weaker staining signal could be observed in Sertoli cells surrounding spermatocytes.
Collapse
Affiliation(s)
- Ana Rocha
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| |
Collapse
|
14
|
Sørhus E, Incardona JP, Furmanek T, Jentoft S, Meier S, Edvardsen RB. Developmental transcriptomics in Atlantic haddock: Illuminating pattern formation and organogenesis in non-model vertebrates. Dev Biol 2016; 411:301-313. [DOI: 10.1016/j.ydbio.2016.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 01/19/2023]
|
15
|
Identification and structural characterization of two peroxisome proliferator activated receptors and their transcriptional changes at different developmental stages and after feeding with different fatty acids. Comp Biochem Physiol B Biochem Mol Biol 2016; 193:9-16. [DOI: 10.1016/j.cbpb.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/20/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023]
|
16
|
Ribas L, Robledo D, Gómez-Tato A, Viñas A, Martínez P, Piferrer F. Comprehensive transcriptomic analysis of the process of gonadal sex differentiation in the turbot (Scophthalmus maximus). Mol Cell Endocrinol 2016; 422:132-149. [PMID: 26586209 DOI: 10.1016/j.mce.2015.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
The turbot is a flatfish with a ZW/ZZ sex determination system but with a still unknown sex determining gene(s), and with a marked sexual growth dimorphism in favor of females. To better understand sexual development in turbot we sampled young turbot encompassing the whole process of gonadal differentiation and conducted a comprehensive transcriptomic study on its sex differentiation using a validated custom oligomicroarray. Also, the expression profiles of 18 canonical reproduction-related genes were studied along gonad development. The expression levels of gonadal aromatase cyp19a1a alone at three months of age allowed the accurate and early identification of sex before the first signs of histological differentiation. A total of 56 differentially expressed genes (DEG) that had not previously been related to sex differentiation in fish were identified within the first three months of age, of which 44 were associated with ovarian differentiation (e.g., cd98, gpd1 and cry2), and 12 with testicular differentiation (e.g., ace, capn8 and nxph1). To identify putative sex determining genes, ∼4.000 DEG in juvenile gonads were mapped and their positions compared with that of previously identified sex- and growth-related quantitative trait loci (QTL). Although no genes mapped to the previously identified sex-related QTLs, two genes (foxl2 and 17βhsd) of the canonical reproduction-related genes mapped to growth-QTLs in linkage group (LG) 15 and LG6, respectively, suggesting that these genes are related to the growth dimorphism in this species.
Collapse
Affiliation(s)
- L Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003, Barcelona, Spain
| | - D Robledo
- Departamento de Genética. Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - A Gómez-Tato
- Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad de Santiago de Compostela, 15781, Santiago de Compostela, Spain
| | - A Viñas
- Departamento de Genética. Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - P Martínez
- Departamento de Genética. Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - F Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003, Barcelona, Spain.
| |
Collapse
|
17
|
Lü Z, Liu W, Liu L, Shi H, Ping H, Wang T, Chi C, Wu C, Chen CH, Shen KN, Hsiao CD. De novo assembly and comparison of the ovarian transcriptomes of the common Chinese cuttlefish (Sepiella japonica) with different gonadal development. GENOMICS DATA 2015; 7:155-8. [PMID: 26981395 PMCID: PMC4778653 DOI: 10.1016/j.gdata.2015.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/17/2015] [Indexed: 11/26/2022]
Abstract
The common Chinese cuttlefish (Sepiella japonica) has been considered one of the most economically important marine Cephalopod species in East Asia and seed breeding technology has been established for massive aquaculture and stock enhancement. In the present study, we used Illumina HiSeq2000 to sequence, assemble and annotate the transcriptome of the ovary tissues of S. japonica for the first time. A total of 53,116,650 and 53,446,640 reads were obtained from the immature and matured ovaries, respectively (NCBI SRA database SRX1409472 and SRX1409473), and 70,039 contigs (N50 = 1443 bp) were obtained after de novo assembling with Trinity software. Digital gene expression analysis reveals 47,288 contigs show differential expression profile and 793 contigs are highly expressed in the immature ovary, while 38 contigs are highly expressed in the mature ovary with FPKM > 100. We hope that the ovarian transcriptome and those stage-enriched transcripts of S. japonica can provide some insight into the understanding of genome-wide transcriptome profile of cuttlefish gonad tissue and give useful information in cuttlefish gonad development.
Collapse
Affiliation(s)
- Zhenming Lü
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Wan Liu
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Liqin Liu
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Huilai Shi
- Marine Fisheries Research Institute of Zhejiang, Zhoushan 316021, China
| | - Hongling Ping
- Marine Fisheries Research Institute of Zhejiang, Zhoushan 316021, China
| | - Tianming Wang
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Changfeng Chi
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Changwen Wu
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan 316004, China
| | | | - Kang-Ning Shen
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
18
|
Li K, Østensen MA, Attramadal K, Winge P, Sparstad T, Bones AM, Vadstein O, Kjørsvik E, Olsen Y. Gene regulation of lipid and phospholipid metabolism in Atlantic cod (Gadus morhua) larvae. Comp Biochem Physiol B Biochem Mol Biol 2015; 190:16-26. [DOI: 10.1016/j.cbpb.2015.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023]
|
19
|
Hsu HY, Chen SH, Cha YR, Tsukamoto K, Lin CY, Han YS. De Novo Assembly of the Whole Transcriptome of the Wild Embryo, Preleptocephalus, Leptocephalus, and Glass Eel of Anguilla japonica and Deciphering the Digestive and Absorptive Capacities during Early Development. PLoS One 2015; 10:e0139105. [PMID: 26406914 PMCID: PMC4583181 DOI: 10.1371/journal.pone.0139105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Natural stocks of Japanese eel (Anguilla japonica) have decreased drastically because of overfishing, habitat destruction, and changes in the ocean environment over the past few decades. However, to date, artificial mass production of glass eels is far from reality because of the lack of appropriate feed for the eel larvae. In this study, wild glass eel, leptocephali, preleptocephali, and embryos were collected to conduct RNA-seq. Approximately 279 million reads were generated and assembled into 224,043 transcripts. The transcript levels of genes coding for digestive enzymes and nutrient transporters were investigated to estimate the capacities for nutrient digestion and absorption during early development. The results showed that the transcript levels of protein digestion enzymes were higher than those of carbohydrate and lipid digestion enzymes in the preleptocephali and leptocephali, and the transcript levels of amino acid transporters were also higher than those of glucose and fructose transporters and the cholesterol transporter. In addition, the transcript levels of glucose and fructose transporters were significantly raising in the leptocephali. Moreover, the transcript levels of protein, carbohydrate, and lipid digestion enzymes were balanced in the glass eel, but the transcript levels of amino acid transporters were higher than those of glucose and cholesterol transporters. These findings implied that preleptocephali and leptocephali prefer high-protein food, and the nutritional requirements of monosaccharides and lipids for the eel larvae vary with growth. An online database (http://molas.iis.sinica.edu.tw/jpeel/) that will provide the sequences and the annotated results of assembled transcripts was established for the eel research community.
Collapse
Affiliation(s)
- Hsiang-Yi Hsu
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Yuh-Ru Cha
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Katsumi Tsukamoto
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
- * E-mail: (YSH); (CYL)
| | - Yu-San Han
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail: (YSH); (CYL)
| |
Collapse
|
20
|
Sullivan CV, Chapman RW, Reading BJ, Anderson PE. Transcriptomics of mRNA and egg quality in farmed fish: Some recent developments and future directions. Gen Comp Endocrinol 2015; 221:23-30. [PMID: 25725305 DOI: 10.1016/j.ygcen.2015.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/14/2015] [Accepted: 02/18/2015] [Indexed: 11/29/2022]
Abstract
Maternal mRNA transcripts deposited in growing oocytes regulate early development and are under intensive investigation as determinants of egg quality. The research has evolved from single gene studies to microarray and now RNA-Seq analyses in which mRNA expression by virtually every gene can be assessed and related to gamete quality. Such studies have mainly focused on genes changing two- to several-fold in expression between biological states, and have identified scores of candidate genes and a few gene networks whose functioning is related to successful development. However, ever-increasing yields of information from high throughput methods for detecting transcript abundance have far outpaced progress in methods for analyzing the massive quantities of gene expression data, and especially for meaningful relation of whole transcriptome profiles to gamete quality. We have developed a new approach to this problem employing artificial neural networks and supervised machine learning with other novel bioinformatics procedures to discover a previously unknown level of ovarian transcriptome function at which minute changes in expression of a few hundred genes is highly predictive of egg quality. In this paper, we briefly review the progress in transcriptomics of fish egg quality and discuss some future directions for this field of study.
Collapse
Affiliation(s)
- Craig V Sullivan
- Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA; Carolina AquaGyn, P.O. Box 12914, Raleigh, NC 27605, USA(1).
| | - Robert W Chapman
- Marine Resources Division, South Carolina Department of Natural Resources, Charleston, SC 29412, USA
| | - Benjamin J Reading
- Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA; Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695-7617, USA(1)
| | - Paul E Anderson
- Department of Computer Science, College of Charleston, Charleston, SC 29424, USA
| |
Collapse
|
21
|
Wargelius A, Furmanek T, Montfort J, Le Cam A, Kleppe L, Juanchich A, Edvardsen RB, Taranger GL, Bobe J. A comparison between egg trancriptomes of cod and salmon reveals species-specific traits in eggs for each species. Mol Reprod Dev 2015; 82:397-404. [PMID: 25908546 DOI: 10.1002/mrd.22487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Fish in use in aquaculture display large variation in gamete biology. To reach better understanding around this issue, this study aims at identifying if species specific "egg life history traits" can be hidden in the unfertilized egg. This was done by investigating egg transcriptome differences between Atlantic salmon and Atlantic cod. Salmon and cod eggs were selected due to their largely differencing phenotypes. An oligo microarray analysis was performed on ovulated eggs from cod (n = 8) and salmon (n = 7). The arrays were normalized to a similar spectrum for both arrays. Both arrays were re-annotated with SWISS-Prot and KEGG genes to retrieve an official gene symbol and an orthologous KEGG annotation, in salmon and cod arrays this represented 14,009 and 7,437 genes respectively. The probe linked to the highest gene expression for that particular KEGG annotation was used to compare expression between species. Differential expression was calculated for genes that had an annotation with score >300, resulting in a total of 2,457 KEGG annotations (genes) being differently expressed between the species (FD > 2). This analysis revealed that immune, signal transduction and excretory related pathways were overrepresented in salmon compared to cod. The most overrepresented pathways in cod were related to regulation of genetic information processing and metabolism. To conclude this analysis clearly point at some distinct transcriptome repertoires for cod and salmon and that these differences may explain some of the species-specific biological features for salmon and cod eggs.
Collapse
Affiliation(s)
| | | | | | | | - Lene Kleppe
- Institute of Marine Research, Bergen, Norway
| | - Amelie Juanchich
- Institute of Marine Research, Bergen, Norway.,INRA, Campus de Beaulieu, Rennes, France
| | | | | | | |
Collapse
|