1
|
Gitta S, Márk L, Szentpéteri JL, Szabó É. Lipid Changes in the Peri-Implantation Period with Mass Spectrometry Imaging: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010169. [PMID: 36676119 PMCID: PMC9866151 DOI: 10.3390/life13010169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Mass spectrometry imaging is a sensitive method for detecting molecules in tissues in their native form. Lipids mainly act as energy stores and membrane constituents, but they also play a role in lipid signaling. Previous studies have suggested an important role of lipids in implantation; therefore, our aim was to investigate the lipid changes during this period based on the available literature. The systematic literature search was performed on Ovid MEDLINE, Cochrane Library, Embase, and LILACS. We included studies about lipid changes in the early embryonal stage of healthy mammalian development published as mass spectrometry imaging. The search retrieved 917 articles without duplicates, and five articles were included in the narrative synthesis of the results. Two articles found a different spatial distribution of lipids in the early bovine embryo and receptive uterus. Three articles investigated lipids in mice in the peri-implantation period and found a different spatial distribution of several glycerophospholipids in both embryonic and maternal tissues. Although only five studies from three different research groups were included in this systematic review, it is clear that the spatial distribution of lipids is diverse in different tissues and their distribution varies from day to day. This may be a key factor in successful implantation, but further studies are needed to elucidate the exact mechanism.
Collapse
Affiliation(s)
- Stefánia Gitta
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Human Reproduction Laboratory, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Research Group, University of Pécs, 7624 Pécs, Hungary
| | - József L. Szentpéteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Éva Szabó
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
2
|
Fürbass R, Michaelis M, Schuler G. Unhatched bovine blastocysts express all transcripts of the estrogen biosynthetic pathway, but steroid hormone synthesis could not yet be demonstrated. Domest Anim Endocrinol 2023; 82:106770. [PMID: 36279747 DOI: 10.1016/j.domaniend.2022.106770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
Early embryos of rodent species and rabbits but also farm animals such as pigs, horses and cattle produce estrogens, which are considered important regulators of the implantation process. In cattle, the exact stage at which embryonic estrogen synthesis commences is yet unknown. However, this information is regarded as important to consider a possible role of embryonic estrogens in preimplantation development. Therefore, in this study, we first used quantitative reverse transcription PCR to examine the mRNA expression of the enzymes required for the conversion of cholesterol into free and sulfonated estrogens (CYP11A1, CYP17A1, HSD3B, CYP19A1, and SULT1E1), the cholesterol carrier protein STAR, and the estrogen receptors ESR1 and ESR2 in in vitro produced morulae and unhatched blastocysts (d 6-9). Only in the blastocysts, were the mRNAs of the entire estrogen biosynthesis chain and of both estrogen receptors clearly present, whereas mRNA specific to ESRs was already detectable in the morulae. We also examined the expression of the corresponding enzymes in blastocysts at the protein level. None of the enzymes were detectable by capillary-based western analysis. Immunofluorescence methods were established for the detection of CYP17A1, CYP19A1, and SULT1E1. CYP17A1 was observed in the inner cell mass and trophectoderm, whereas CYP19A1 and SULT1E1 were present only in trophectoderm. An attempt to detect estrogen sulfotransferase activity was unsuccessful. Despite clear evidence that some elements of the estrogen biosynthetic pathway are also present at the protein level, it remains to be clarified whether the enzyme cascade underlying estrogen production is already functional in unhatched blastocysts.
Collapse
Affiliation(s)
- R Fürbass
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| | - M Michaelis
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - G Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
3
|
De Rossi H, Bortoliero Costa C, Rodrigues-Rossi LT, Barros Nunes G, Spinosa Chéles D, Maran Pereira I, Rocha DFO, Feitosa E, Colnaghi Simionato AV, Zoccal Mingoti G, Benites Aoki PH, Gouveia Nogueira MF. Modulating the lipid profile of blastocyst cell membrane with DPPC multilamellar vesicles. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:158-167. [PMID: 35713365 DOI: 10.1080/21691401.2022.2088545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/20/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to evaluate the effect of multilamellar vesicles (MLVs) of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in co-culture with in vitro-produced bovine embryos (IVPEs). The stability of five concentrations of MLVs (1.0, 1.25, 1.5, 1.75, and 2.0 mM) produced using ultrapure water or embryonic culture medium with 24 or 48 h of incubation at 38.5 °C with 5% CO2 was assessed. In addition, the toxicity of MLVs and their modulation of the lipid profile of the plasma membrane of IVPEs were evaluated after 48 h of co-culture. Both media allowed the production of MLVs. Incubation (24 and 48 h) did not impair the MLV structure but affected the average diameter. The rate of blastocyst production was not reduced, demonstrating the nontoxicity of the MLVs even at 2.0 mmol/L. The lipid profile of the embryos was different depending on the MLV concentration. In comparison with control embryos, embryos cultured with MLVs at 2.0 mmol/L had a higher relative abundance of six lipid ions (m/z 720.6, 754.9, 759.0, 779.1, 781.2, and 797.3). This study sheds light on a new culture system in which the MLV concentration could change the lipid profile of the embryonic cell membrane in a dose-dependent manner.
Collapse
Affiliation(s)
- Hugo De Rossi
- Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Campus Assis, São Paulo, Brazil
| | - Camila Bortoliero Costa
- Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Campus Assis, São Paulo, Brazil
- Graduate Program in Pharmacology and Biotechnology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
| | | | - Giovana Barros Nunes
- School of Veterinary Medicine, Laboratory of Reproductive Physiology, UNESP, Campus Araçatuba, São Paulo, Brazil
| | - Dóris Spinosa Chéles
- Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Campus Assis, São Paulo, Brazil
- Graduate Program in Pharmacology and Biotechnology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
| | - Isabella Maran Pereira
- Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Campus Assis, São Paulo, Brazil
| | - Daniele F O Rocha
- Chemistry Institute, University of Campinas and Pontifical Catholic University of Campinas, Campinas, São Paulo, Brazil
| | - Eloi Feitosa
- Academic Department of Chemistry and Biology, Federal Technological University of Paraná (UTFPR), Curitiba, Paraná, Brazil
| | - Ana Valéria Colnaghi Simionato
- Laboratory of Analysis of Biomolecules Tiselius, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- National Institute of Science and Technology in Bioanalytics (INCTBio), Campinas, São Paulo, Brazil
| | - Gisele Zoccal Mingoti
- School of Veterinary Medicine, Laboratory of Reproductive Physiology, UNESP, Campus Araçatuba, São Paulo, Brazil
| | - Pedro Henrique Benites Aoki
- Graduate Program in Pharmacology and Biotechnology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
- Department of Biotechnology, School of Sciences and Languages, UNESP, Campus Assis, São Paulo, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Campus Assis, São Paulo, Brazil
- Graduate Program in Pharmacology and Biotechnology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
4
|
Wooldridge LK, Keane JA, Rhoads ML, Ealy AD. Bioactive supplements influencing bovine in vitro embryo development. J Anim Sci 2022; 100:6620796. [PMID: 35772761 DOI: 10.1093/jas/skac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Ovum pickup and in vitro production (IVP) of bovine embryos are replacing traditional multiple ovulation embryo transfer (MOET) as the primary means for generating transferable embryos from genetically elite sires and dams. However, inefficiencies in the IVP process limit the opportunities to produce large numbers of transferable embryos. Also, the post-transfer competency of IVP embryos is inferior to embryos produced by artificial insemination or MOET. Numerous maternal, paternal, embryonic, and culture-related factors can have adverse effects on IVP success. This review will explore the various efforts made on describing how IVP embryo development and post-transfer competency may be improved by supplementing hormones, growth factors, cytokines, steroids and other bioactive factors found in the oviduct and uterus during early pregnancy. More than 40 of these factors, collectively termed as embryokines, are reviewed here. Several embryokines contain abilities to promote embryo development, including improving embryo survivability, improving blastomere cell numbers, and altering the distribution of blastomere cell types in blastocysts. A select few embryokines also can benefit pregnancy retention after IVP embryo transfer and improve neonatal calf health and performance, although very few embryokine-supplemented embryo transfer studies have been completed. Also, supplementing several embryokines at the same time holds promise for improving IVP embryo development and competency. However, more work is needed to explore the post-transfer consequences of adding these putative embryokines for any adverse outcomes, such as large offspring syndrome and poor postnatal health, and to specify the specific embryokine combinations that will best represent the ideal conditions found in the oviduct and uterus.
Collapse
Affiliation(s)
- Lydia K Wooldridge
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jessica A Keane
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Michelle L Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
5
|
Wrenzycki C. Parameters to identify good quality oocytes and embryos in cattle. Reprod Fertil Dev 2021; 34:190-202. [PMID: 35231232 DOI: 10.1071/rd21283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oocyte/embryo selection methodologies are either invasive or noninvasive and can be applied at various stages of development from the oocyte to cleaved embryos and up to the blastocyst stage. Morphology and the proportion of embryos developing to the blastocyst stage are important criteria to assess developmental competence. Evaluation of morphology remains the method of choice for selecting viable oocytes for IVP or embryos prior to transfer. Although non-invasive approaches are improving, invasive ones have been extremely helpful in finding candidate genes to determine oocyte/embryo quality. There is still a strong need for further refinement of existing oocyte and embryo selection methods and quality parameters. The development of novel, robust and non-invasive procedures will ensure that only embryos with the highest developmental potential are chosen for transfer. In the present review, various methods for assessing the quality of oocytes and preimplantation embryos, particularly in cattle, are considered. These methods include assessment of morphology including different staining procedures, transcriptomic and proteomic analyses, metabolic profiling, as well as the use of artificial intelligence technologies.
Collapse
Affiliation(s)
- Christine Wrenzycki
- Chair for Molecular Reproductive Medicine, Clinic for Veterinary Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University Giessen, Frankfurter Straße 106, Giessen 35392, Germany
| |
Collapse
|
6
|
Banliat C, Labas V, Tomas D, Teixeira-Gomes AP, Guyonnet B, Mermillod P, Saint-Dizier M. Use of MALDI-TOF mass spectrometry to explore the peptidome and proteome of in-vitro produced bovine embryos pre-exposed to oviduct fluid. Reprod Biol 2021; 21:100545. [PMID: 34419706 DOI: 10.1016/j.repbio.2021.100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
In order to identify oviduct fluid (OF) peptides and proteins possibly uptaken by developing embryos, in-vitro produced bovine embryos exposed or not to OF were individually analyzed by MALDI-TOF mass spectrometry. Overall, 11 masses were overabundant in OF-treated embryos compared to controls, among which one at 8.9 kDa annotated as immediate early response 3-interacting protein 1 or a peptide of transitional endoplasmic reticulum ATPase met the criteria of an OF embryo-interacting protein or peptide.
Collapse
Affiliation(s)
- Charles Banliat
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France; Union Evolution, Noyal-Sur-Vilaine, France
| | - Valérie Labas
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France; INRAE, Université de Tours, CHU de Tours, PIXANIM, 37380 Nouzilly, France
| | - Daniel Tomas
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France; INRAE, Université de Tours, CHU de Tours, PIXANIM, 37380 Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- INRAE, Université de Tours, CHU de Tours, PIXANIM, 37380 Nouzilly, France; INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | | | - Pascal Mermillod
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Marie Saint-Dizier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France; Tours University, Tours, France.
| |
Collapse
|
7
|
Kuzma-Hunt AG, Truong VB, Favetta LA. Glucocorticoids, Stress and Delta-9 Tetrahydrocannabinol (THC) during Early Embryonic Development. Int J Mol Sci 2021; 22:7289. [PMID: 34298908 PMCID: PMC8307766 DOI: 10.3390/ijms22147289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Elevated molecular stress in women is known to have negative impacts on the reproductive development of oocytes and the embryos prior to implantation. In recent years, the prevalence of cannabis use among women of reproductive age has risen due to its ability to relieve psychological stress and nausea, which are mediated by its psychoactive component, ∆-9-tetrahydrocannabinol (THC). Although cannabis is the most popular recreational drug of the 21st century, much is unknown about its influence on molecular stress in reproductive tissues. The current literature has demonstrated that THC causes dose- and time-dependent alterations in glucocorticoid signaling, which have the potential to compromise morphology, development, and quality of oocytes and embryos. However, there are inconsistencies across studies regarding the mechanisms for THC-dependent changes in stress hormones and how either compounds may drive or arrest development. Factors such as variability between animal models, physiologically relevant doses, and undiscovered downstream gene targets of both glucocorticoids and THC could account for such inconsistencies. This review evaluates the results of studies which have investigated the effects of glucocorticoids on reproductive development and how THC may alter stress signaling in relevant tissues.
Collapse
Affiliation(s)
| | | | - Laura A. Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.G.K.-H.); (V.B.T.)
| |
Collapse
|
8
|
Llobat L. Extracellular vesicles and domestic animal reproduction. Res Vet Sci 2021; 136:166-173. [PMID: 33647595 DOI: 10.1016/j.rvsc.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/01/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023]
Abstract
Embryo implantation is a complex process in which significant changes occur continually in both the corpora lutea and in the endometrium of females and which varies depending on the embryonic, pre-implantation, or fetal stages. However, at all stages, correct maternal-embryonic communication is essential. In the last few years, a new intercellular communication tool, mediated by extracellular vesicles (EVs), has emerged. Many authors agree on the relevant role of EVs in correct communication between the mother and the embryo, as a fundamental system for the pregnancy to reach term and embryonic development to occur correctly. This review analyzes current information on known EVs, their main functions, and their role in implantation and embryonic development in domestic animals.
Collapse
Affiliation(s)
- Lola Llobat
- Grupo de Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| |
Collapse
|
9
|
Banliat C, Le Bourhis D, Bernardi O, Tomas D, Labas V, Salvetti P, Guyonnet B, Mermillod P, Saint-Dizier M. Oviduct Fluid Extracellular Vesicles Change the Phospholipid Composition of Bovine Embryos Developed In Vitro. Int J Mol Sci 2020; 21:ijms21155326. [PMID: 32727074 PMCID: PMC7432015 DOI: 10.3390/ijms21155326] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022] Open
Abstract
Oviduct fluid extracellular vesicles (oEVs) have been proposed as bringing key molecules to the early developing embryo. In order to evaluate the changes induced by oEVs on embryo phospholipids, fresh bovine blastocysts developed in vitro in the presence or absence of oEVs were analyzed by intact cell MALDI-TOF (Matrix assisted laser desorption ionization—Time of flight) mass spectrometry (ICM-MS). The development rates, cryotolerance, and total cell number of blastocysts were also evaluated. The exposure to oEVs did not affect blastocyst yield or cryotolerance but modified the phospholipid content of blastocysts with specific changes before and after blastocoel expansion. The annotation of differential peaks due to oEV exposure evidenced a shift of embryo phospholipids toward more abundant phosphatidylcholines (PC), phosphatidylethanolamines (PE), and sphingomyelins (SM) with long-chain fatty acids. The lipidomic profiling of oEVs showed that 100% and 33% of the overabundant masses in blastocysts and expanded blastocysts, respectively, were also present in oEVs. In conclusion, this study provides the first analysis of the embryo lipidome regulated by oEVs. Exposure to oEVs induced significant changes in the phospholipid composition of resulting embryos, probably mediated by the incorporation of oEV-phospholipids into embryo membranes and by the modulation of the embryonic lipid metabolism by oEV molecular cargos.
Collapse
Affiliation(s)
- Charles Banliat
- INRAE, CNRS, University of Tours, IFCE, UMR 85 PRC, F-37380 Nouzilly, France; (C.B.); (O.B.); (D.T.); (V.L.); (P.M.)
- Union Evolution, F-35530 Noyal-Sur-Vilaine, France;
| | | | - Ophélie Bernardi
- INRAE, CNRS, University of Tours, IFCE, UMR 85 PRC, F-37380 Nouzilly, France; (C.B.); (O.B.); (D.T.); (V.L.); (P.M.)
| | - Daniel Tomas
- INRAE, CNRS, University of Tours, IFCE, UMR 85 PRC, F-37380 Nouzilly, France; (C.B.); (O.B.); (D.T.); (V.L.); (P.M.)
- INRAE, Université de Tours, CHU de Tours, Plate-forme CIRE, F-37380 Nouzilly, France
| | - Valérie Labas
- INRAE, CNRS, University of Tours, IFCE, UMR 85 PRC, F-37380 Nouzilly, France; (C.B.); (O.B.); (D.T.); (V.L.); (P.M.)
- INRAE, Université de Tours, CHU de Tours, Plate-forme CIRE, F-37380 Nouzilly, France
| | | | | | - Pascal Mermillod
- INRAE, CNRS, University of Tours, IFCE, UMR 85 PRC, F-37380 Nouzilly, France; (C.B.); (O.B.); (D.T.); (V.L.); (P.M.)
| | - Marie Saint-Dizier
- INRAE, CNRS, University of Tours, IFCE, UMR 85 PRC, F-37380 Nouzilly, France; (C.B.); (O.B.); (D.T.); (V.L.); (P.M.)
- Department Agrosciences, Faculty of Sciences and Techniques, University of Tours, F-37200 Tours, France
- Correspondence: ; Tel.: +33-2-47-42-75-08
| |
Collapse
|
10
|
Composing the Early Embryonic Microenvironment: Physiology and Regulation of Oviductal Secretions. Int J Mol Sci 2019; 21:ijms21010223. [PMID: 31905654 PMCID: PMC6982147 DOI: 10.3390/ijms21010223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/19/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
The oviductal fluid is the first environment experienced by mammalian embryos at the very beginning of life. However, it has long been believed that the oviductal environment was not essential for proper embryonic development. Successful establishment of in vitro embryo production techniques (which completely bypass the oviduct) have reinforced this idea. Yet, it became evident that in vitro produced embryos differ markedly from their in vivo counterparts, and these differences are associated with lower pregnancy outcomes and more health issues after birth. Nowadays, researchers consider the oviduct as the most suitable microenvironment for early embryonic development and a substantial effort is made to understand its dynamic, species-specific functions. In this review, we touch on the origin and molecular components of the oviductal fluid in mammals, where recent progress has been made thanks to the wider use of mass spectrometry techniques. Some of the factors and processes known to regulate oviductal secretions, including the embryo itself, as well as ovulation, insemination, endogenous and exogenous hormones, and metabolic and heat stress, are summarized. Special emphasis is laid on farm animals because, owing to the availability of sample material and the economic importance of fertility in livestock husbandry, a large part of the work on this topic has been carried out in domestic animals used for dairy and/or meat production.
Collapse
|