1
|
Yang CH, Wang YW, Hsu CW, Chung BC. Zebrafish Foxl2l functions in proliferating germ cells for female meiotic entry. Dev Biol 2025; 517:91-99. [PMID: 39341446 DOI: 10.1016/j.ydbio.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Zebrafish sex differentiation is a complicated process and the detailed mechanism has not been fully understood. Here we characterized a transcription factor, Foxl2l, which participates in female oogenesis. We show that it is expressed specifically in proliferating germ cells in juvenile gonads and mature ovaries. We have used CRISPR-Cas9 to generate zebrafish deficient in foxl2l expression. Zebrafish with foxl2l-/- are all males, and this female-to-male sex reversal cannot be reversed by tp53 mutation, indicating this sex reversal is unrelated to cell death. We have generated transgenic fish expressing GFP under the control of foxl2l promoter to track the development of foxl2l + -germ cells; these cells failed to enter meiosis and accumulated as cystic cells in the foxl2l-/- mutant. Our RNA-seq analysis also showed the reduced expression of genes in meiosis and oogenesis among other affected pathways. All together, we show that zebrafish Foxl2l is a nuclear factor controlling the expression of meiotic and oogenic genes, and its deficiency leads to defective meiotic entry and the accumulation of premeiotic germ cells.
Collapse
Affiliation(s)
- Ching-Hsin Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yan-Wei Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chen-Wei Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan; National Laboratory Animal Center, National Applied Research Laboratories Taipei, 115, Taiwan
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan; National Laboratory Animal Center, National Applied Research Laboratories Taipei, 115, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan; Neuroscience and Brain Disease Center, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
2
|
Geffroy B, Goikoetxea A, Villain-Naud N, Martinez AS. Early fasting does not impact gonadal size nor vasa gene expression in the European seabass Dicentrarchus labrax. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2423-2435. [PMID: 39196454 DOI: 10.1007/s10695-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
Primordial germ cells (PGCs) play a crucial role in sexual development in fish, with recent studies revealing their influence on sexual fate. Notably, PGC number at specific developmental stages can determine whether an individual develops as male or female. Temperature was shown to impact PGC proliferation and the subsequent phenotypic sex in some fish species. Here, we aimed at testing the role of food deprivation on gonad development in the European seabass Dicentrarchus labrax, a species displaying a polygenic sex determination system with an environmental influence. We subjected larvae to two periods of starvation to investigate whether restricting growth affects both gonadal size and vasa gene expression. We first confirmed by immunohistochemistry that Vasa was indeed a marker of PGCs in the European seabass, as in other fish species. We also showed that vasa correlated positively with fish size, confirming that it could be used as a marker of feminization. However, starvation did not show any significant effects on vasa expression nor on gonadal size. It is hypothesized that evolutionary mechanisms likely safeguard PGCs against environmental stressors to ensure reproductive success. Further research is needed to elucidate the intricate interplay between environmental cues, PGC biology, and sexual differentiation in fish.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.
| | | | | | - Anne-Sophie Martinez
- Normandie Université, Unicaen, BOREA, 14000, Caen, France
- Normandie Université, Unicaen, ToxEMAC ABTE, 14000, Caen, France
| |
Collapse
|
3
|
Dai S, Li M, Yuan J, Wei X, Ma E, Wang D, Li M. dmrt1 Is Responsible for Androgen-Induced Masculinization in Nile Tilapia. Genes (Basel) 2024; 15:1238. [PMID: 39336829 PMCID: PMC11431369 DOI: 10.3390/genes15091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
17α-Methyltestosterone (MT) is a widely used androgen for all-male fish production in aquaculture. However, the molecular mechanism underlying MT-induced masculinization remains unclear. In this study, we aim to identify the key gene responsible for MT-induced masculinization using the Nile tilapia (Oreochromis niloticus) amhy, dmrt1, and gsdf mutants, which exhibit male-to-female sex reversal. Nile tilapia fry from these three mutant lines were treated with 50 μg/g MT from 5 to 30 days after hatching (dah). The results showed that amhy and gsdf mutants, but not dmrt1 mutants, were masculinized by the MT treatment. Gonadal transcriptome analysis revealed that genes involved in steroidogenesis and germ cell development in MT-treated dmrt1 mutants exhibited a similar expression pattern to that of the wild type (WT) XX. In addition, the dmrt1 mutants cannot be masculinized by co-treatment with MT and the aromatase inhibitor fadrozole. The MT treatment completely blocked early steroidogenic enzyme (Star2, Cyp17a2, and Cyp19a1a) expression independent of amhy, gsdf, and dmrt1. A luciferase analysis showed that MT directly suppressed basal and Sf-1-activated cyp19a1a promoter activity through ara and arb in cultured HEK293 cells. Furthermore, MT treatment inhibited germ cell proliferation in amhy and gsdf mutants but not in dmrt1 mutants. Consistently, dmrt1 expression was induced in MT-treated WT XX, -amhy, and -gsdf mutants. Taken together, these results suggest that dmrt1 is indispensable for MT-induced masculinization in Nile tilapia and that MT functions by inhibiting early steroid synthesis and activating dmrt1 to promote testis development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Minghui Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Chongqing Municipality for Aquatic Economic Animal Resources Conservation and Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.D.); (M.L.); (J.Y.); (X.W.); (E.M.); (D.W.)
| |
Collapse
|
4
|
Carranza J, Yamada K, Sakae Y, Noh J, Choi MH, Tanaka M. Genetic Disruption of cyp21a2 Leads to Systemic Glucocorticoid Deficiency and Tissues Hyperplasia in the Teleost Fish Medaka ( Oryzias latipes). Zoolog Sci 2024; 41:263-274. [PMID: 38809865 DOI: 10.2108/zs230107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/29/2023] [Indexed: 05/31/2024]
Abstract
cytochrome P-450, 21-hydroxylase (cyp21a2), encodes an enzyme required for cortisol biosynthesis, and its mutations are the major genetic cause of congenital adrenal hyperplasia (CAH) in humans. Here, we have generated a null allele for the medaka cyp21a2 with a nine base-pair insertion which led to a truncated protein. We have observed a delay in hatching and a low survival rate in homozygous mutants. The interrenal gland (adrenal counterpart in teleosts) exhibits hyperplasia and the number of pomca-expressing cells in the pituitary increases in the homozygous mutant. A mass spectrometry-based analysis of whole larvae confirmed a lack of cortisol biosynthesis, while its corresponding precursors were significantly increased, indicating a systemic glucocorticoid deficiency in our mutant model. Furthermore, these phenotypes at the larval stage are rescued by cortisol. In addition, females showed complete sterility with accumulated follicles in the ovary while male homozygous mutants were fully fertile in the adult mutants. These results demonstrate that the mutant medaka recapitulates several aspects of cyp21a2-deficiency observed in humans, making it a valuable model for studying steroidogenesis in CAH.
Collapse
Affiliation(s)
- José Carranza
- Laboratory of Reproductive Biology, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kazuki Yamada
- Laboratory of Reproductive Biology, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuta Sakae
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Jongsung Noh
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Man Ho Choi
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Minoru Tanaka
- Laboratory of Reproductive Biology, Graduate School of Science, Nagoya University, Nagoya, Japan,
| |
Collapse
|
5
|
Guirandy N, Simon O, Geffroy B, Daffe G, Daramy F, Houdelet C, Gonzalez P, Pierron F. Gamma irradiation-induced offspring masculinization is associated with epigenetic changes in female zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115790. [PMID: 38086259 DOI: 10.1016/j.ecoenv.2023.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Sex ratio variation is a key topic in ecology, because of its direct effects on population dynamics and thus, on animal conservation strategies. Among factors affecting sex ratio, types of sex determination systems have a central role, since some species could have a sex determined by genetic factors, environmental factors or a mix of those two. Yet, most studies on the factors affecting sex determination have focused on temperature or endocrine-disrupting chemicals (EDCs), and much less is known regarding other factors. Exposure to gamma irradiation was found to trigger offspring masculinization in zebrafish. Here we aimed at deciphering the potential mechanisms involved, by focusing on stress (i.e. cortisol) and epigenetic regulation of key genes involved in sex differentiation in fish. Cortisol levels in exposed and control (F0) zebrafish females' gonads were similar. However, irradiation increased the DNA methylation level of foxl2a and cyp19a1a in females of the F0 and F1 generation, respectively, while no effects were detected in testis. Overall, our results suggest that parental exposure could alter offspring sex ratio, at least in part by inducing methylation changes in ovaries.
Collapse
Affiliation(s)
- Noëmie Guirandy
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache-B.P. 3 - Bat 183, 13115 St Paul Lez Durance, France.
| | - Olivier Simon
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache-B.P. 3 - Bat 183, 13115 St Paul Lez Durance, France
| | - Benjamin Geffroy
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guillemine Daffe
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Flore Daramy
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Camille Houdelet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Patrice Gonzalez
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Fabien Pierron
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| |
Collapse
|
6
|
Wang F, Feng YY, Wang XG, Ou M, Zhang XC, Zhao J, Chen KC, Li KB. Production of all-male non-transgenic zebrafish by conditional primordial germ cell ablation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1215-1227. [PMID: 37857788 DOI: 10.1007/s10695-023-01252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Many fish species exhibit remarkable sexual dimorphism, with males possessing numerous advantageous traits for commercial production by aquaculture such as faster growth rate, more efficient food energy utilization for muscle development, and better breeding performance. Several studies have shown that a decrease in the number of primordial germ cells (PGCs) during early development leads predominantly to male progeny. In this study, we developed a method to obtain all-male zebrafish (Danio rerio) by targeted PGC ablation using the nitroreductase/metronidazole (NTR/Mtz) system. Embryos generated by female heterozygous Tg(nanos3:nfsB-mCherry-nanos3 3'UTR) and male wild-types (WTs) were treated with vehicle or Mtz. Compared to vehicle-treated controls, 5.0 and 10.0 mM Mtz treatment for 24 h significantly reduced the number of PGCs and yielded an exclusively male phenotype in adulthood. The gonads of offspring treated with 5.0 mM Mtz exhibited relatively normal morphology and histological characteristics. Furthermore, these males were able to chase females, spawn, and produce viable offspring, while about 20.0% of males treated with 10.0 mM Mtz were unable to produce viable offspring. The 5.0 mM Mtz treatment protocol may thus be suitable for large-scale production of fertile male offspring. Moreover, about half of these males were WT as evidenced by the absence of nfsB gene expression. It may thus be possible to breed an all-male WT fish population by Mtz-mediated PGC ablation.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Guangzhou, 510380, Guangdong, China
| | - Yong-Yong Feng
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, China
| | - Xu-Guang Wang
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Guangzhou, 510380, Guangdong, China
| | - Xin-Cheng Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Guangzhou, 510380, Guangdong, China
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Guangzhou, 510380, Guangdong, China
| | - Kun-Ci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Guangzhou, 510380, Guangdong, China
| | - Kai-Bin Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Guangzhou, 510380, Guangdong, China.
| |
Collapse
|
7
|
Yu Y, Chen M, Shen ZG. Molecular biological, physiological, cytological, and epigenetic mechanisms of environmental sex differentiation in teleosts: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115654. [PMID: 37918334 DOI: 10.1016/j.ecoenv.2023.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Human activities have been exerting widespread stress and environmental risks in aquatic ecosystems. Environmental stress, including temperature rise, acidification, hypoxia, light pollution, and crowding, had a considerable negative impact on the life histology of aquatic animals, especially on sex differentiation (SDi) and the resulting sex ratios. Understanding how the sex of fish responds to stressful environments is of great importance for understanding the origin and maintenance of sex, the dynamics of the natural population in the changing world, and the precise application of sex control in aquaculture. This review conducted an exhaustive search of the available literature on the influence of environmental stress (ES) on SDi. Evidence has shown that all types of ES can affect SDi and universally result in an increase in males or masculinization, which has been reported in 100 fish species and 121 cases. Then, this comprehensive review aimed to summarize the molecular biology, physiology, cytology, and epigenetic mechanisms through which ES contributes to male development or masculinization. The relationship between ES and fish SDi from multiple aspects was analyzed, and it was found that environmental sex differentiation (ESDi) is the result of the combined effects of genetic and epigenetic factors, self-physiological regulation, and response to environmental signals, which involves a sophisticated network of various hormones and numerous genes at multiple levels and multiple gradations in bipotential gonads. In both normal male differentiation and ES-induced masculinization, the stress pathway and epigenetic regulation play important roles; however, how they co-regulate SDi is unclear. Evidence suggests that the universal emergence or increase in males in aquatic animals is an adaptation to moderate ES. ES-induced sex reversal should be fully investigated in more fish species and extensively in the wild. The potential aquaculture applications and difficulties associated with ESDi have also been addressed. Finally, the knowledge gaps in the ESDi are presented, which will guide the priorities of future research.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
8
|
Schartl M, Georges A, Marshall Graves JA. Polygenic sex determination in vertebrates - is there any such thing? Trends Genet 2023; 39:242-250. [PMID: 36669949 PMCID: PMC10148267 DOI: 10.1016/j.tig.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
Genetic sex determination (SD) in most vertebrates is controlled by a single master sex gene, which ensures a 1:1 sex ratio. However, more complex systems abound, and several have been ascribed to polygenic SD (PSD), in which many genes at different loci interact to produce the sexual phenotype. Here we examine claims for PSD in vertebrates, finding that most constitute transient states during sex chromosome turnover, or aberrant systems in species hybrids. To avoid confusion about terminology, we propose a consistent nomenclature for genetic SD systems.
Collapse
Affiliation(s)
- Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA; Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, ACT, 2601, Australia
| | | |
Collapse
|
9
|
Adolfi MC, Depincé A, Wen M, Pan Q, Herpin A. Development of Ovaries and Sex Change in Fish: Bringing Potential into Action. Sex Dev 2023; 17:84-98. [PMID: 36878204 DOI: 10.1159/000526008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/08/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Encompassing about half of the 60,000 species of vertebrates, fish display the greatest diversity of sex determination mechanisms among metazoans. As such that phylum offers a unique playground to study the impressive variety of gonadal morphogenetic strategies, ranging from gonochorism, with either genetic or environmental sex determination, to unisexuality, with either simultaneous or consecutive hermaphroditism. SUMMARY From the two main types of gonads, the ovaries embrace the important role to produce the larger and non-motile gametes, which is the basis for the development of a future organism. The production of the egg cells is complex and involves the formation of follicular cells, which are necessary for the maturation of the oocytes and the production of feminine hormones. In this vein, our review focuses on the development of ovaries in fish with special emphasis on the germ cells, including those that transition from one sex to the other as part of their life cycle and those that are capable of transitioning to the opposite sex depending on environmental cues. KEY MESSAGES Clearly, establishing an individual as either a female or a male is not accomplished by the sole development of two types of gonads. In most cases, that dichotomy, be it final or transient, is accompanied by coordinated transformations across the entire organism, leading to changes in the physiological sex as a whole. These coordinated transformations require both molecular and neuroendocrine networks, but also anatomical and behavioural adjustments. Remarkably, fish managed to tame the ins and outs of sex reversal mechanisms to take the most advantages of changing sex as adaptive strategies in some situations.
Collapse
Affiliation(s)
- Mateus Contar Adolfi
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Amaury Herpin
- Fish Physiology and Genomics, INRAE, UR 1037, Rennes, France
| |
Collapse
|
10
|
Master-Key Regulators of Sex Determination in Fish and Other Vertebrates-A Review. Int J Mol Sci 2023; 24:ijms24032468. [PMID: 36768795 PMCID: PMC9917144 DOI: 10.3390/ijms24032468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In vertebrates, mainly single genes with an allele ratio of 1:1 trigger sex-determination (SD), leading to initial equal sex-ratios. Such genes are designated master-key regulators (MKRs) and are frequently associated with DNA structural variations, such as copy-number variation and null-alleles. Most MKR knowledge comes from fish, especially cichlids, which serve as a genetic model for SD. We list 14 MKRs, of which dmrt1 has been identified in taxonomically distant species such as birds and fish. The identification of MKRs with known involvement in SD, such as amh and fshr, indicates that a common network drives SD. We illustrate a network that affects estrogen/androgen equilibrium, suggesting that structural variation may exert over-expression of the gene and thus form an MKR. However, the reason why certain factors constitute MKRs, whereas others do not is unclear. The limited number of conserved MKRs suggests that their heterologous sequences could be used as targets in future searches for MKRs of additional species. Sex-specific mortality, sex reversal, the role of temperature in SD, and multigenic SD are examined, claiming that these phenomena are often consequences of artificial hybridization. We discuss the essentiality of taxonomic authentication of species to validate purebred origin before MKR searches.
Collapse
|
11
|
Smaga CR, Bock SL, Johnson JM, Parrott BB. Sex Determination and Ovarian Development in Reptiles and Amphibians: From Genetic Pathways to Environmental Influences. Sex Dev 2022; 17:99-119. [PMID: 36380624 DOI: 10.1159/000526009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Reptiles and amphibians provide untapped potential for discovering how a diversity of genetic pathways and environmental conditions are incorporated into developmental processes that can lead to similar functional outcomes. These groups display a multitude of reproductive strategies, and whereas many attributes are conserved within groups and even across vertebrates, several aspects of sexual development show considerable variation. SUMMARY In this review, we focus our attention on the development of the reptilian and amphibian ovary. First, we review and describe the events leading to ovarian development, including sex determination and ovarian maturation, through a comparative lens. We then describe how these events are influenced by environmental factors, focusing on temperature and exposure to anthropogenic chemicals. Lastly, we identify critical knowledge gaps and future research directions that will be crucial to moving forward in our understanding of ovarian development and the influences of the environment in reptiles and amphibians. KEY MESSAGES Reptiles and amphibians provide excellent models for understanding the diversity of sex determination strategies and reproductive development. However, a greater understanding of the basic biology of these systems is necessary for deciphering the adaptive and potentially disruptive implications of embryo-by-environment interactions in a rapidly changing world.
Collapse
Affiliation(s)
- Christopher R Smaga
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Samantha L Bock
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Josiah M Johnson
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Benjamin B Parrott
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| |
Collapse
|
12
|
Dynamics of sexual development in teleosts with a note on Mugil cephalus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Mason MW, Bertucci EM, Leri FM, Parrott BB. Transient Copper Exposure During Embryogenesis and Temperature Affect Developmental Rate, Survival, and Fin Regeneration in Japanese Medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:748-757. [PMID: 34918380 DOI: 10.1002/etc.5276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Combined environmental stressors that an organism experiences can have both immediate and lasting consequences. In the present study, we exposed Japanese medaka (Oryzias latipes) embryos to sublethal copper sulfate (CuSO4 ; 0, 10, and 100 ppb) in combination with different rearing temperatures (27, 30, and 33 °C) to assess acute and latent effects on development, growth, and regenerative capacity. Embryos exposed to CuSO4 and/or higher temperatures hatched significantly earlier. At 4 months post-exposure, fish exposed to low levels of CuSO4 during development had higher survival, whereas fish exposed to both 100 ppb CuSO4 and 33 °C temperatures had significantly lower survival. In addition, a sex-specific effect of embryonic CuSO4 exposure was observed as female mass decreased with increasing Cu dose. We also assessed caudal fin regenerative capabilities in both embryo-exposed fish at 4 months of age and adult medaka that were exposed to 0, 10, and 100 ppb CuSO4 at room temperature during a 14-day trial. Whereas fin regeneration was unaffected by adult exposure to Cu, fish transiently exposed during embryogenesis displayed an initial increase in fin growth rate and an increased incidence of abnormal fin morphology following regrowth. Collectively, these data suggest that developmental Cu exposure has the potential to exert long-lasting impacts to organismal growth, survival, and function. Environ Toxicol Chem 2022;41:748-757. © 2021 SETAC.
Collapse
Affiliation(s)
- Marilyn W Mason
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
| | - Emily M Bertucci
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Faith M Leri
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Liu Y, Bai S, Wang Y, Li X, Qu J, Han M, Zhai J, Li W, Liu J, Zhang Q. Intensive masculinization caused by chronic heat stress in juvenile Cynoglossus semilaevis: Growth performance, gonadal histology and gene responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113250. [PMID: 35121259 DOI: 10.1016/j.ecoenv.2022.113250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The sea temperature has been observed to chronically increase during the past decades, leaving unpredictable influences to the marine biological resources. Thus, it is of vital significance to study the biological responses of ocean inhabited organisms with the artificially stimulated heat stress environment. Cynoglossus semilaevis provides us with an ideal model to study the influence of chronic heat stress on the sexual differentiation in marine teleosts for its genetic sex determination (GSD) + environmental effected (EE) sex determination system. In this study, the comparative experiment was conducted employing heated seawater (HT group) and ambient seawater (CT group) to cultivate juvenile C. semilaevis respectively. Significant differences were exhibited in growth performance and a delayed germ cell development effect was found in pseudomales formed under chronic heat stress. Using transcriptome analysis, the transcription profile of 55 days post fertilization (dpf) and 100 dpf juveniles' gonads were studied. A total of 47 libraries were constructed with an average mapping rate of 94.63% after assembling. GO and KEGG enrichment were proceeded using DEGs screened out between (1) pseudomale gonads at 55 dpf and 100 dpf in HT and CT group (2) pseudomale and female gonads at 55 dpf and 100 dpf in HT and CT group. Terms and pathways involved in steroid stimulation, reproduction ability, germ cell proliferation et al. were shed light on. The expression pattern of 29 DEGs including amh, hsp90b1, pgr et al. were also provided to supplement the results of functional enrichment. Weighted gene co-expression networks analysis (WGCNA) was constructed and hspb8-like, histone H2A.V were exhibited to play vital roles in the heat-induced masculinization. Our findings facilitate the understanding for transcriptional variations in intensive masculinization cause by chronic heat stress of C. semilaevis and provide referable study of the influences on the teleosts in elevated sea temperature.
Collapse
Affiliation(s)
- Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Shujun Bai
- Laboratory of Fisheries Oceanography, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Xiaoqi Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jieming Zhai
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
15
|
Mukai K, Hara S, Sakima K, Nozu R, Yazawa T, Kitano T. Oxidative Stress Causes Masculinization of Genetically Female Medaka Without Elevating Cortisol. Front Endocrinol (Lausanne) 2022; 13:878286. [PMID: 35832427 PMCID: PMC9272773 DOI: 10.3389/fendo.2022.878286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Medaka (Oryzias latipes) is a teleost fish with an XX/XY sex determination system. Sex reversal from female-to-male (masculinization of XX fish) can be induced through cortisol elevation from exposure to environmental stress such as high temperature during sexual differentiation. However, the effects of oxidative stress, generated via metabolic reactions and biological defense mechanisms, on the sexual differentiation of medaka are unclear. Here, we investigated the effect of oxidative stress on medaka sexual differentiation using hydrogen peroxide (H2O2), which induces oxidative stress in vertebrates. H2O2 treatment from 0 to 5 days post-hatching induced masculinization of wild-type XX medaka, but not of gonadal soma-derived growth factor (gsdf) or peroxisome proliferator-activated receptor alpha-a (pparaa) knockout XX fish. Co-treatment with an oxidative stress inhibitor caused masculinization recovery but co-treatment with a cortisol synthesis inhibitor did not. H2O2 treatment significantly upregulated gsdf and pparaa expression in XX medaka. However, H2O2 did not elevate cortisol levels in medaka larvae during sexual differentiation. These results strongly indicate that oxidative stress induces masculinization of XX medaka without causing elevation of cortisol.
Collapse
Affiliation(s)
- Koki Mukai
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Seiji Hara
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Konosuke Sakima
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Ryo Nozu
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- *Correspondence: Takeshi Kitano,
| |
Collapse
|
16
|
Dechaud C, Miyake S, Martinez-Bengochea A, Schartl M, Volff JN, Naville M. Clustering of Sex-Biased Genes and Transposable Elements in the Genome of the Medaka Fish Oryzias latipes. Genome Biol Evol 2021; 13:6384576. [PMID: 34623422 PMCID: PMC8633743 DOI: 10.1093/gbe/evab230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Although genes with similar expression patterns are sometimes found in the same genomic regions, almost nothing is known about the relative organization in genomes of genes and transposable elements (TEs), which might influence each other at the regulatory level. In this study, we used transcriptomic data from male and female gonads of the Japanese medaka Oryzias latipes to define sexually biased genes and TEs and analyze their relative genomic localization. We identified 20,588 genes expressed in the adult gonads of O. latipes. Around 39% of these genes are differentially expressed between male and female gonads. We further analyzed the expression of TEs using the program SQuIRE and showed that more TE copies are overexpressed in testis than in ovaries (36% vs. 10%, respectively). We then developed a method to detect genomic regions enriched in testis- or ovary-biased genes. This revealed that sex-biased genes and TEs are not randomly distributed in the genome and a part of them form clusters with the same expression bias. We also found a correlation of expression between TE copies and their closest genes, which increases with decreasing intervening distance. Such a genomic organization suggests either that TEs hijack the regulatory sequences of neighboring sexual genes, allowing their expression in germ line cells and consequently new insertions to be transmitted to the next generation, or that TEs are involved in the regulation of sexual genes, and might therefore through their mobility participate in the rewiring of sex regulatory networks.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | - Sho Miyake
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | | | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany.,Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
17
|
Han J, Hu Y, Qi Y, Yuan C, Naeem S, Huang D. High temperature induced masculinization of zebrafish by down-regulation of sox9b and esr1 via DNA methylation. J Environ Sci (China) 2021; 107:160-170. [PMID: 34412779 DOI: 10.1016/j.jes.2021.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 05/15/2023]
Abstract
Elevated temperature could influence the sex differentiation by altering the expression of sex-related genes in fish. However, the underlying mechanisms by which the gene expression is altered remain poorly understood. Here, we aimed to explore the role of DNA methylation in sex differentiation of zebrafish (Danio rerio) in response to elevated temperature. The results showed that high temperature (33°C) exposure of fish from 20 to 30 days post fertilization (dpf), compared to normal temperature (28°C), resulted in male-biased sex ratio and decreased expression of female-related genes including cyp19a1a, sox9b and esr1. Meanwhile, the expressions of DNA methyltransferases dnmt3a1 and dnmt3a2, and the DNA methylation levels in sox9b and esr1 promoter were significantly increased by high temperature, strongly implying that DNA methylation is involved in high temperature-induced masculinization of zebrafish. Co-treatment with 5-aza-2'-deoxycytidine (a DNA methylation inhibitor) attenuated the high temperature-induced masculinizing effect, recovered the expression of esr1 and sox9b, suppressed the transcription of dnmt3a1 and dnmt3a2, and decreased the methylation of esr1 and sox9b promoter, further confirming that DNA methylation plays an important role in high temperature-induced masculinization of zebrafish. Furthermore, the methylation of sox9b promoter decreased the enrichment of transcription factor CREB (cAMP-responsive element binding proteins). Overall, these findings suggest that high temperature induce masculinization of zebrafish by down-regulation of female-related genes via DNA methylation, providing a new insight in understanding the epigenetic mechanism of thermal-mediated sex differentiation in fish.
Collapse
Affiliation(s)
- Jiangyuan Han
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan Hu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sajid Naeem
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China..
| |
Collapse
|
18
|
Myla A, Dasmahapatra AK, Tchounwou PB. Sex-reversal and Histopathological Assessment of Potential Endocrine-Disrupting Effects of Graphene Oxide on Japanese medaka (Oryzias latipes) Larvae. CHEMOSPHERE 2021; 279:130768. [PMID: 34134430 PMCID: PMC8217731 DOI: 10.1016/j.chemosphere.2021.130768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 05/12/2023]
Abstract
Sex-ratio is considered as an end point during endocrine disrupting chemicals (EDCs) evaluation. Many fish species including Japanese medaka have XX/XY sex determination mechanism, however, sex reversal (SR) can be induced by external and genetic factors. SR imposed an imbalance in natural sex ratio of a population living in any ecosystem. Considering SR as an end point, we aimed to investigate the potential EDC effects of graphene oxide (GO), a nanocarbon, using Japanese medaka as a model. One-day post-hatch (dph) medaka fries were exposed to GO (2.5, 5.0, 10.0 and 20 mg/L) for 96 h without food, followed by 6 weeks depuration in a GO-free environment with feeding. Phenotypic sex was determined by gonad histology; genotypic sex by genotyping Y-chromosome-specific male sex determining gene, dmy. Our data indicated testes in both XY and XX genotypes, while ovaries were only in XX females. Histopathology of XY and XX testis showed isogenic spermatocysts with active spermatogenesis. Distribution of spermatocytes (SPTs), not the spermatogonium (SPGs), showed enhancement in XY than XX testis. Female phenotypes had single ovary, either in stage 0 or 1. Ovo-testis/testis-ova were absent in XX or XY gonads. GO (2.5-20 mg/L) had inconsistent concentration-dependent effect in both SPGs and SPTs; however, no effect on ovarian follicles. Despite genotypic differences (XY/XX), in the histopathology/histochemistry of liver and kidneys GO effects was found to be minimum. Taken together, present study showed spontaneous induction of SR in some XX genotypes; however, exposure of fasting fries to GO had no apparent EDC effects.
Collapse
Affiliation(s)
- Anitha Myla
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA
| | - Asok K Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA; Department of BioMolecular Sciences, Environmental Toxicology Division, University of Mississippi, University, MS, 38677, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
19
|
Adolfi MC, Herpin A, Schartl M. The replaceable master of sex determination: bottom-up hypothesis revisited. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200090. [PMID: 34247496 DOI: 10.1098/rstb.2020.0090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Different group of vertebrates and invertebrates demonstrate an amazing diversity of gene regulations not only at the top but also at the bottom of the sex determination genetic network. As early as 1995, based on emerging findings in Drosophila melanogaster and Caenorhabditis elegans, Wilkins suggested that the evolution of the sex determination pathway evolved from the bottom to the top of the hierarchy. Based on our current knowledge, this review revisits the 'bottom-up' hypothesis and applies its logic to vertebrates. The basic operation of the determination network is through the dynamics of the opposing male and female pathways together with a persistent need to maintain the sexual identity of the cells of the gonad up to the reproductive stage in adults. The sex-determining trigger circumstantially acts from outside the genetic network, but the regulatory network is not built around it as a main node, thus maintaining the genetic structure of the network. New sex-promoting genes arise either through allelic diversification or gene duplication and act specially at the sex-determination period, without integration into the complete network. Due to this peripheral position the new regulator is not an indispensable component of the sex-determining network and can be easily replaced. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Mateus Contar Adolfi
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Amaury Herpin
- INRA, UR 1037 Fish Physiology and Genomics, 35000 Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.,Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
20
|
Casas L, Saborido-Rey F. Environmental Cues and Mechanisms Underpinning Sex Change in Fish. Sex Dev 2021; 15:108-121. [PMID: 34111868 DOI: 10.1159/000515274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Fishes are the only vertebrates that undergo sex change during their lifetime, but even within this group, a unique reproductive strategy is displayed by only 1.5% of the teleosts. This lability in alternating sexual fate is the result of the simultaneous suppression and activation of opposing male and female networks. Here, we provide a brief review summarizing recent advances in our understanding of the environmental cues that trigger sex change and their perception, integration, and translation into molecular cascades that convert the sex of an individual. We particularly focus on molecular events underpinning the complex behavioral and morphological transformation involved in sex change, dissecting the main molecular players and regulatory networks that shape the transformation of one sex into the opposite. We show that histological changes and molecular pathways governing gonadal reorganization are better described than the neuroendocrine basis of sex change and that, despite important advances, information is lacking for the majority of hermaphrodite species. We highlight significant gaps in our knowledge of how sex change takes place and suggest future research directions.
Collapse
Affiliation(s)
- Laura Casas
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Fran Saborido-Rey
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| |
Collapse
|
21
|
Liu X, Zhu Y, Zhao Y, Wang Y, Li W, Hong X, Yu L, Chen C, Xu H, Zhu X. Vasa expression is associated with sex differentiation in the Asian yellow pond turtle, Mauremys mutica. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:431-442. [PMID: 34101984 DOI: 10.1002/jez.b.23064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/10/2021] [Accepted: 05/18/2021] [Indexed: 01/04/2023]
Abstract
Vasa, one of the best-studied germ cell markers plays a critical role in germ cell development and differentiation in animals. Vasa deficiency would lead to male-specific sterility in most vertebrates, but female sterility in the fly. However, the role of the vasa gene involved in germ cell differentiation is largely elusive. Here, we first characterized the expression profile of vasa products in the Asian yellow pond turtle by quantitative reverse-transcription polymerase chain reaction and fluorescence immunostaining. The results showed that vasa messenger RNA (mRNA) is initially detected in embryos at stage 16, and then dramatically increased in embryos at stage 19. In particular, like the sex-related genes, vasa mRNA exhibited differential expression in embryos between the male-producing temperature (MPT, 25°C) and the female-producing temperature (FPT, 33°C), whereas there was no difference in methylation levels of vasa promoter detected between FPT and MPT. In contrast, in the adult Asian yellow pond, the level of vasa mRNA was much higher in the testis than ovary. Moreover, the immunostaining on testicular sections and cells showed that Vasa protein was exclusively expressed in germ cells: Weak but detectable in spermatogonia, highest in spermatocytes, moderate and concentrated in chromatid bodies in spermatids and spermatozoa, and bare in somatic cells. The expression profile of Vasa protein is similar in turtle species studied so far but distinct from those in fish species in this study. The findings of this study would provide new insights into our understanding of the conservation and divergence of the vasa gene, even other germ cell genes across phyla.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yanyu Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Shanghai Ocean University, Shanghai, China
| | - Yanyan Zhao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongyan Xu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Shanghai Ocean University, Shanghai, China
| |
Collapse
|
22
|
Adolfi MC, Herpin A, Martinez-Bengochea A, Kneitz S, Regensburger M, Grunwald DJ, Schartl M. Crosstalk Between Retinoic Acid and Sex-Related Genes Controls Germ Cell Fate and Gametogenesis in Medaka. Front Cell Dev Biol 2021; 8:613497. [PMID: 33537305 PMCID: PMC7848095 DOI: 10.3389/fcell.2020.613497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Sex determination (SD) is a highly diverse and complex mechanism. In vertebrates, one of the first morphological differences between the sexes is the timing of initiation of the first meiosis, where its initiation occurs first in female and later in male. Thus, SD is intimately related to the responsiveness of the germ cells to undergo meiosis in a sex-specific manner. In some vertebrates, it has been reported that the timing for meiosis entry would be under control of retinoic acid (RA), through activation of Stra8. In this study, we used a fish model species for sex determination and lacking the stra8 gene, the Japanese medaka (Oryzias latipes), to investigate the connection between RA and the sex determination pathway. Exogenous RA treatments act as a stress factor inhibiting germ cell differentiation probably by activation of dmrt1a and amh. Disruption of the RA degrading enzyme gene cyp26a1 induced precocious meiosis and oogenesis in embryos/hatchlings of female and even some males. Transcriptome analyzes of cyp26a1–/–adult gonads revealed upregulation of genes related to germ cell differentiation and meiosis, in both ovaries and testes. Our findings show that germ cells respond to RA in a stra8 independent model species. The responsiveness to RA is conferred by sex-related genes, restricting its action to the sex differentiation period in both sexes.
Collapse
Affiliation(s)
- Mateus C Adolfi
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| | - Amaury Herpin
- INRA, UR1037, Fish Physiology and Genomics, Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Anabel Martinez-Bengochea
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany.,Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Susanne Kneitz
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| | - Martina Regensburger
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| | - David J Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Manfred Schartl
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany.,University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| |
Collapse
|
23
|
Castelli M, Georges A, Holleley CE. Corticosterone does not have a role in temperature sex reversal in the central bearded dragon (Pogona vitticeps). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:301-310. [PMID: 33411403 DOI: 10.1002/jez.2441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022]
Abstract
Environmental sex determination (ESD) is common among ectothermic vertebrates. The stress axis and production of stress hormones (corticosteroids) regulates ESD in fish, but evidence of a similar influence in reptiles is sparse and conflicting. The central bearded dragon (Pogona vitticeps) has a system of sex determination involving the interplay between sex chromosomes (ZZ/ZW female heterogamety) and the thermal environment. High egg incubation temperatures induce sex reversal of the ZZ genotype, feminizing chromosomally male individuals. Here we show that corticosterone elevation is not associated with sex reversal in the central bearded dragon, either during embryonic development or adulthood. We also demonstrate experimentally that sex determination is not affected by corticosterone injection into the yolk. This strongly suggests that stress axis upregulation by high temperature during incubation does not cause sex reversal in P. vitticeps. Our work is in general agreement with other research in reptiles, which suggests that the stress axis does not mediate sex in reptiles with ESD. Alternative biological systems may be responsible for capturing environmental conditions during reptile development, such as cellular calcium and redox regulation or the action of temperature-sensitive splicing factors.
Collapse
Affiliation(s)
- Meghan Castelli
- Institute for Applied Ecology, University of Canberra, Canberra, Australia.,Australian National Wildlife Collection, CSIRO, Canberra, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Clare E Holleley
- Institute for Applied Ecology, University of Canberra, Canberra, Australia.,Australian National Wildlife Collection, CSIRO, Canberra, Australia
| |
Collapse
|
24
|
Vandeputte M, Clota F, Sadoul B, Blanc M, Blondeau‐Bidet E, Bégout M, Cousin X, Geffroy B. Low temperature has opposite effects on sex determination in a marine fish at the larval/postlarval and juvenile stages. Ecol Evol 2020; 10:13825-13835. [PMID: 33391683 PMCID: PMC7771145 DOI: 10.1002/ece3.6972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Temperature-dependent sex determination (TSD) can be observed in multiple reptile and fish species. It is adaptive when varying environmental conditions advantage either males or females. A good knowledge of the thermosensitive period is key to understand how environmental changes may lead to changes in population sex ratio. Here, by manipulating temperature during development, we confirm that cold temperature (16°C) increases the proportion of fish that develop as females in European sea bass (Dicentrarchus labrax) until 56 days posthatching, but show that it has an opposite effect at later stages, with the proportion of males reaching ~90% after 230 days at 16°C. This is the first observation of opposite effects of temperature at different time periods on the sex ratio of a vertebrate. Our results highlight the potential complexity of environmental effects on sex determination.
Collapse
Affiliation(s)
- Marc Vandeputte
- Université Paris‐Saclay, INRAE, AgroParisTechGABIJouy‐en‐JosasFrance
- MARBEC, Univ. Montpellier, CNRS, IfremerIRDPalavas‐les‐FlotsFrance
| | - Frédéric Clota
- Université Paris‐Saclay, INRAE, AgroParisTechGABIJouy‐en‐JosasFrance
- MARBEC, Univ. Montpellier, CNRS, IfremerIRDPalavas‐les‐FlotsFrance
| | - Bastien Sadoul
- MARBEC, Univ. Montpellier, CNRS, IfremerIRDPalavas‐les‐FlotsFrance
| | | | | | | | - Xavier Cousin
- Université Paris‐Saclay, INRAE, AgroParisTechGABIJouy‐en‐JosasFrance
- MARBEC, Univ. Montpellier, CNRS, IfremerIRDPalavas‐les‐FlotsFrance
| | - Benjamin Geffroy
- MARBEC, Univ. Montpellier, CNRS, IfremerIRDPalavas‐les‐FlotsFrance
| |
Collapse
|
25
|
Hattori RS, Castañeda-Cortés DC, Arias Padilla LF, Strobl-Mazzulla PH, Fernandino JI. Activation of stress response axis as a key process in environment-induced sex plasticity in fish. Cell Mol Life Sci 2020; 77:4223-4236. [PMID: 32367192 PMCID: PMC11104976 DOI: 10.1007/s00018-020-03532-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
The determination of sex is an important hallmark in the life cycle of organisms, in which the fate of gonads and then the individual sex are defined. In gonochoristic teleost fish, this process is characterized by a high plasticity, considering that in spite of genotypic sex many environmental factors can cause shifts from one to another molecular pathway, resulting in organisms with mismatching genotypic and phenotypic sexes. Interestingly, in most instances, both female-to-male or male-to-female sex-reversed individuals develop functional gonads with normal gametogenesis and respective progenies with full viability. The study of these mechanisms is being spread to other non-model species or to those inhabiting more extreme environmental conditions. Although water temperature is an important mechanism involved in sex determination, there are other environmental stressors affected by the climate change which are also implicated in stress response-induced masculinization in fish. In this regard, the brain has emerged as the transducer of the environment input that can influence the gonadal fate. Furthermore, the evaluation of other environmental stressors or their synergic effect on sex determination at conditions that simulate the natural environments is growing gradually. Within such scope, the concerns related to climate change impacts rely on the fact that many of biotic and abiotic parameters reported to affect sex ratios are expected to increase concomitantly as a result of increased greenhouse gas emissions and, particularly worrying, many of them are related to male bias in the populations, such as high temperature, hypoxia, and acidity. These environmental changes can also generate epigenetic changes in sex-related genes affecting their expression, with implications on sex differentiation not only of exposed individuals but also in following generations. The co-analysis of multi-stressors with potential inter- and transgenerational effects is essential to allow researchers to perform long-term predictions on climate change impacts in wild populations and for establishing highly accurate monitoring tools and suitable mitigation strategies.
Collapse
Affiliation(s)
- R S Hattori
- Salmonid Experimental Station at Campos do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, Brazil
| | - D C Castañeda-Cortés
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - L F Arias Padilla
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - P H Strobl-Mazzulla
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - J I Fernandino
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina.
| |
Collapse
|
26
|
Geffroy B, Wedekind C. Effects of global warming on sex ratios in fishes. JOURNAL OF FISH BIOLOGY 2020; 97:596-606. [PMID: 32524610 DOI: 10.1111/jfb.14429] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
In fishes, sex is determined by genetics, the environment or an interaction of both. Temperature is among the most important environmental factors that can affect sex determination. As a consequence, changes in temperature at critical developmental stages can induce biases in primary sex ratios in some species. However, early sex ratios can also be biased by sex-specific tolerances to environmental stresses that may, in some cases, be amplified by changes in water temperature. Sex-specific reactions to environmental stress have been observed at early larval stages before gonad formation starts. It is therefore necessary to distinguish between temperature effects on sex determination, generally acting through the stress axis or epigenetic mechanisms, and temperature effects on sex-specific mortality. Both are likely to affect sex ratios and hence population dynamics. Moreover, in cases where temperature effects on sex determination lead to genotype-phenotype mismatches, long-term effects on population dynamics are possible, for example temperature-induced masculinization potentially leading to the loss of Y chromosomes or feminization to male-biased operational sex ratios in future generations. To date, most studies under controlled conditions conclude that if temperature affects sex ratios, elevated temperatures mostly lead to a male bias. The few studies that have been performed on wild populations seem to confirm this general trend. Recent findings suggest that transgenerational plasticity could mitigate the effects of warming on sex ratios in some populations.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC, University of Montpellier, Ifremer, IRD, CNRS, Palavas-les-Flots, France
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Martinez-Bengochea A, Doretto L, Rosa IF, Oliveira MA, Silva C, Silva DMZA, Santos GR, Santos JSF, Avelar MM, Silva LV, Lucianelli-Junior D, Souza ERB, Silva RC, Stewart AB, Nakaghi LSO, Valentin FN, Nóbrega RH. Effects of 17β-estradiol on early gonadal development and expression of genes implicated in sexual differentiation of a South American teleost, Astyanax altiparanae. Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110467. [PMID: 32628996 DOI: 10.1016/j.cbpb.2020.110467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
Gonadal sex differentiation in teleost fish shows greater plasticity as compared to other vertebrates, as it can be influenced by a variety of factors such as exogenous sex steroids. Exogenous estrogens, such as 17β-estradiol (E2), can induce feminization when administered during early embryonic development. However, the mechanisms underlying the E2-induced feminization are not fully understood, especially in Neotropical species. Therefore, the aim of this study was to evaluate the effects of E2 administration on the phenotypic sex characteristics, histological assessment of the gonads, and the expression of selected genes in Astyanax altiparanae exposed to dietary E2 prior to gonadal differentiation. At 4 days post-hatch (dph), groups of 30-40 undifferentiated larvae were fed with a diet containing varying amounts of E2 for 28 days, and fish were sampled at 90 dph. Previous studies revealed that ovary formation in A. altiparanae occurred at 58 dph, whereas the first sign of testis formation was found at 73 dph. In relation to the control, E2 exposure increased the proportion of phenotypic females in 120% and 148.4% for 4 and 6 mg E2/Kg, respectively. However, histological analysis revealed that treatments did not affect gonadal sex ratio between males and females, but induced intersex (testis-ova) in the group treated with 6 mg E2/Kg food. Treatment with E2 also altered gonadal transcript levels of a selected number of genes implicated in sexual differentiation. Males overexpressed dmrt1, sox9 and amh following E2 treatment as compared to control. Females showed increased mRNA levels of dmrt1 and sox9, which might be related to the down-regulation of cyp19a1a after E2 exposure. In summary, E2 exposure during early gonadal development affected male secondary characteristics without changing the gonadal sex ratio, and altered expression of genes implicated in sexual differentiation.
Collapse
Affiliation(s)
- A Martinez-Bengochea
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - L Doretto
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - I F Rosa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - M A Oliveira
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - C Silva
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - D M Z A Silva
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - G R Santos
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil; Aquaculture Center (CAUNESP), São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - J S F Santos
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil; Aquaculture Center (CAUNESP), São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - M M Avelar
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil; Aquaculture Center (CAUNESP), São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - L V Silva
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil; Aquaculture Center (CAUNESP), São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - D Lucianelli-Junior
- Laboratório de Morfofisiologia da Faculdade de Medicina da Universidade Federal do Pará, UFPA, Altamira, Pará, Brazil
| | - E R B Souza
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil; Aquaculture Center (CAUNESP), São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - R C Silva
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil; Aquaculture Center (CAUNESP), São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - A B Stewart
- Department of Orthopaedics Musculoskeletal Research, West Virginia University,USA
| | - L S O Nakaghi
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil; Aquaculture Center (CAUNESP), São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - F N Valentin
- Laboratório de Morfofisiologia da Faculdade de Medicina da Universidade Federal do Pará, UFPA, Altamira, Pará, Brazil.
| | - R H Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
28
|
Sakae Y, Oikawa A, Sugiura Y, Mita M, Nakamura S, Nishimura T, Suematsu M, Tanaka M. Starvation causes female-to-male sex reversal through lipid metabolism in the teleost fish, medaka ( Olyzias latipes). Biol Open 2020; 9:9/4/bio050054. [PMID: 32265199 PMCID: PMC7132775 DOI: 10.1242/bio.050054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The teleost fish, medaka (Oryzias latipes), employs the XX/XY genetic sex determination system. We show here that the phenotypic sex of medaka is affected by changes in lipid metabolism. Medaka larvae subjected to 5 days of starvation underwent female-to-male sex reversal. Metabolomic and RT-qPCR analyses indicated that pantothenate metabolism was suppressed by starvation. Consistently, inhibiting the pantothenate metabolic pathway caused sex reversal. The final metabolite in this pathway is coenzyme A, an essential factor for lipogenesis. Inhibiting fatty acid synthesis, the first step of lipogenesis, also caused sex reversal. The expression of dmrt1, a critical gene for male development, was suppressed by starvation, and a dmrt1 (Δ13) mutant did not show sex reversal under starvation. Collectively, these results indicate that fatty acid synthesis is involved in female-to-male sex reversal through ectopic expression of male gene dmrt1 under starvation. Summary: We investigated the effects of starvation on sex differentiation in medaka. Starvation caused female-to-male sex reversal through pantothenate metabolism, fatty acid synthesis and dmrt1 expression.
Collapse
Affiliation(s)
- Yuta Sakae
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.,Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan.,SOKENDAI (The Graduate University for Advanced Studies), Department of Basic Biology, Faculty of Life Science, Okazaki 444-8787, Japan
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, Metabolomics Research Group, Yokohama 230-0045, Japan.,Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Shuhei Nakamura
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka 565-0871, Japan.,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.,Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Toshiya Nishimura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Minoru Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan .,Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan.,SOKENDAI (The Graduate University for Advanced Studies), Department of Basic Biology, Faculty of Life Science, Okazaki 444-8787, Japan
| |
Collapse
|
29
|
Castelli MA, Whiteley SL, Georges A, Holleley CE. Cellular calcium and redox regulation: the mediator of vertebrate environmental sex determination? Biol Rev Camb Philos Soc 2020; 95:680-695. [DOI: 10.1111/brv.12582] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Meghan A. Castelli
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Sarah L. Whiteley
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Arthur Georges
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Clare E. Holleley
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| |
Collapse
|