1
|
Zhu Y, Liu H, Zheng L, Luo Y, Zhou G, Li J, Hou Y, Fu X. Vitrification of Mammalian Oocytes: Recent Studies on Mitochondrial Dysfunction. Biopreserv Biobank 2024; 22:428-440. [PMID: 38227396 DOI: 10.1089/bio.2023.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Vitrification of reproductive cells is definitely essential and integral in animal breeding, as well as in assisted reproduction. However, issues accompanied with this technology such as decreased oocyte competency and relatively low embryo survival rates appear to be a tough conundrum that has long perplexed us. As significant organelles in cell metabolism, mitochondria play pivotal roles in numerous pathways. Nonetheless, extensive evidence has demonstrated that vitrification can seriously impair mitochondrial function in mammalian oocytes. Thus, in this article, we summarize the current progress in oocyte vitrification and particularly outline the common mitochondrial abnormalities alongside subsequent injury cascades seen in mammalian oocytes following vitrification. Based on existing literature, we tentatively come up with the potential mechanisms related to mitochondrial dysfunction and generalize efficacious ways which have been recommended to restore mitochondrial function.
Collapse
Affiliation(s)
- Yixiao Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Hongyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Lv Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yuwen Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
2
|
Jiang M, Zhang GH, Yu Y, Zhao YH, Liu J, Zeng Q, Feng MY, Ye F, Xiong DS, Wang L, Zhang YN, Yu L, Wei JJ, He LB, Zhi W, Du XR, Li NJ, Han CL, Yan HQ, Zhou ZT, Miao YB, Wang W, Liu WX. De novo design of a nanoregulator for the dynamic restoration of ovarian tissue in cryopreservation and transplantation. J Nanobiotechnology 2024; 22:330. [PMID: 38862987 PMCID: PMC11167790 DOI: 10.1186/s12951-024-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.
Collapse
Affiliation(s)
- Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Guo-Hui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Yuan Yu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yu-Hong Zhao
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Meng-Yue Feng
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fei Ye
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Dong-Sheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ya-Nan Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ling Yu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Jia-Jing Wei
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li-Bing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Weiwei Zhi
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Xin-Rong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ning-Jing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chang-Li Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - He-Qiu Yan
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Zhuo-Ting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wen Wang
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wei-Xin Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China.
| |
Collapse
|
3
|
Zandiyeh S, Kalantari H, Fakhri A, Nikkhah M, Janani BJ, Sabbaghian M. A review of recent developments in the application of nanostructures for sperm cryopreservation. Cryobiology 2024; 115:104890. [PMID: 38555012 DOI: 10.1016/j.cryobiol.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
In the 1970s, sperm cryopreservation was presented as a unique route to fertility preservation. The ability to cryopreserve sperm from all species is challenging. The sperm cryopreservation process encompasses various cellular stresses such as increased osmotic pressure, ice crystal formation, and thermal shock, therefore decreasing the quality of sperm. The nanostructures due to their inherent features such as reactivity, high uptake, active surface area, and antioxidant activity, have contributed to modifying freezing protocols. In this review, the current state of the art with regards to emerging applications of nanotechnology in sperm cryopreservation are reviewed, some of the most promising advances are summarized, and the limitations and advantages are comprehensively discussed.
Collapse
Affiliation(s)
- Saeed Zandiyeh
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Hamid Kalantari
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ali Fakhri
- Nanotechnology Laboratory, Nano Smart Science Institute, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran
| | | | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Zhang D, Ji L, Yang Y, Weng J, Ma Y, Liu L, Ma W. Ceria Nanoparticle Systems Alleviate Degenerative Changes in Mouse Postovulatory Aging Oocytes by Reducing Oxidative Stress and Improving Mitochondrial Functions. ACS NANO 2024; 18:13618-13634. [PMID: 38739841 DOI: 10.1021/acsnano.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Postovulatory aging oocytes usually feature diminished potential for fertilization and poor embryonic development due to enhanced oxidative damage to the subcellular organelles and macromolecules, which stands as a formidable obstacle in assisted reproductive technologies (ART). Here, we developed lipoic acid (LA) and polyethylene glycol (PEG)-modified CeO2 nanoparticles (LA-PEG-CeNPs) with biocompatibility, enzyme-like autocatalytic activity, and free radical scavenging capacity. We further investigated the LA-PEG-CeNPs effect in mouse postovulatory oocytes during in vitro aging. The results showed that LA-PEG-CeNPs dramatically reduced the accumulation of ROS in aging oocytes, improving mitochondrial dysfunction; they also down-regulated the pro-apoptotic activity by rectifying cellular caspase-3, cleaved caspase-3, and Bcl-2 levels. Consistently, this nanoenzyme prominently alleviated the proportion of abnormalities in spindle structure, chromosome alignment, microtubule stability, and filamentous actin (F-actin) distribution in aging oocytes, furthermore decreased oocyte fragmentation, and improved its ability of fertilization and development to blastocyst. Taken together, our finding suggests that LA-PEG-CeNPs can alleviate oxidative stress damage on oocyte quality during postovulatory aging, implying their potential value for clinical practice in assisted reproduction.
Collapse
Affiliation(s)
- Danmei Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Lingcun Ji
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yiran Yang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yanmin Ma
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Lingyan Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
5
|
García‐Vázquez FA, Garrappa G, Luongo C, Hamze JG, Caballero M, Marco‐Jiménez F, Vicente Antón JS, Molina‐Cuberos GJ, Jiménez‐Movilla M. Magnetic-Assisted Control of Eggs and Embryos via Zona Pellucida-Linked Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306901. [PMID: 38447155 PMCID: PMC11095233 DOI: 10.1002/advs.202306901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Eggs and embryo manipulation is an important biotechnological challenge to enable positioning, entrapment, and selection of reproductive cells to advance into a new era of nature-like assisted reproductive technologies. Oviductin (OVGP1) is an abundant protein in the oviduct that binds reversibly to the zona pellucida, an extracellular matrix that surrounds eggs and embryos. Here, the study reports a new method coupling OVGP1 to magnetic nanoparticles (NP) forming a complex (NPOv). NPOv specifically surrounds eggs and embryos in a reversible manner. Eggs/embryos bound to NPOv can be moved or retained when subjected to a magnetic force, and interestingly only mature-competent eggs are attracted. This procedure is compatible with normal development following gametes function, in vitro fertilization, embryo development and resulting in the birth of healthy offspring. The results provide in vitro proof-of-concept that eggs and embryos can be precisely guided in the absence of physical contact by the use of magnets.
Collapse
Affiliation(s)
- Francisco Alberto García‐Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB‐Arrixaca)Murcia30120Spain
| | - Gabriela Garrappa
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
- Insitituto Nacional de Tecnología Agropecuaria (INTA)RafaelaSanta Fe2300Argentina
| | - Chiara Luongo
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
| | - Julieta Gabriela Hamze
- Instituto Murciano de Investigación Biosanitaria (IMIB‐Arrixaca)Murcia30120Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
| | - María Caballero
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
| | - Francisco Marco‐Jiménez
- Instituto de Ciencia y Tecnología AnimalUniversitat Politècnica de ValènciaValencia46022Spain
| | | | - Gregorio J. Molina‐Cuberos
- Departamento de Electromagnetismo y Electrónica, Facultad de QuímicaUniversidad de MurciaMurcia30100Spain
| | - María Jiménez‐Movilla
- Instituto Murciano de Investigación Biosanitaria (IMIB‐Arrixaca)Murcia30120Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
| |
Collapse
|
6
|
Ngcobo JN, Nedambale TL, Sithole SM, Mtileni B, Mpofu TJ, Ramukhithi FV, Chokoe TC, Nephawe KA. A systematic review on the prospects of X- and Y-sexed semen in ruminant livestock: implications for conservation, a South African perspective. Front Vet Sci 2024; 11:1384768. [PMID: 38655533 PMCID: PMC11037082 DOI: 10.3389/fvets.2024.1384768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024] Open
Abstract
South Africa is home to numerous indigenous and locally developed sheep (Nguni Pedi, Zulu, and Namaqua Afrikaner, Afrino, Africander, Bezuidenhout Africander, Damara, Dorper, Döhne Merino, Meat Master, South African Merino, South African Mutton Merino, Van Rooy, and Dorper), goat (SA veld, Tankwa, Imbuzi, Bantu, Boer, and Savanna) and cattle (Afrigus, Afrikaner, Bolowana, Bonsmara, Bovelder, Drakensberger, South African Angus, South African Dairy Swiss, South African Friesland, South African Red, and Veld Master) animals. These breeds require less veterinary service, feed, management efforts, provide income to rural and or poor owners. However, most of them are under extinction risks and some with unknown status hence, require immediate conservation intervention. To allow faster genetic progress on the endangered animals, it is important to generate productive animals while reducing wastages and this can be achieved through sex-sorted semen. Therefore, this systematic review is aimed to evaluate the prospects of X and Y-sexed semen in ruminant livestock and some solutions that can be used to address poor sex-sorted semen and its fertility. This review was incorporated through gathering and assessing relevant articles and through the data from the DAD-IS database. The keywords that were used to search articles online were pre-gender selection, indigenous ecotypes, fertility, flow cytometry, artificial insemination, conservation, and improving sexed semen. Following a careful review of all articles, PRISMA guidelines were used to find the articles that are suitable to address the aim of this review. Sex-sorted semen is a recently introduced technology gaining more attention from researchers particularly, in the conservation programs. Preselection of semen based on the sex chromosomes (X- and or Y-bearing chromosomes) is of paramount importance to obtain desired sex of the offspring and avoid animal wastage as much as possible. However, diverse factors can affect quality of semen of different animal species especially after sex-sorting. Flow cytometry is a common method used to select male and female sperm cells and discard dead and abnormal sperm cells during the process. Thus, sperm sexing is a good advanced reproductive technology (ART) however, it is associated with the production of oxidative stress (OS) and DNA fragmentation (SDF). These findings, therefore, necessitates more innovation studies to come up with a sexing technology that will protect sperm cell injuries during sorting in frozen-thawed.
Collapse
Affiliation(s)
| | | | - Sindisiwe Mbali Sithole
- Germplasm, Conservation, Reproductive Biotechnologies, Agricultural Research Council, Pretoria, South Africa
| | - Bohani Mtileni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Takalani Judas Mpofu
- Department of Animal Sciences, Tshwane University of Technology, Pretoria, South Africa
| | | | - Tlou Caswel Chokoe
- Department of Agriculture, Land Reform, and Rural Development, Directorate Farm Animal Genetic Resource, Pretoria, South Africa
| | | |
Collapse
|
7
|
Elshamy AA, Kotram LE, Barakat OS, Mahmoud SM. The effects of green synthesized anionic cupric oxide nanoparticles on Zaraibi goat spermatozoa during cryopreservation with and without removal of seminal plasma. Anim Biotechnol 2023; 34:2582-2595. [PMID: 35930359 DOI: 10.1080/10495398.2022.2106992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Sperm motility, normal morphology, viability, spermatozoa DNA damage, and lipid peroxidation are all affected by semen cryopreservation. The goal of this study was to see how effective cupric oxide nanoparticles (CuONPs) are as a cryo-extender additive on post-thawed sperm parameters. An artificial vagina was used to collect semen samples from five mature Zaraibi bucks (2-3 years). Ejaculates were pooled and separated into two fractions (A&B), a fraction (A) was left without being centrifuged and a fraction (B) was centrifuged to remove seminal plasma. Both fractions were diluted with tris egg yolk citrate extender (TECE) and then divided into five equal aliquots, each supplemented with (0, 10, 20, 40, and 60 ppm/ml) CuONPs. The findings revealed that removing seminal plasma before cryopreservation harms sperm parameters. Sperm motility, viability index, membrane integrity, biochemical antioxidant marker, DNA integrity, and MDA level improved after supplementation with CuONPs up to 60 ppm/ml, the most prominent significant positive effect was obtained with the highest dose (60 ppm/ml) without removal of the seminal plasm compared to control group. In conclusion: The presence of seminal plasma with a high concentration of CuONPs (up to 60 ppm/ml) may help to mitigate the negative effects of cryo-preservation.
Collapse
Affiliation(s)
- Ayat A Elshamy
- Artificial Insemination and Embryo Transfer Department, Animal Reproduction Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Laila E Kotram
- Immunity Department, Animal Reproduction Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Olfat Sayed Barakat
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Sara Mohamed Mahmoud
- Biotechnology Department, Faculty of Graduate Studies and Environmental Researches, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Barroso PAA, Nascimento DR, Lima Neto MFD, De Assis EIT, Figueira CS, Silva JRV. Therapeutic potential of nanotechnology in reproduction disorders and possible limitations. ZYGOTE 2023; 31:433-440. [PMID: 37537957 DOI: 10.1017/s0967199423000424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
One of the prominent peculiarities of nanoparticles (NPs) is their ability to cross biological barriers. Therefore, the development of NPs with different properties has great therapeutic potential in the area of reproduction because the association of drugs, hormones and other compounds with NPs represents an alternative for delivering substances directly at a specific site and for treatment of reproductive problems. Additionally, lipid-based NPs can be taken up by the tissues of patients with ovarian failure, deep endometriosis, testicular dysfunctions, etc., opening up new perspectives for the treatment of these diseases. The development of nanomaterials with specific size, shape, ligand density and charge certainly will contribute to the next generation of therapies to solve fertility problems in humans. Therefore, this review discusses the potential of NPs to treat reproductive disorders, as well as to regulate the levels of the associated hormones. The possible limitations of the clinical use of NPs are also highlighted.
Collapse
Affiliation(s)
- Pedro Alves Aguiar Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Danisvânia Ripardo Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Miguel F De Lima Neto
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
- Research Center of Animal Experimentation (NUPEX), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Ernando Igo T De Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
- Research Center of Animal Experimentation (NUPEX), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Ciro Siqueira Figueira
- Laboratory of Material Engineering and Simulation of Sobral (LEMSS), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| |
Collapse
|
9
|
Esmeryan KD, Rangelov I, Chaushev TA. Manipulated sperm motility via soot nanoparticles-induced biochemical alterations in human seminal plasma. Reprod Biol 2023; 23:100793. [PMID: 37598623 DOI: 10.1016/j.repbio.2023.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/22/2023] [Indexed: 08/22/2023]
Abstract
Obtaining spermatozoa with progressive motility, via postejaculatory activation with pharmacological agents such as theophylline and pentoxifylline, is crucial for the success rate of assisted reproduction in couples with severe male factor infertility. Regrettably, the possibility of premature acrosome reactions and impared oocyte function questions the practical applicability of phosphodiesterase inhibitors. The rapid development of nanotechnologies promotes the use of hydrophobic rapeseed oil soot as a non-cytotoxic biomaterial for sperm motility activation, but the scarcity of knowledge regarding the interactions of soot with components from the seminal plasma hinders the eventual commercialization of this cutting-edge approach. Aiming to eliminate this shortcoming, the current study shows for the first time how the soot nanomaterials alter the biochemistry of human seminal plasma. Upon 270 min incubation with soot nanoparticles, the activity of AST, ALT, CK, LDH and GGT enzymes in the seminal plasma of ten patients changes inversely to the registered sperm motility (i.e., lower enzyme activity, higher sperm motility and vice versa). This phenomenon is primarily related to termination of the enzymes-substrate binding or extraction of enzymes from the gametes via chemical bonding with the soot. These novel mechanisms depend on the physicochemical features of used carbon nanomaterials, revealing opportunities for predictable tuning of the sperm reproductive potential.
Collapse
Affiliation(s)
- Karekin D Esmeryan
- Acoustoelectronics Laboratory, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72, Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria.
| | - Ivaylo Rangelov
- Research Department, Medical Center Neovitro OOD, 20, Petko Y. Todorov Blvd., 1408 Sofia, Bulgaria
| | - Todor A Chaushev
- Research Department, Medical Center Neovitro OOD, 20, Petko Y. Todorov Blvd., 1408 Sofia, Bulgaria
| |
Collapse
|
10
|
Baniasadi F, Hajiaghalou S, Shahverdi A, Ghalamboran MR, Pirhajati V, Fathi R. The Beneficial Effects of Static Magnetic Field and Iron Oxide Nanoparticles on the Vitrification of Mature Mice Oocytes. Reprod Sci 2022:10.1007/s43032-022-01144-1. [PMID: 36562985 DOI: 10.1007/s43032-022-01144-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022]
Abstract
This study was conducted to evaluate the effects of static magnetic field (SMF) and nanoparticles (NPs) on the vitrification of cumulus-oocyte-complex (COC). To this end, the non-vitrified (nVit) and vitrified groups (Vit) that contain NPs, with or without SMF were labeled nVit_NPs, nVit_NPs_SMF, Vit_NPs, and Vit_NPs_SMF, respectively. The non-toxic dosages of NPs were first determined to be 0.008% w/v. The survival, apoptosis, and necrosis, mitochondrial activity, fertilization rate, subsequent-derived embryo development, and gene expressions were examined. The viability rates obtained by trypan blue and Anx-PI staining were meaningfully smaller in the Vit groups, compared to the nVit groups. The JC1 red/green signal ratios were reduced considerably in the Vit group, compared to the nVit. Transmission electron microscopy (TEM) was performed to assess the entry of the NPs into the oocytes. TEM images showed that NPs were present in nVit_NPs, and Vit_NPs. Thereafter, the effects of NPs and SMF on in vitro fertilization (IVF) were examined. The difference in blastocyst rates between nVit and Vit_NPs_SMF groups was significant. Finally, Nanog, Cdx2, Oct4, and Sox2 genes were evaluated. There were substantial differences in Cdx2 gene expressions between the Vit_NPs and nVit groups. The expression of Nanog in Vit was significantly higher than those of the Vit_NPs, Vit_NPs_SMF, and nVit groups. The data presented here provide deeper insight into the application of iron oxide nanoparticles in COC vitrification. It appears that using SMF and supplemented CPA by NPs inhibits cryoinjury and promote the embryo development capacity of vitrified-warmed COCs.
Collapse
Affiliation(s)
- F Baniasadi
- Department of Embryology, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - S Hajiaghalou
- Department of Embryology, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - A Shahverdi
- Department of Embryology, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - M R Ghalamboran
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - V Pirhajati
- Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - R Fathi
- Department of Embryology, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Can nanomaterials support the diagnosis and treatment of human infertility? A preliminary review. Life Sci 2022; 299:120539. [PMID: 35390438 DOI: 10.1016/j.lfs.2022.120539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 12/15/2022]
Abstract
Human infertilities are disorders that afflict many people all over the world. Both male and female reproductive systems must work together in a precise and coordinated manner and infertility has a wide range of problems for this system. Recent advances in nanomedicine immensely helped design the diagnostic and therapeutic approaches to alleviate human infertility in both sexes. Nanoscience has recently been used by researchers to increase the detection limit of infertility-related biomarkers via fabricating sensitive nanobiosensors for detecting follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-müllerian hormone (AMH), pregnancy-associated plasma protein-A (PAPP-A), progesterone, and testosterone. At the same time, a variety of nanostructures, including magnetic nanoparticles (i.e., zinc nanoparticles, cerium nanoparticles, gold nanoparticles, silver nanoparticles), nano-vitamins, extracellular vesicles, and spermbots, have shown promising outcomes in the treatment of human infertilities. Despite recent advancements, some nanostructures might have toxic effects on cells, especially germ cells, and must be optimized with the right ingredients, such as antioxidants, nutrients, and vitamins, to obtain the right strategy to treat and detect human infertilities. This review presents recent developments in nanotechnology regarding impairments still faced by human infertility. New perspectives for further use of nanotechnology in reproductive medicine studies are also discussed. In conclusion, nanotechnology, as a tool for reproductive medicine, has been considered to help overcome current impairments.
Collapse
|
12
|
The effect of gold nanoparticles synthesized with Achillea biebersteinii on gene expression in Cultured preantral Follicles derived from NMRI mice ovary. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|