1
|
Davenport BN, Wilson RL, Williams AA, Jones HN. Placental nanoparticle-mediated IGF1 gene therapy corrects fetal growth restriction in a guinea pig model. Gene Ther 2024:10.1038/s41434-024-00508-3. [PMID: 39627510 DOI: 10.1038/s41434-024-00508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Fetal growth restriction (FGR) caused by placental insufficiency is a major contributor to neonatal morbidity and mortality. There is currently no in utero treatment for placental insufficiency or FGR. The placenta serves as the vital communication, supply, exchange, and defense organ for the developing fetus and offers an excellent opportunity for therapeutic interventions. Here we show efficacy of repeated treatments of trophoblast-specific human insulin-like 1 growth factor (IGF1) gene therapy delivered in a non-viral, polymer nanoparticle to the placenta for the treatment of FGR. Using a guinea pig maternal nutrient restriction model (70% food intake) of FGR, nanoparticle-mediated IGF1 treatment was delivered to the placenta via ultrasound guidance across the second half of pregnancy, after establishment of FGR. This treatment resulted in correction of fetal weight in MNR + IGF1 animals compared to sham treated controls on an ad libitum diet, increased fetal blood glucose and decreased fetal blood cortisol levels compared to sham treated MNR, and showed no negative maternal side-effects. Overall, we show a therapy capable of positively impacting the entire pregnancy environment: maternal, placental, and fetal. This combined with our previous studies using this therapy at mid pregnancy in the guinea pig and in two different mouse model and three different human in vitro/ex vivo models, demonstrate the plausibility of this therapy for future human translation. Our overall goal is to improve health outcomes of neonates and decrease numerous morbidities associated with the developmental origins of disease.
Collapse
Affiliation(s)
- Baylea N Davenport
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rebecca L Wilson
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Alyssa A Williams
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Wilson RL, Schmidt JK, Davenport BN, Ren E, Keding LT, Shaw SA, Schotzko ML, Antony KM, Simmons HA, Golos TG, Jones HN. Placental gene therapy in nonhuman primates: a pilot study of maternal, placental, and fetal response to non-viral, polymeric nanoparticle delivery of IGF1. Mol Hum Reprod 2024; 30:gaae038. [PMID: 39499161 PMCID: PMC11562130 DOI: 10.1093/molehr/gaae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Currently, there are no placenta-targeted treatments to alter the in utero environment for administration to pregnant women who receive a diagnosis of fetal growth restriction (FGR). Water-soluble polymers have a distinguished record of clinical relevance outside of pregnancy. We have demonstrated the effective delivery of polymer-based nanoparticles containing a non-viral human insulin-like growth factor 1 (IGF1) transgene to correct placental insufficiency in small animal models of FGR. Our goals were to extend these studies to a proof-of-concept study in the pregnant macaque, establish feasibility of nanoparticle-mediated gene therapy delivery to trophoblasts, and investigate the acute maternal, placental, and fetal responses to treatment. Pregnant macaques underwent ultrasound-guided intraplacental injections of nanoparticles (GFP- or IGF1-expressing plasmid under the control of the trophoblast-specific PLAC1 promoter complexed with a HPMA-DMEAMA co-polymer) at approximately gestational day 100 (term = 165 days). Fetectomy was performed 24 h (GFP; n = 1), 48 h (IGF1; n = 3) or 10 days (IGF1; n = 3) after nanoparticle delivery. Routine pathological assessment was performed on biopsied maternal tissues and placental and fetal tissues. Maternal blood was analyzed for complete blood count (CBC), immunomodulatory proteins and growth factors, progesterone (P4), and estradiol (E2). Placental ERK/AKT/mTOR signaling was assessed using Western blot and qPCR. Fluorescent microscopy and in situ hybridization confirmed placental uptake and transient transgene expression in villous syncytiotrophoblast. No off-target expression was observed in either maternal or fetal tissues. Histopathological assessment of the placenta recorded observations not necessarily related to the IGF1 nanoparticle treatment. In maternal blood, CBCs, P4, and E2 remained within the normal range for pregnant macaques across the treatment period. Changes to placental ERK and AKT signaling at 48 h and 10 days after IGF1 nanoparticle treatment indicated an upregulation in placental homeostatic mechanisms to prevent overactivity in the normal pregnancy environment. The lack of adverse maternal reaction to nanoparticle-mediated IGF1 treatment, combined with changes in placental signaling to maintain homeostasis, indicates no deleterious impact of treatment during the acute phase of study.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Research in Perinatal Outcomes, University of Florida, Gainesville, FL, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Baylea N Davenport
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Research in Perinatal Outcomes, University of Florida, Gainesville, FL, USA
| | - Emily Ren
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Sarah A Shaw
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Michele L Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Kathleen M Antony
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Helen N Jones
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Research in Perinatal Outcomes, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Deepak V, El-Balawi L, Harris LK. Placental Drug Delivery to Treat Pre-Eclampsia and Fetal Growth Restriction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311165. [PMID: 38745536 DOI: 10.1002/smll.202311165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Pre-eclampsia and fetal growth restriction (FGR) continue to cause unacceptably high levels of morbidity and mortality, despite significant pharmaceutical and technological advances in other disease areas. The recent pandemic has also impacted obstetric care, as COVID-19 infection increases the risk of poor pregnancy outcomes. This review explores the reasons why it lacks effective drug treatments for the placental dysfunction that underlies many common obstetric conditions and describes how nanomedicines and targeted drug delivery approaches may provide the solution to the current drug drought. The ever-increasing range of biocompatible nanoparticle formulations available is now making it possible to selectively deliver drugs to uterine and placental tissues and dramatically limit fetal drug transfer. Formulations that are refractory to placental uptake offer the possibility of retaining drugs within the maternal circulation, allowing pregnant individuals to take medicines previously considered too harmful to the developing baby. Liposomes, ionizable lipid nanoparticles, polymeric nanoparticles, and adenoviral vectors have all been used to create efficacious drug delivery systems for use in pregnancy, although each approach offers distinct advantages and limitations. It is imperative that recent advances continue to be built upon and that there is an overdue investment of intellectual and financial capital in this field.
Collapse
Affiliation(s)
- Venkataraman Deepak
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9WL, UK
- St Mary's Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Lujain El-Balawi
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9WL, UK
- St Mary's Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
4
|
Geisler HC, Safford HC, Mitchell MJ. Rational Design of Nanomedicine for Placental Disorders: Birthing a New Era in Women's Reproductive Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300852. [PMID: 37191231 PMCID: PMC10651803 DOI: 10.1002/smll.202300852] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/16/2023] [Indexed: 05/17/2023]
Abstract
The placenta is a transient organ that forms during pregnancy and acts as a biological barrier, mediating exchange between maternal and fetal circulation. Placental disorders, such as preeclampsia, fetal growth restriction, placenta accreta spectrum, and gestational trophoblastic disease, originate in dysfunctional placental development during pregnancy and can lead to severe complications for both the mother and fetus. Unfortunately, treatment options for these disorders are severely lacking. Challenges in designing therapeutics for use during pregnancy involve selectively delivering payloads to the placenta while protecting the fetus from potential toxic side effects. Nanomedicine holds great promise in overcoming these barriers; the versatile and modular nature of nanocarriers, including prolonged circulation times, intracellular delivery, and organ-specific targeting, can control how therapeutics interact with the placenta. In this review, nanomedicine strategies are discussed to treat and diagnose placental disorders with an emphasis on understanding the unique pathophysiology behind each of these diseases. Finally, prior study of the pathophysiologic mechanisms underlying these placental disorders has revealed novel disease targets. These targets are highlighted here to motivate the rational design of precision nanocarriers to improve therapeutic options for placental disorders.
Collapse
Affiliation(s)
- Hannah C. Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Hannah C. Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19014, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
5
|
Davenport B, Wilson R, Williams A, Jones H. Placental Nanoparticle-mediated IGF1 Gene Therapy Corrects Fetal Growth Restriction in a Guinea Pig Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.587765. [PMID: 38645174 PMCID: PMC11030242 DOI: 10.1101/2024.04.05.587765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Fetal growth restriction (FGR) caused by placental insufficiency is a major contributor to neonatal morbidity and mortality. There is currently no in utero treatment for placental insufficiency or FGR. The placenta serves as the vital communication, supply, exchange, and defense organ for the developing fetus and offers an excellent opportunity for therapeutic interventions. Here we show efficacy of repeated treatments of trophoblast-specific human insulin-like 1 growth factor (IGF1) gene therapy delivered in a non-viral, polymer nanoparticle to the placenta for the treatment of FGR. Using a guinea pig maternal nutrient restriction model (70% food intake) of FGR, nanoparticle-mediated IGF1 treatment was delivered to the placenta via ultrasound guidance across the second half of pregnancy, after establishment of FGR. This treatment resulted in correction of fetal weight in MNR + IGF1 animals compared to sham treated controls on an ad libitum diet, increased fetal blood glucose and decreased fetal blood cortisol levels compared to sham treated MNR, and showed no negative maternal side-effects. Overall, we show a therapy capable of positively impacting the entire pregnancy environment: maternal, placental, and fetal. This combined with our previous studies using this therapy at mid pregnancy in the guinea pig and in two different mouse model and three different human in vitro/ex vivo models, demonstrate the plausibility of this therapy for future human translation. Our overall goal is to improve health outcomes of neonates and decrease numerous morbidities associated with the developmental origins of disease.
Collapse
|
6
|
Schmidt JK, Wilson RL, Davenport BN, Hacker TA, Fitz C, Simmons HA, Schotzko ML, Golos TG, Jones HN. Nanoparticle-mediated delivery of placental gene therapy via uterine artery catheterization in a pregnant rhesus macaque. Placenta 2024:S0143-4004(24)00656-8. [PMID: 39362807 DOI: 10.1016/j.placenta.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Nanoparticles offer promise as a mechanism to non-invasively deliver targeted placental therapeutics. Our previous studies utilizing intraplacental administration demonstrate efficient nanoparticle uptake into placental trophoblast cells and overexpression of human IGF1 (hIGF1). Nanoparticle-mediated placental overexpression of hIGF1 in small animal models of placental insufficiency and fetal growth restriction improved nutrient transport and restored fetal growth. The objective of this pilot study was to extend these studies to the pregnant nonhuman primate and develop a method for local delivery of nanoparticles to the placenta via maternal blood flow from the uterine artery. Nanoparticles containing hIGF1 plasmid driven by the placenta-specific PLAC1 promoter were delivered to a mid-gestation pregnant rhesus macaque via a catheterization approach that is clinically used for uterine artery embolization. Maternal-fetal interface, fetal and maternal tissues were collected four days post-treatment to evaluate the efficacy of hIGF1 treatment in the placenta. The uterine artery catheterization procedure and nanoparticle treatment was well tolerated by the dam and fetus through the four-day study period following catheterization. Nanoparticles were taken up by the placenta from maternal blood as plasmid-specific hIGF1 expression was detected in multiple regions of the placenta via in situ hybridization and qPCR. The uterine artery catheterization approach enabled successful delivery of nanoparticles to maternal circulation in close proximity to the placenta with no concerns to maternal or fetal health in this short-term feasibility study. In the future, this delivery approach can be used for preclinical evaluation of the long-term safety and efficacy of nanoparticle-mediated placental therapies in a rhesus macaque model.
Collapse
Affiliation(s)
- Jenna K Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Rebecca L Wilson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Baylea N Davenport
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Timothy A Hacker
- Model Organisms Research Core, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Casey Fitz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Michele L Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Helen N Jones
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Cui J, Yang Z, Ma R, He W, Tao H, Li Y, Zhao Y. Placenta-targeted Treatment Strategies for Preeclampsia and Fetal Growth Restriction: An Opportunity and Major Challenge. Stem Cell Rev Rep 2024; 20:1501-1511. [PMID: 38814409 PMCID: PMC11319408 DOI: 10.1007/s12015-024-10739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
The placenta plays a crucial role in maintaining normal pregnancy. The failure of spiral artery remodeling (SAR) is a key factor leading to placental ischemia and poor perfusion which is strongly associated with obstetric diseases, including preeclampsia (PE) and fetal growth restriction (FGR). Existing interventions for PE and FGR are limited and termination of pregnancy is inevitable when the maternal or fetus condition deteriorates. Considering the safety of the mother and fetus, treatments that may penetrate the placental barrier and harm the fetus are not accepted. Developing targeted treatment strategies for these conditions is urgent and necessary. With the proven efficacy of targeted therapy in treating conditions such as endometrial cancer and trophoblastic tumors, research on placental dysfunction continues to deepen. This article reviews the studies on placenta-targeted treatment and drug delivery strategies, summarizes the characteristics proposes corresponding improvement measures in targeted treatment, provides solutions for existing problems, and makes suggestions for future studies.
Collapse
Affiliation(s)
- Jianjian Cui
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zejun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ruilin Ma
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Wencong He
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ya'nan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
8
|
Shimada H, Powell TL, Jansson T. Regulation of placental amino acid transport in health and disease. Acta Physiol (Oxf) 2024; 240:e14157. [PMID: 38711335 PMCID: PMC11162343 DOI: 10.1111/apha.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Abnormal fetal growth, i.e., intrauterine growth restriction (IUGR) or fetal growth restriction (FGR) and fetal overgrowth, is associated with increased perinatal morbidity and mortality and is strongly linked to the development of metabolic and cardiovascular disease in childhood and later in life. Emerging evidence suggests that changes in placental amino acid transport may contribute to abnormal fetal growth. This review is focused on amino acid transport in the human placenta, however, relevant animal models will be discussed to add mechanistic insights. At least 25 distinct amino acid transporters with different characteristics and substrate preferences have been identified in the human placenta. Of these, System A, transporting neutral nonessential amino acids, and System L, mediating the transport of essential amino acids, have been studied in some detail. Importantly, decreased placental Systems A and L transporter activity is strongly associated with IUGR and increased placental activity of these two amino acid transporters has been linked to fetal overgrowth in human pregnancy. An array of factors in the maternal circulation, including insulin, IGF-1, and adiponectin, and placental signaling pathways such as mTOR, have been identified as key regulators of placental Systems A and L. Studies using trophoblast-specific gene targeting in mice have provided compelling evidence that changes in placental Systems A and L are mechanistically linked to altered fetal growth. It is possible that targeting specific placental amino acid transporters or their upstream regulators represents a novel intervention to alleviate the short- and long-term consequences of abnormal fetal growth in the future.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Departments of Obstetrics & Gynecology, Sapporo Medical University, Sapporo, Japan
| | - Theresa L Powell
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| | - Thomas Jansson
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| |
Collapse
|
9
|
Wilson RL, Davenport BN, Jones HN. Mid-pregnancy placental transcriptome in a model of placental insufficiency with and without novel intervention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597621. [PMID: 38895312 PMCID: PMC11185618 DOI: 10.1101/2024.06.05.597621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Fetal growth restriction (FGR) affects between 5-10% of all live births. Placental insufficiency is a leading cause of FGR, resulting in reduced nutrient and oxygen delivery to the fetus. Currently, there are no effective in utero treatment options for FGR, or placental insufficiency. We have developed a gene therapy to deliver, via a non-viral nanoparticle, human insulin-like 1 growth factor ( hIGF1 ) to the placenta as potential treatment of placenta insufficiency and FGR. Using a guinea pig maternal nutrient restriction (MNR) model of FGR, we aimed to understand the transcriptional changes within the placenta associated with placental insufficiency that occur prior to/at initiation of FGR, and the impact of short-term hIGF1 nanoparticle treatment. Using RNAsequencing, we analyzed protein coding genes of three experimental groups: Control and MNR dams receiving a sham treatment, and MNR dams receiving hIGF1 nanoparticle treatment. Pathway enrichment analysis comparing differentially expressed genelists in sham-treated MNR placentas to Control revealed upregulation of pathways associated with degradation and repair of genetic information and downregulation of pathways associated with transmembrane transport. When compared to sham-treated MNR placentas, MNR + hIGF1 placentas demonstrated changes to genelists associated with transmembrane transporter activity including ion, vitamin and solute carrier transport. Overall, this study identifies the key signaling and metabolic changes occurring in the placenta contributing to placental insufficiency prior to/at initiation of FGR, and increases our understanding of the pathways that our nanoparticle-mediated gene therapy intervention regulates. Statements and Declarations Competing Interests: Authors declare no conflicts of interest.
Collapse
|
10
|
Jones HN, Davenport BN, Wilson RL. Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597595. [PMID: 38895421 PMCID: PMC11185673 DOI: 10.1101/2024.06.05.597595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The etiology of fetal growth restriction (FGR) is multifactorial, although many cases often involve placental insufficiency. Placental insufficiency is associated with inadequate trophoblast invasion resulting in high resistance to blood flow, decreased availability of nutrients, and increased hypoxia. We have developed a non-viral, polymer-based nanoparticle that facilitates delivery and transient gene expression of human insulin-like 1 growth factor ( hIGF1 ) in placental trophoblast for the treatment of placenta insufficiency and FGR. Using the established guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, the aim of the study was to identify novel pathways in the sub-placenta/decidua that provide insight into the underlying mechanism driving placental insufficiency, and may be corrected with hIGF1 nanoparticle treatment. Pregnant guinea pigs underwent ultrasound-guided sham or hIGF1 nanoparticle treatment at mid-pregnancy, and sub-placenta/decidua tissue was collected 5 days later. Transcriptome analysis was performed using RNA Sequencing on the Illumina platform. The MNR sub-placenta/decidua demonstrated fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion and downregulation of genelists involved in the regulation of cell migration. hIGF1 nanoparticle treatment resulted in marked changes to transporter activity in the MNR + hIGF1 sub-placenta/decidua when compared to sham MNR. Under normal growth conditions however, hIGF1 nanoparticle treatment decreased genelists enriched for kinase signaling pathways and increased genelists enriched for proteolysis indicative of homeostasis. Overall, this study identified changes to the sub-placenta/decidua transcriptome that likely result in inadequate trophoblast invasion and increases our understanding of pathways that hIGF1 nanoparticle treatment acts on in order to restore or maintain appropriate placenta function.
Collapse
|
11
|
Schmidt JK, Wilson RL, Davenport BN, Hacker TA, Fitz C, Simmons HA, Schotzko ML, Golos TG, Jones HN. Nanoparticle-mediated delivery of placental gene therapy via uterine artery catheterization in a pregnant rhesus macaque. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588902. [PMID: 38645086 PMCID: PMC11030404 DOI: 10.1101/2024.04.10.588902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Nanoparticles offer promise as a mechanism to non-invasively deliver targeted placental therapeutics. Our previous studies utilizing intraplacental administration demonstrate efficient nanoparticle uptake into placental trophoblast cells and overexpression of human IGF1 ( hIGF1 ). Nanoparticle-mediated placental overexpression of hIGF1 in small animal models of placental insufficiency and fetal growth restriction improved nutrient transport and restored fetal growth. The objective of this pilot study was to extend these studies to the pregnant nonhuman primate and develop a method for local delivery of nanoparticles to the placenta via maternal blood flow from the uterine artery. Nanoparticles containing hIGF1 plasmid driven by the placenta-specific PLAC1 promoter were delivered to a mid-gestation pregnant rhesus macaque via a catheterization approach that is clinically used for uterine artery embolization. Maternal-fetal interface, fetal and maternal tissues were collected four days post-treatment to evaluate the efficacy of hIGF1 treatment in the placenta. The uterine artery catheterization procedure and nanoparticle treatment was well tolerated by the dam and fetus through the four-day study period following catheterization. Nanoparticles were taken up by the placenta from maternal blood as plasmid-specific hIGF1 expression was detected in multiple regions of the placenta via in situ hybridization and qPCR. The uterine artery catheterization approach enabled successful delivery of nanoparticles to maternal circulation in close proximity to the placenta with no concerns to maternal or fetal health in this short-term feasibility study. In the future, this delivery approach can be used for preclinical evaluation of the long-term safety and efficacy of nanoparticle-mediated placental therapies in a rhesus macaque model. Highlights Novel method to deliver therapeutics to maternal-fetal interfaceDelivery of nanoparticles to the placenta via maternal catheterization.
Collapse
|
12
|
Wilson RL, Kropp Schmidt J, Davenport BN, Ren E, Keding LT, Shaw SA, Schotzko ML, Antony KM, Simmons HA, Golos TG, Jones HN. Maternal, placental and fetal response to a non-viral, polymeric nanoparticle gene therapy in nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545278. [PMID: 38168281 PMCID: PMC10760006 DOI: 10.1101/2023.06.16.545278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Currently, there are no placenta-targeted treatments to alter the in utero environment. Water-soluble polymers have a distinguished record of clinical relevance outside of pregnancy. We have demonstrated the effective delivery of polymer-based nanoparticles containing a non-viral human insulin-like 1 growth factor ( IGF1 ) transgene to correct placental insufficiency in small animal models of fetal growth restriction (FGR). Our goal was to extend these studies to the pregnant nonhuman primate (NHP) and assess maternal, placental and fetal responses to nanoparticle-mediated IGF1 treatment. Methods Pregnant macaques underwent ultrasound-guided intraplacental injections of nanoparticles ( GFP- or IGF1- expressing plasmid under the control of the trophoblast-specific PLAC1 promoter complexed with a HPMA-DMEAMA co-polymer) at approximately gestational day 100 (term = 165 days). Fetectomy was performed 24 h ( GFP ; n =1), 48 h ( IGF1 ; n = 3) or 10 days ( IGF1 ; n = 3) after nanoparticle delivery. Routine pathological assessment was performed on biopsied maternal tissues, and placental and fetal tissues. Maternal blood was analyzed for complete blood count (CBC), immunomodulatory proteins and growth factors, progesterone (P4) and estradiol (E2). Placental ERK/AKT/mTOR signaling was assessed using western blot and qPCR. Findings Fluorescent microscopy and in situ hybridization confirmed placental uptake and transgene expression in villous syncytiotrophoblast. No off-target expression was observed in maternal and fetal tissues. Histopathological assessment of the placenta recorded observations not necessarily related to the IGF1 nanoparticle treatment. In maternal blood, CBCs, P4 and E2 remained within the normal range for pregnant macaques across the treatment period. Changes to placental ERK and AKT signaling at 48 h and 10 d after IGF1 nanoparticle treatment indicated an upregulation in placental homeostatic mechanisms to prevent over activity in the normal pregnancy environment. Interpretation Maternal toxicity profile analysis and lack of adverse reaction to nanoparticle-mediated IGF1 treatment, combined with changes in placental signaling to maintain homeostasis indicates no deleterious impact of treatment. Funding National Institutes of Health, and Wisconsin National Primate Research Center.
Collapse
|
13
|
Wilson RL, Stephens KK, Jones HN. Placental nanoparticle gene therapy normalizes gene expression changes in the fetal liver associated with fetal growth restriction in a fetal sex-specific manner. J Dev Orig Health Dis 2023; 14:325-332. [PMID: 36794386 PMCID: PMC10947591 DOI: 10.1017/s2040174423000016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Fetal growth restriction (FGR) is associated with increased risk of developing non-communicable diseases. We have a placenta-specific nanoparticle gene therapy protocol that increases placental expression of human insulin-like growth factor 1 (hIGF1), for the treatment of FGR in utero. We aimed to characterize the effects of FGR on hepatic gluconeogenesis pathways during early stages of FGR establishment, and determine whether placental nanoparticle-mediated hIGF1 therapy treatment could resolve differences in the FGR fetus. Female Hartley guinea pigs (dams) were fed either a Control or Maternal Nutrient Restriction (MNR) diet using established protocols. At GD30-33, dams underwent ultrasound guided, transcutaneous, intraplacental injection of hIGF1 nanoparticle or PBS (sham) and were sacrificed 5 days post-injection. Fetal liver tissue was fixed and snap frozen for morphology and gene expression analysis. In female and male fetuses, liver weight as a percentage of body weight was reduced by MNR, and not changed with hIGF1 nanoparticle treatment. In female fetal livers, expression of hypoxia inducible factor 1 (Hif1α) and tumor necrosis factor (Tnfα) were increased in MNR compared to Control, but reduced in MNR + hIGF1 compared to MNR. In male fetal liver, MNR increased expression of Igf1 and decreased expression of Igf2 compared to Control. Igf1 and Igf2 expression was restored to Control levels in the MNR + hIGF1 group. This data provides further insight into the sex-specific mechanistic adaptations seen in FGR fetuses and demonstrates that disruption to fetal developmental mechanisms may be returned to normal by treatment of the placenta.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida 32610, USA
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - Kendal K Stephens
- Department of Obstetrics and Gynecology, University of Cincinnati, Cincinnati, Ohio, 45229, USA
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida 32610, USA
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
14
|
Davenport BN, Jones HN, Wilson RL. Placental treatment with insulin-like growth factor 1 via nanoparticle differentially impacts vascular remodeling factors in guinea pig sub-placenta/decidua. Front Physiol 2023; 13:1055234. [PMID: 36685211 PMCID: PMC9845775 DOI: 10.3389/fphys.2022.1055234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Clinically, fetal growth restriction (FGR) is only detectable in later gestation, despite pathophysiological establishment likely earlier in pregnancy. Additionally, there are no effective in utero treatment options for FGR. We have developed a nanoparticle to deliver human insulin-like 1 growth factor (hIGF-1) in a trophoblast-specific manner which results in increased expression of hIGF-1. IGF-1 signaling in the placenta regulates multiple developmental processes including trophoblast invasion and maternal vascular remodeling, both of which can be diminished in the FGR placenta. We aimed to determine the effects of short-term hIGF-1 nanoparticle treatment on sub-placenta/decidua trophoblast signaling mechanisms in FGR and under normal growth conditions. Using the guinea pig maternal nutrient restriction (MNR) model of FGR, ultrasound-guided, intra-placenta injections of hIGF-1 nanoparticle were performed at gestational day 30-33, and dams sacrificed 5 days later. Sub-placenta/decidua tissue was separated from placenta for further analyses. Western blot was used to analyze protein expression of ERK/AKT/mTOR signaling proteins (phospho-Erk (pERK), phospho-Akt (pAKT), raptor, rictor and deptor). qPCR was used to analyze gene expression of vascular/remodeling factors [vascular endothelial growth factor (Vegf), placenta growth factor (Pgf), platelet-derived growth factor (Pdgf)) and tight junction/adhesion proteins (claudin 5 (Cldn5), p-glycoprotein (Abcb1), occludin (Ocln) and tight junction protein 1 (Zo1)]. MNR reduced expression of pERK, PdgfB and Cldn5, and increased expression of Ocln and Zo1 in the sub-placenta/decidua. In MNR + hIGF1 nanoparticle sub-placenta/decidua, expression of PdgfB, Ocln and Zo1 was normalized, whilst pAkt, VegfB, Vegf receptor 1 and PdgfB receptor were increased compared to MNR. In contrast, hIGF-1 nanoparticle treatment of normal placentas reduced expression of pERK, raptor and increased expression of the mTOR inhibitor deptor. This was associated with reduced expression of VegfA, Plgf, and PdgfB. Here we have shown that the impact of hIGF-1 nanoparticle treatment is dependent on pregnancy environment. Under MNR/FGR, hIGF-1 nanoparticle treatment triggers increased expression of growth factors and normalization of EMT factors. However, under normal conditions, the response of the placenta is to decrease AKT/mTOR signaling and growth factor expression to achieve homeostasis.
Collapse
Affiliation(s)
- Baylea N. Davenport
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, United States
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, United States
| | - Helen N. Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, United States
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rebecca L. Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, United States
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|