1
|
Esmaeili A, Esmaeili V, Shahverdi A, Eslaminejad MB. Engineered extracellular vesicles: a breakthrough approach to overcoming sperm cryopreservation challenges. Reprod Biol Endocrinol 2025; 23:75. [PMID: 40399922 PMCID: PMC12093887 DOI: 10.1186/s12958-025-01407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025] Open
Abstract
Freezing sperm for artificial insemination (AI) has been common for decades, but this method causes damage to sperm, which affects its viability and fertility. Various strategies have been used to treat sperm cryopreservation complications, but their results are still not satisfactory. The latest approach in this field is using extracellular vesicles (EVs). The role of EVs in reproduction, such as spermatogenesis, sperm capacitation, and fertility has been proven. EVs can deliver proteins, lipids, nucleic acids, and other molecules to the sperm for repair. The EVs carry proteins, lipids, nucleic acids, and other molecules, which could be involved in sperm quality, functionality or fertility. The application of EV derived from animal and human cell sources for cryoinjury treatment indicates the improvement of sperm quality after freeze-thawing. In addition, different EV engineering methods regarding various EV cargos could be more influential for cryopreserved sperm treatment because they could provide EV customized content for delivering to cryoinjured sperm, according to their unique needs to enhance viability and fertility. In this review, first, we reminded the sperm cryopreservation complications, and next explained the conventional and modern strategies for overcoming them. Then, we have pointed out the role of EV in sperm development and the following mentioned the study results of using EV from different cell sources in sperm cryoinjuries repair. Also, we suggested several predisposing molecules (including microRNAs and proteins) for EV engineering to treat sperm cryopreservation complications by indirect engineering procedure, including genetic manipulation and incubation with therapeutic molecules, and direct engineering procedure, including electroporation, sonication, incubation, saponin permeabilization, extrusion, CaCl2-heat shock, and freeze/thawing. Finally, we discussed the limitations of EV application and ethical considerations in this context. In the meantime, despite these limitations, we pointed out the promising potential of the EV engineering strategies to reduce infertility rates by helping to overcome sperm cryopreservation challenges.
Collapse
Affiliation(s)
- Abazar Esmaeili
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahid Esmaeili
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Barth A, Perry VEA, Hamilton LE, Sutovsky P, Oko R. Bovine Sperm Maturation. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2025; 240:137-164. [PMID: 40272588 DOI: 10.1007/978-3-031-70126-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
On completion of spermatogenesis, testicular spermatozoa appear structurally mature but are infertile and must undergo a sequential maturational process in the epididymis to become motile and acquire fertilizing potential. This chapter provides a cell biological overview of the endocytic and secretory activities, along the extratesticular duct system, that provide appropriate conditions for epididymal maturation of bull spermatozoa. The compartmentalization of the bovine epididymis is illustrated and discussed in terms of epithelial cell types and merocrine and apocrine protein secretions by principal cells that influence maturation. Sequential maturational events are followed with examples, first, of testicular proteins associated with spermatozoa that are endocytosed to form a 'clean slate' and then, of epididymal secretory proteins that recondition the sperm milieu and bind to spermatozoa in order to attain its full fertilization potential. Finally, an assessment is made of the potential contributions to epididymal maturation of some well-characterized and identified secretory proteins that interact with the cytoplasmic membrane of spermatozoa.
Collapse
Affiliation(s)
- Albert Barth
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Viv E A Perry
- Queensland Sperm Morphology Laboratory (QSML), Goondiwindi, QLD, Australia
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Science and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
3
|
Hermo L, Oliveira R, Dufresne J, Gregory M, Cyr DG. Basal and Immune Cells of the Epididymis: An Electron Microscopy View of Their Association. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:67-87. [PMID: 40301253 DOI: 10.1007/978-3-031-82990-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The epididymis is a highly coiled duct divided into the initial segment, caput, corpus, and cauda regions. It is a pseudostratified epithelium consisting of principal, narrow, apical, basal, and clear cells. Circulating halo cells, identified as nonepithelial cells, monocytes/macrophages (M/M) and T-lymphocytes, in addition to dendritic cells and a resident population of M/M cells, also inhabit the epididymal epithelium. Using electron microscopy (EM), we characterized the ultrastructural features of each of these different cell types. Basal cells with stem cell characteristics suggest a role in sustaining the epithelium following injury and inflammation, as well as maintaining the steady state of the epithelium. Interestingly, a close morphological affiliation was noted between circulating M/M cells with basal cells and an intraepithelial resident M/M population of cells, as well as between T-lymphocytes and dendritic cells. The association of all these cell types with one another suggests complex interactions enabling the coordination of their functions related to maturation, protection, survival of sperm, and renewal of the epithelium.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Regiana Oliveira
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Daniel G Cyr
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
| |
Collapse
|
4
|
Cyr DG, Gregory M, Hermo L, Dufresne J. Molecular Pathways Implicated in the Differentiation and Function of Epididymal Basal Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:89-113. [PMID: 40301254 DOI: 10.1007/978-3-031-82990-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The postnatal development of the epididymis is a complex and poorly understood process. Our recent studies have shown that undifferentiated primitive small columnar cells are stem cells and can differentiate in vitro into basal and principal cells. This process represents a key aspect of early epididymal development. As such, the genes and signaling pathways implicated in the differentiation of stem cells are critical. In the rat, epididymal development has been subdivided into three phases consisting of an undifferentiated epithelium (birth to day 14), differentiation (days 14 to 44), and expansion (day 45 to adult). During this period, changes in gene expression in the epididymis are the most significant, as almost 1500 genes are differentially expressed between epididymides of 7 and 18 days of age. In the adult rat, basal cells appear to represent a quiescent adult stem cell population that can be cultured under 3D conditions and can differentiate into principal cells. Gene expression in basal cells of adults compared with epididymides from day 7 rats reveals approximately 400 genes that are common to both. Analyses of these genes predict multiple signaling pathways and master regulator genes. Their roles in early epididymal development suggest that the process is complex and involves multiple regulators, cell surface factors, signaling pathways, and hormones that are interconnected and which promote the differentiation of epididymal basal cells into other epididymal cell types.
Collapse
Affiliation(s)
- Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Québec, QC, Canada.
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| |
Collapse
|
5
|
Parvin A, Erabi G, Mohammadpour D, Maleki-Kakelar H, Sadeghpour S, Pashaei MR, Taheri-Anganeh M, Ghasemnejad-Berenji H. Infertility: Focus on the therapeutic potential of extracellular vesicles. Reprod Biol 2024; 24:100925. [PMID: 39018753 DOI: 10.1016/j.repbio.2024.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Infertility is a well-known problem that arises from a variety of reproductive diseases. Until now, researchers have tried various methods to restore fertility, including medication specific to the cause, hormone treatments, surgical removals, and assisted reproductive technologies. While these methods do produce results, they do not consistently lead to fertility restoration in every instance. The use of exosome therapy has significant potential in treating infertility in patients. This is because exosomes, microvesicles, and apoptotic bodies, which are different types of vesicles, play a crucial role in transferring bioactive molecules that aid in cell-to-cell communication. Reproductive fluids can transport a variety of molecular cargos, such as miRNAs, mRNAs, proteins, lipids, and DNA molecules. The percentage of these cargos in the fluids can be linked to their physiological and pathological status. EVs are involved in several physiological and pathological processes and offer interesting non-cellular therapeutic possibilities to treat infertility. EVs (extracellular vesicles) transplantation has been shown in many studies to be a key part of regenerating different parts of the reproductive system, including the production of oocytes and the start of sperm production. Nevertheless, the existing evidence necessitates testifying to the effectiveness of injecting EVs in resolving reproductive problems among humans. This review focuses on the current literature about infertility issues in both females and males, specifically examining the potential treatments involving extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Donna Mohammadpour
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics & Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Sutovsky P, Hamilton LE, Zigo M, Ortiz D’Avila Assumpção ME, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping: the good, the bad and the ugly†. Biol Reprod 2024; 110:1135-1156. [PMID: 38640912 PMCID: PMC11180624 DOI: 10.1093/biolre/ioae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Conventional, brightfield-microscopic semen analysis provides important baseline information about sperm quality of an individual; however, it falls short of identifying subtle subcellular and molecular defects in cohorts of "bad," defective human and animal spermatozoa with seemingly normal phenotypes. To bridge this gap, it is desirable to increase the precision of andrological evaluation in humans and livestock animals by pursuing advanced biomarker-based imaging methods. This review, spiced up with occasional classic movie references but seriously scholastic at the same time, focuses mainly on the biomarkers of altered male germ cell proteostasis resulting in post-testicular carryovers of proteins associated with ubiquitin-proteasome system. Also addressed are sperm redox homeostasis, epididymal sperm maturation, sperm-seminal plasma interactions, and sperm surface glycosylation. Zinc ion homeostasis-associated biomarkers and sperm-borne components, including the elements of neurodegenerative pathways such as Huntington and Alzheimer disease, are discussed. Such spectrum of biomarkers, imaged by highly specific vital fluorescent molecular probes, lectins, and antibodies, reveals both obvious and subtle defects of sperm chromatin, deoxyribonucleic acid, and accessory structures of the sperm head and tail. Introduction of next-generation image-based flow cytometry into research and clinical andrology will soon enable the incorporation of machine and deep learning algorithms with the end point of developing simple, label-free methods for clinical diagnostics and high-throughput phenotyping of spermatozoa in humans and economically important livestock animals.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Mayra E Ortiz D’Avila Assumpção
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| |
Collapse
|
7
|
Hassan F, Holtz W. Morphology of the epididymal duct of the domestic pig (Sus scrofa domesticus). J Morphol 2024; 285:e21675. [PMID: 38361275 DOI: 10.1002/jmor.21675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
The study provides a general overview of the morphology of the epididymal duct in pigs. Four epididymides from two sexually mature boars were dissected into 32 segments and examined histologically. Duct lumen and wall thickness were measured and relative surface area of different components was assessed by Chalkley's random hit method. The epithelial lining was characterized at X1000. Lumen diameter and wall thickness of efferent ductules averaged 177 and 30 µm, respectively. Of the epididymal duct from caput to distal corpus the luminal diameter was 332 µm, with a narrower section in the proximal corpus. Wall thickness averaged 70 µm. In the cauda, luminal diameter and wall thickness increased to 717 and 751 µm, respectively. The epithelial lining of the efferent ductules consists of a single layer of columnar cells with average height 21 µm. The lining of the epididymal duct consists of ciliated, pseudo-stratified columnar epithelium composed of "basal cells" and "principal cells." Particularly tall principal cells (96 µm) were found in the proximal caput. Height decreased to 40 µm at the distal cauda. Microvilli from principal cells were 14-17 µm long in the distal caput but decreased to 5 µm in the distal cauda. The epithelial lining was folded in the proximal caput and more so in the distal cauda. Secretory granules (epididymosomes) were present in small amounts in efferent ductules and epididymal duct; the largest quantities occurred in the distal cauda. Leukocytes were present throughout the duct, albeit in insignificant numbers. Chalkley's random hit method showed rapid spermatozoan transport through efferent ductules and proximal caput in large amounts of fluid. Sperm concentration increased due to fluid resorption in the proximal caput, was highest from caput flexure to proximal cauda and decreased at the caudal flexure, indicating secretory activity.
Collapse
Affiliation(s)
- Ferial Hassan
- Department of Animal Science, Georg-August-University Goettingen, Goettingen, Germany
| | - Wolfgang Holtz
- Department of Animal Science, Georg-August-University Goettingen, Goettingen, Germany
| |
Collapse
|
8
|
Carvelli L, Hermo L, O’Flaherty C, Oko R, Pshezhetsky AV, Morales CR. Effects of Heparan sulfate acetyl-CoA: Alpha-glucosaminide N-acetyltransferase (HGSNAT) inactivation on the structure and function of epithelial and immune cells of the testis and epididymis and sperm parameters in adult mice. PLoS One 2023; 18:e0292157. [PMID: 37756356 PMCID: PMC10529547 DOI: 10.1371/journal.pone.0292157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Heparan sulfate (HS), an abundant component of the apical cell surface and basement membrane, belongs to the glycosaminoglycan family of carbohydrates covalently linked to proteins called heparan sulfate proteoglycans. After endocytosis, HS is degraded in the lysosome by several enzymes, including heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT), and in its absence causes Mucopolysaccharidosis III type C (Sanfilippo type C). Since endocytosis occurs in epithelial cells of the testis and epididymis, we examined the morphological effects of Hgsnat inactivation in these organs. In the testis, Hgsnat knockout (Hgsnat-Geo) mice revealed statistically significant decrease in tubule and epithelial profile area of seminiferous tubules. Electron microscopy (EM) analysis revealed cross-sectional tubule profiles with normal and moderately to severely altered appearances. Abnormalities in Sertoli cells and blood-testis barrier and the absence of germ cells in some tubules were noted along with altered morphology of sperm, sperm motility parameters and a reduction in fertilization rates in vitro. Along with quantitatively increased epithelial and tubular profile areas in the epididymis, EM demonstrated significant accumulations of electrolucent lysosomes in the caput-cauda regions that were reactive for cathepsin D and prosaposin antibodies. Lysosomes with similar storage materials were also found in basal, clear and myoid cells. In the mid/basal region of the epithelium of caput-cauda regions of KO mice, large vacuolated cells, unreactive for cytokeratin 5, a basal cell marker, were identified morphologically as epididymal mononuclear phagocytes (eMPs). The cytoplasm of the eMPs was occupied by a gigantic lysosome suggesting an active role of these cells in removing debris from the epithelium. Some eMPs were found in proximity to T-lymphocytes, a feature of dendritic cells. Taken together, our results reveal that upon Hgsnat inactivation, morphological alterations occur to the testis affecting sperm morphology and motility parameters and abnormal lysosomes in epididymal epithelial cells, indicative of a lysosomal storage disease.
Collapse
Affiliation(s)
- Lorena Carvelli
- IHEM-CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Cristian O’Flaherty
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Department of Surgery (Urology Division), McGill University, Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Alexey V. Pshezhetsky
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Padilla L, Barranco I, Martínez-Hernández J, Parra A, Parrilla I, Pastor LM, Rodriguez-Martinez H, Lucas X, Roca J. Extracellular vesicles would be involved in the release and delivery of seminal TGF-β isoforms in pigs. Front Vet Sci 2023; 10:1102049. [PMID: 36846267 PMCID: PMC9950116 DOI: 10.3389/fvets.2023.1102049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Pig seminal plasma (SP) is rich in active forms of all three isoforms (1-3) of transforming growth factor β (TGF-β), a chemokine modulatory of the immune environment in the female genital tract once semen is delivered during mating or artificial insemination (AI). The present study aimed to examine how TGF-βs are secreted by the epithelium of the male reproductive tract and how they are transported in semen, emphasizing the interplay with seminal extracellular vesicles (sEVs). Methods Source of TGF-βs was examined by immunohistochemistry in testis, epididymis, and accessory sex glands, by immunocytochemistry in ejaculated spermatozoa, and by Luminex xMAP® technology in SP and sEVs retrieved from healthy, fertile male pigs used as breeders in AI programs. Results All three TGF-β isoforms were expressed in all reproductive tissues explored and would be released into ductal lumen either in soluble form or associated with sEVs. Ejaculated spermatozoa expressed all three TGF-β isoforms, both inside and outside, probably the outer one associated with membrane-bound sEVs. The results confirmed that pig SP contains all three TGF-β isoforms and demonstrated that a substantial portion of them is associated with sEVs. Discussion Seminal EVs would be involved in the cellular secretion of the active forms of seminal TGF-β isoforms and in their safe transport from the male to the female reproductive tract.
Collapse
Affiliation(s)
- Lorena Padilla
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
- IMIB-Arrixaca, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
| | - Jesús Martínez-Hernández
- IMIB-Arrixaca, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Murcia, Spain
| | - Ana Parra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- IMIB-Arrixaca, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- IMIB-Arrixaca, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
| | - Luis Miguel Pastor
- IMIB-Arrixaca, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Murcia, Spain
| | | | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- IMIB-Arrixaca, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- IMIB-Arrixaca, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
| |
Collapse
|
10
|
Transfer of Galectin-3-Binding Protein via Epididymal Extracellular Vesicles Promotes Sperm Fertilizing Ability and Developmental Potential in the Domestic Cat Model. Int J Mol Sci 2023; 24:ijms24043077. [PMID: 36834494 PMCID: PMC9966717 DOI: 10.3390/ijms24043077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Key proteins transferred by epididymal extracellular vesicles (EVs) to the transiting sperm cells contribute to their centrosomal maturation and developmental potential. Although not reported in sperm cells yet, galectin-3-binding protein (LGALS3BP) is known to regulate centrosomal functions in somatic cells. Using the domestic cat model, the objectives of this study were to (1) detect the presence and characterize the transfer of LGALS3BP via EVs between the epididymis and the maturing sperm cells and (2) demonstrate the impact of LGALS3BP transfer on sperm fertilizing ability and developmental potential. Testicular tissues, epididymides, EVs, and spermatozoa were isolated from adult individuals. For the first time, this protein was detected in EVs secreted by the epididymal epithelium. The percentage of spermatozoa with LGALS3BP in the centrosome region increased as cells progressively incorporated EVs during the epididymal transit. When LGALS3BP was inhibited during in vitro fertilization with mature sperm cells, less fertilized oocytes and slower first cell cycles were observed. When the protein was inhibited in epididymal EVs prior to incubation with sperm cells, poor fertilization success further demonstrated the role of EVs in the transfer of LGALS3BP to the spermatozoa. The key roles of this protein could lead to new approaches to enhance or control fertility in clinical settings.
Collapse
|
11
|
Extracellular vesicles-encapsulated microRNA in mammalian reproduction: A review. Theriogenology 2023; 196:174-185. [PMID: 36423512 DOI: 10.1016/j.theriogenology.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale cell-derived lipid vesicles that participate in cell-cell communication by delivering cargo, including mRNAs, proteins and non-coding RNAs, to recipient cells. MicroRNA (miRNA), a non-coding RNA typically 22 nucleotides long, is crucial for nearly all developmental and pathophysiological processes in mammals by regulating recipient cells gene expression. Infertility is a worldwide health issue that affects 10-15% of couples during their reproductive years. Although assisted reproductive technology (ART) gives infertility couples hope, the failure of ART is mainly unknown. It is well accepted that EVs-encapsulated miRNAs have a role in different reproductive processes, implying that these EVs-encapsulated miRNAs could optimize ART, improve reproductive rate, and treat infertility. As a result, in this review, we describe the present understanding of EVs-encapsulated miRNAs in reproduction regulation.
Collapse
|
12
|
Gouletsou PG, Tsangaris GT, Katsarou EI, Bourganou MV, Barbagianni MS, Venianaki AP, Bouroutzika E, Anagnostopoulos AK, Fthenakis GC, Katsafadou AI. Proteomics Evaluation of Semen of Clinically Healthy Beagle-Breed Dogs. Vet Sci 2022; 9:vetsci9120697. [PMID: 36548858 PMCID: PMC9785154 DOI: 10.3390/vetsci9120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The objectives of the present work were to evaluate the semen of dogs by means of proteomics methods and to compare with proteomics results of the blood of the animals, in order to increase available knowledge on the topic and present relevant reference values for semen samples. Semen samples were collected from five Beagle-breed dogs. Reproductive assessment of the animals by means of clinical, ultrasonographic and seminological examinations confirmed their reproductive health. The sperm-rich fraction and the prostatic fraction of semen were processed for proteomics evaluation. LC-MS/MS analysis was performed by means of a LTQ Orbitrap Elite system. The technology combines high separation capacity and strong qualitative ability of proteins in biological samples that require deep proteome coverage. Protein classification was performed based on their functional annotations using Gene Ontology (GO). In blood plasma, semen sperm-rich fraction, and semen prostatic fraction, 59, 42 and 43 proteins, respectively, were detected. Two proteins were identified simultaneously in plasma and the semen sperm-rich fraction, 11 proteins in plasma and the semen prostatic fraction, and three proteins in the semen sperm-rich and prostatic fractions. In semen samples, most proteins were related to cell organization and biogenesis, metabolic processes or transport of ions and molecules. Most proteins were located in the cell membrane, the cytosol or the nucleus. Finally, most proteins performed functions related to binding or enzyme regulation. There were no differences between the semen sperm-rich fraction and prostatic fractions in terms of the clustering of proteins. In conclusion, a baseline reference for proteins in the semen of Beagle-breed dogs is provided. These proteins are involved mostly in supporting spermatozoan maturation, survival and motility, enhancing the reproductive performance of male animals. There appears potential for the proteomics examination of semen to become a tool in semen evaluation. This analysis may potentially identify biomarkers for reproductive disorders. This can be particularly useful in stud animals, also given its advantage as a non-invasive method.
Collapse
Affiliation(s)
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | - Maria V. Bourganou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece
| | | | | | - Efterpi Bouroutzika
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | | | - Angeliki I. Katsafadou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece
- Correspondence:
| |
Collapse
|
13
|
Belleannée C, Viana AGDA, Lavoie-Ouellet C. Intra and intercellular signals governing sperm maturation. Reprod Fertil Dev 2022; 35:27-38. [PMID: 36592975 DOI: 10.1071/rd22226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
After their production in the testis, spermatozoa do not have the capacity to move progressively and are unable to fertilise an oocyte. They sequentially acquire these abilities following their maturation in the epididymis and their capacitation/hyperactivation in the female reproductive system. As gene transcription is silenced in spermatozoa, extracellular factors released from the epididymal epithelium and from secretory glands allow spermatozoa to acquire bioactive molecules and to undergo intrinsic modifications. These modifications include epigenetic changes and post-translational modifications of endogenous proteins, which are important processes in sperm maturation. This article emphasises the roles played by extracellular factors secreted by the epididymis and accessory glands in the control of sperm intercellular signallings and fertilising abilities.
Collapse
Affiliation(s)
- Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, Center for Research in Reproduction, Development and Intergenerational Health (CRDSI), CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | | | - Camille Lavoie-Ouellet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, Center for Research in Reproduction, Development and Intergenerational Health (CRDSI), CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| |
Collapse
|
14
|
Roca J, Rodriguez-Martinez H, Padilla L, Lucas X, Barranco I. Extracellular vesicles in seminal fluid and effects on male reproduction. An overview in farm animals and pets. Anim Reprod Sci 2022; 246:106853. [PMID: 34556398 DOI: 10.1016/j.anireprosci.2021.106853] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanovesicles released by most functional cells to body fluids, containing bioactive molecules, mainly proteins, lipids, and nucleic acids having actions at target cells. The EVs have essential functions in cell-to-cell communication by regulating different biological processes in target cells. Fluids from the male reproductive tract, including seminal plasma, contain many extracellular vesicles (sEVs), which have been evaluated to a lesser extent than those of other body fluids, particularly in farm animals and pets. Results from the few studies that have been conducted indicated epithelial cells of the testis, epididymis, ampulla of ductus deferens and many accessory sex glands release sEVs mainly via apocrine mechanisms. The sEVs are morphologically heterogeneous and bind to functional cells of the male reproductive tract, spermatozoa, and cells of the functional tissues of the female reproductive tract after mating or insemination. The sEVs encapsulate proteins and miRNAs that modulate sperm functions and male fertility. The sEVs, therefore, could be important as reproductive biomarkers in breeding sires. Many of the current findings regarding sEV functions, however, need experimental confirmation. Further studies are particularly needed to characterize both membranes and contents of sEVs, as well as the interaction between sEVs and target cells (spermatozoa and functional cells of the internal female reproductive tract). A priority for conducting these studies is development of methods that can be standardized and that are scalable, cost-effective and time-saving for isolation of different subtypes of EVs present in the entire population of sEVs.
Collapse
Affiliation(s)
- Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Lorena Padilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, IT-40064 Bologna, Italy
| |
Collapse
|
15
|
Skerrett-Byrne DA, Anderson AL, Bromfield EG, Bernstein IR, Mulhall JE, Schjenken JE, Dun MD, Humphrey SJ, Nixon B. Global profiling of the proteomic changes associated with the post-testicular maturation of mouse spermatozoa. Cell Rep 2022; 41:111655. [DOI: 10.1016/j.celrep.2022.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
|
16
|
Barrachina F, Battistone MA, Castillo J, Mallofré C, Jodar M, Breton S, Oliva R. Sperm acquire epididymis-derived proteins through epididymosomes. Hum Reprod 2022; 37:651-668. [PMID: 35137089 PMCID: PMC8971652 DOI: 10.1093/humrep/deac015] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
STUDY QUESTION Are epididymosomes implicated in protein transfer from the epididymis to spermatozoa? SUMMARY ANSWER We characterized the contribution of epididymal secretions to the sperm proteome and demonstrated that sperm acquire epididymal proteins through epididymosomes. WHAT IS KNOWN ALREADY Testicular sperm are immature cells unable to fertilize an oocyte. After leaving the testis, sperm transit along the epididymis to acquire motility and fertilizing abilities. It is well known that marked changes in the sperm proteome profile occur during epididymal maturation. Since the sperm is a transcriptional and translational inert cell, previous studies have shown that sperm incorporate proteins, RNA and lipids from extracellular vesicles (EVs), released by epithelial cells lining the male reproductive tract. STUDY DESIGN, SIZE, DURATION We examined the contribution of the epididymis to the post-testicular maturation of spermatozoa, via the production of EVs named epididymosomes, released by epididymal epithelial cells. An integrative analysis using both human and mouse data was performed to identify sperm proteins with a potential epididymis-derived origin. Testes and epididymides from adult humans (n = 9) and adult mice (n = 3) were used to experimentally validate the tissue localization of four selected proteins using high-resolution confocal microscopy. Mouse epididymal sperm were co-incubated with carboxyfluorescein succinimidyl ester (CFSE)-labeled epididymosomes (n = 4 mice), and visualized using high-resolution confocal microscopy. PARTICIPANTS/MATERIALS, SETTING, METHODS Adult (12-week-old) C57BL/CBAF1 wild-type male mice and adult humans were used for validation purposes. Testes and epididymides from both mice and humans were obtained and processed for immunofluorescence. Mouse epididymal sperm and mouse epididymosomes were obtained from the epididymal cauda segment. Fluorescent epididymosomes were obtained after labeling the epididymal vesicles with CFSE dye followed by epididymosome isolation using a density cushion. Immunofluorescence was performed following co-incubation of sperm with epididymosomes in vitro. High-resolution confocal microscopy and 3D image reconstruction were used to visualize protein localization and sperm-epididymosomes interactions. MAIN RESULTS AND THE ROLE OF CHANCE Through in silico analysis, we first identified 25 sperm proteins with a putative epididymal origin that were conserved in both human and mouse spermatozoa. From those, the epididymal origin of four sperm proteins (SLC27A2, EDDM3B, KRT19 and WFDC8) was validated by high-resolution confocal microscopy. SLC27A2, EDDM3B, KRT19 and WFDC8 were all detected in epithelial cells lining the human and mouse epididymis, and absent from human and mouse seminiferous tubules. We found region-specific expression patterns of these proteins throughout the mouse epididymides. In addition, while EDDM3B, KRT19 and WFDC8 were detected in both epididymal principal and clear cells (CCs), SLC27A2 was exclusively expressed in CCs. Finally, we showed that CFSE-fluorescently labeled epididymosomes interact with sperm in vitro and about 12-36% of the epididymosomes contain the targeted sperm proteins with an epididymal origin. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The human and mouse sample size was limited and our results were descriptive. The analyses of epididymal sperm and epididymosomes were solely performed in the mouse model due to the difficulties in obtaining epididymal luminal fluid human samples. Alternatively, human ejaculated sperm and seminal EVs could not be used because ejaculated sperm have already contacted with the fluids secreted by the male accessory sex glands, and seminal EVs contain other EVs in addition to epididymosomes, such as the abundant prostate-derived EVs. WIDER IMPLICATIONS OF THE FINDINGS Our findings indicate that epididymosomes are capable of providing spermatozoa with a new set of epididymis-derived proteins that could modulate the sperm proteome and, subsequently, participate in the post-testicular maturation of sperm cells. Additionally, our data provide further evidence of the novel role of epididymal CCs in epididymosome production. Identifying mechanisms by which sperm mature to acquire their fertilization potential would, ultimately, lead to a better understanding of male reproductive health and may help to identify potential therapeutic strategies to improve male infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Spanish Ministry of Economy and Competitiveness (Ministerio de Economía y Competividad; fondos FEDER 'una manera de hacer Europa' PI13/00699 and PI16/00346 to R.O.; and Sara Borrell Postdoctoral Fellowship, Acción Estratégica en Salud, CD17/00109 to J.C.), by National Institutes of Health (grants HD040793 and HD069623 to S.B., grant HD104672-01 to M.A.B.), by the Spanish Ministry of Education, Culture and Sports (Ministerio de Educación, Cultura y Deporte para la Formación de Profesorado Universitario, FPU15/02306 to F.B.), by a Lalor Foundation Fellowship (to F.B. and M.A.B.), by the Government of Catalonia (Generalitat de Catalunya, pla estratègic de recerca i innovació en salut, PERIS 2016-2020, SLT002/16/00337 to M.J.), by Fundació Universitària Agustí Pedro i Pons (to F.B.), and by the American Society for Biochemistry and Molecular Biology (PROLAB Award from ASBMB/IUBMB/PABMB to F.B.). Confocal microscopy and transmission electron microscopy was performed in the Microscopy Core facility of the Massachusetts General Hospital (MGH) Center for Systems Biology/Program in Membrane Biology which receives support from Boston Area Diabetes and Endocrinology Research Center (BADERC) award DK57521 and Center for the Study of Inflammatory Bowel Disease grant DK43351. The Zeiss LSM800 microscope was acquired using an NIH Shared Instrumentation Grant S10-OD-021577-01. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- F Barrachina
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - M A Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - J Castillo
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - C Mallofré
- Department of Pathology, Universitat de Barcelona, Hospital Clínic, Barcelona, Spain
| | - M Jodar
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| | - S Breton
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - R Oliva
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
17
|
Neyroud AS, Chiechio R, Yefimova M, Lo Faro MJ, Dejucq-Rainsford N, Jaillard S, Even-Hernandez P, Marchi V, Ravel C. Extra-cellular vesicles of the male genital tract: new actors in male fertility? Basic Clin Androl 2021; 31:25. [PMID: 34645388 PMCID: PMC8515699 DOI: 10.1186/s12610-021-00141-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular Vesicles (EVs) are membrane-limited particles containing proteins, lipids, metabolites and nucleic acids that are secreted by healthy and cancerous cells. These vesicles are very heterogeneous in size and content and mediate a variety of biological functions. Three subtypes of EV have been described in the male genital tract: microvesicles, myelinosomes and exosomes. Each type of EVs depends on the location of secretion such as the testis, prostate or epididymis. It has been shown that EVs can fuse together and deliver information to recipient cells, for example spermatozoa in the male genital tract. Cryo-electron microscopy remains the reference technique for determining EV morphology, but quantifying the absolute concentration of these EVs in biological fluids remains a challenge from a clinical point of view. The field of bio detection has considerably increased with the introduction of nanomaterials in biosensors and will provide a better understanding of the impact of these EVs. However, functional modifications of male gametes result from interactions with the components of the intraluminal fluid all along the genital tract and depend on the secretion and absorption of proteins and lipids from the local microenvironment. We cannot therefore exclude the possibility of epigenetic modulation of the information that will be transmitted to the embryo and therefore to the next generation via EVs.
Collapse
Affiliation(s)
- Anne-Sophie Neyroud
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, 35000, Rennes, France
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Régina Chiechio
- Physics and Astronomy Department "E. Majorana", University of Catania, Via S. Sofia 64, 95123, Catania, Italy
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Marina Yefimova
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, 35000, Rennes, France
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St-Petersburg, 194223, Russia
| | - Maria Josè Lo Faro
- Physics and Astronomy Department "E. Majorana", University of Catania, Via S. Sofia 64, 95123, Catania, Italy
| | - Nathalie Dejucq-Rainsford
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Sylvie Jaillard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Pascale Even-Hernandez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Valérie Marchi
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Célia Ravel
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, 35000, Rennes, France.
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
18
|
Chen H, Alves MBR, Belleannée C. Contribution of epididymal epithelial cell functions to sperm epigenetic changes and the health of progeny. Hum Reprod Update 2021; 28:51-66. [PMID: 34618012 DOI: 10.1093/humupd/dmab029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Spermatozoa acquire their motility and fertilizing abilities during their maturation through the epididymis. This process is controlled by epididymal epithelial cells that possess features adapted to sense and respond to their surrounding environment and to communicate with spermatozoa. During the past decade, new intercellular communication processes have been discovered, including the secretion and transport of molecules from the epithelium to spermatozoa via extracellular vesicles (EVs), as well as sensing of the intraluminal milieu by cellular extensions. OBJECTIVE AND RATIONALE This review addresses recent findings regarding epididymal epithelial cell features and interactions between spermatozoa and the epididymal epithelium as well as epigenetic modifications undergone by spermatozoa during transit through the epididymal microenvironment. SEARCH METHODS A systematic search was conducted in Pubmed with the keyword 'epididymis'. Results were filtered on original research articles published from 2009 to 2021 and written in the English language. One hundred fifteen original articles presenting recent advancements on the epididymis contribution to sperm maturation were selected. Some additional papers cited in the primary reference were also included. A special focus was given to higher mammalian species, particularly rodents, bovines and humans, that are the most studied in this field. OUTCOMES This review provides novel insights into the contribution of epididymal epithelium and EVs to post-testicular sperm maturation. First, new immune cell populations have been described in the epididymis, where they are proposed to play a role in protecting the environment surrounding sperm against infections or autoimmune responses. Second, novel epididymal cell extensions, including dendrites, axopodia and primary cilia, have been identified as sensors of the environment surrounding sperm. Third, new functions have been outlined for epididymal EVs, which modify the sperm epigenetic profile and participate in transgenerational epigenetic inheritance of paternal traits. WIDER IMPLICATIONS Although the majority of these findings result from studies in rodents, this fundamental research will ultimately improve our knowledge of human reproductive physiopathologies. Recent discoveries linking sperm epigenetic modifications with paternal environmental exposure and progeny outcome further stress the importance of advancing fundamental research on the epididymis. From this, new therapeutic options for infertile couples and better counseling strategies may arise to increase positive health outcomes in children conceived either naturally or with ART.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec, Canada
| | | | - Clémence Belleannée
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec, Canada
| |
Collapse
|
19
|
Trigg NA, Skerrett-Byrne DA, Xavier MJ, Zhou W, Anderson AL, Stanger SJ, Katen AL, De Iuliis GN, Dun MD, Roman SD, Eamens AL, Nixon B. Acrylamide modulates the mouse epididymal proteome to drive alterations in the sperm small non-coding RNA profile and dysregulate embryo development. Cell Rep 2021; 37:109787. [PMID: 34610313 DOI: 10.1016/j.celrep.2021.109787] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/10/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Paternal exposure to environmental stressors elicits distinct changes to the sperm sncRNA profile, modifications that have significant post-fertilization consequences. Despite this knowledge, there remains limited mechanistic understanding of how paternal exposures modify the sperm sncRNA landscape. Here, we report the acute sensitivity of the sperm sncRNA profile to the reproductive toxicant acrylamide. Furthermore, we trace the differential accumulation of acrylamide-responsive sncRNAs to coincide with sperm transit of the proximal (caput) segment of the epididymis, wherein acrylamide exposure alters the abundance of several transcription factors implicated in the expression of acrylamide-sensitive sncRNAs. We also identify extracellular vesicles secreted from the caput epithelium in relaying altered sncRNA profiles to maturing spermatozoa and dysregulated gene expression during early embryonic development following fertilization by acrylamide-exposed spermatozoa. These data provide mechanistic links to account for how environmental insults can alter the sperm epigenome and compromise the transcriptomic profile of early embryos.
Collapse
Affiliation(s)
- Natalie A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Miguel J Xavier
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Wei Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC 3052, Australia; Gynaecology Research Centre, The Royal Women's Hospital, Parkville, VIC 3052, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Aimee L Katen
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Priority Research Centre for Drug Development, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, Lambton, NSW 2305, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Priority Research Centre for Drug Development, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Andrew L Eamens
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
20
|
van der Horst G, Kotzè S, O'Riain MJ, Muller N, Maree L. A possible highway system for the rapid delivery of sperm from the testis to the penis in the naked mole-rat, Heterocephalus glaber. J Morphol 2021; 282:1478-1498. [PMID: 34296784 DOI: 10.1002/jmor.21399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/08/2021] [Accepted: 07/17/2021] [Indexed: 11/08/2022]
Abstract
Gametogenesis is suppressed in most members of the eusocial naked mole-rat (NMR) colony, while the queen selects mainly one breeding male during her life span. Recently, it was reported that the NMR testicular organization seems to produce spermatozoa on demand after suppression of spermatogenesis during most of gestation. A Sertoli cell "pump" is then used to flush the spermatozoa into short tubuli recti and simplified rete testis to reach the excurrent duct system. We hypothesize that the components of this duct system are adapted for rapid delivery of spermatozoa to the penis and for numerous copulations with the queen. Therefore, the aim was to study the ultrastructure of the male NMR reproductive duct system using light microscopy and transmission electron microscopy. The NMR rete testis gives rise to six to eight efferent tubules joining the caput epididymis. The caput epididymis resembles that of other rodents but with less distinction in terms of histological zoning. The remainder of the epididymis is considerably reduced in length compared to other rodents. In contrast, the vas deferens epithelium is highly specialized in that a vast range of vesicles, often closely associated with the spermatozoa, were visible. The large ampulla is a factory for merocrine and apocrine secretions, producing even more diverse vesicles. The transitional epithelial cells of the bladder appear to secrete abundant mucous and the penis as well as its baculum is relatively small. We speculate that these modifications strongly suggest that the excurrent duct system has been simplified and adjusted to compensate for the absence of long maturation and storage of spermatozoa. We propose that these adaptations to the NMR reproductive tract are associated with a state of degenerative orthogenesis that was selected for due to the absence of sperm competition and apparently rapid delivery of spermatozoa from the testis.
Collapse
Affiliation(s)
- Gerhard van der Horst
- Department of Medical, Biosciences, University of the Western Cape, Bellville, South Africa
| | - Sanet Kotzè
- Division of Clinical Anatomy, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | | | - Nolan Muller
- National Health Laboratory Services, Anatomical Pathology, Tygerberg Hospital, Parow, South Africa
| | - Liana Maree
- Department of Medical, Biosciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
21
|
Paul N, Talluri TR, Nag P, Kumaresan A. Epididymosomes: A potential male fertility influencer. Andrologia 2021; 53:e14155. [PMID: 34213814 DOI: 10.1111/and.14155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/06/2023] Open
Abstract
During transit and storage in epididymis, spermatozoa undergo final maturation, acquire motility, functional competence and the ability to fertilise an oocyte. Epididymal secretions contain a complex biochemical milieu of diverse inorganic ions, proteins, metabolites and other molecules. Since it is believed that spermatozoa are translationally silent, proteins appearing in them are thought to be synthesised elsewhere, including epididymis, and then incorporated to the cells. One of the important mechanisms suggested to be involved in transfer of epididymal secretions to spermatozoa is through exosomes called epididymosomes. Epididymosomes released from the epididymal epithelium contain proteins, noncoding RNAs and distinct set of lipids that are transferred to spermatozoa while they pass through the different epididymal regions. Owing to the importance of these molecules for sperm maturation and fertilising ability, research on epididymosomes has gained increasing attention during the last decade. This review is focused on epididymosomes, with emphasis on recent advances in the understanding of mechanisms of epididymosomal cargo transfer to spermatozoa and potential roles of epididymosomes in sperm function and beyond. Possibilities of utilising the molecular signatures of epididymosomes as a tool for male fertility assessment are also discussed.
Collapse
Affiliation(s)
- Nilendu Paul
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Thirumala Rao Talluri
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| |
Collapse
|
22
|
Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Le Danvic C, Guyonnet B, Kiefer H, Jammes H, Schibler L. Dynamics of cattle sperm sncRNAs during maturation, from testis to ejaculated sperm. Epigenetics Chromatin 2021; 14:24. [PMID: 34030709 PMCID: PMC8146655 DOI: 10.1186/s13072-021-00397-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background During epididymal transit, spermatozoa go through several functional maturation steps, resulting from interactions with epididymal secretomes specific to each region. In particular, the sperm membrane is under constant remodeling, with sequential attachment and shedding of various molecules provided by the epididymal lumen fluid and epididymosomes, which also deliver sncRNA cargo to sperm. As a result, the payload of sperm sncRNAs changes during the transit from the epididymis caput to the cauda. This work was designed to study the dynamics of cattle sperm sncRNAs from spermatogenesis to final maturation. Results Comprehensive catalogues of sperm sncRNAs were obtained from testicular parenchyma, epididymal caput, corpus and cauda, as well as ejaculated semen from three Holstein bulls. The primary cattle sncRNA sperm content is markedly remodeled as sperm mature along the epididymis. Expression of piRNAs, which are abundant in testis parenchyma, decreases dramatically at epididymis. Conversely, sperm progressively acquires miRNAs, rsRNAs, and tsRNAs along epididymis, with regional specificities. For instance, miRNAs and tsRNAs are enriched in epididymis cauda and ejaculated sperm, while rsRNA expression peaks at epididymis corpus. In addition, epididymis corpus contains mainly 20 nt long piRNAs, instead of 30 nt in all other locations. Beyond the bulk differences in abundance of sncRNAs classes, K-means clustering was performed to study their spatiotemporal expression profile, highlighting differences in specific sncRNAs and providing insights into their putative biological role at each maturation stage. For instance, Gene Ontology analyses using miRNA targets highlighted enriched processes such as cell cycle regulation, response to stress and ubiquitination processes in testicular parenchyma, protein metabolism in epididymal sperm, and embryonic morphogenesis in ejaculated sperm. Conclusions Our findings confirm that the sperm sncRNAome does not simply reflect a legacy of spermatogenesis. Instead, sperm sncRNA expression shows a remarkable level of plasticity resulting probably from the combination of multiple factors such as loss of the cytoplasmic droplet, interaction with epididymosomes, and more surprisingly, the putative in situ production and/or modification of sncRNAs by sperm. Given the suggested role of sncRNA in epigenetic trans-generational inheritance, our detailed spatiotemporal analysis may pave the way for a study of sperm sncRNAs role in embryo development. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00397-5.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.
| | - Sylvain Marthey
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,INRAE, MaIAGE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Estrées-Mons, France
| | - Luc Jouneau
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Aurelie Bonnet
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | | | - Benoît Guyonnet
- R&D Department, Union Evolution, rue Eric Tabarly, 35538, Noyal-Sur-Vilaine, France
| | - Hélène Kiefer
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Hélène Jammes
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | | |
Collapse
|
23
|
Rowlison T, Ottinger MA, Comizzoli P. Exposure to epididymal extracellular vesicles enhances immature sperm function and sustains vitality of cryopreserved spermatozoa in the domestic cat model. J Assist Reprod Genet 2021; 38:2061-2071. [PMID: 33950331 DOI: 10.1007/s10815-021-02214-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer key factors to maturing spermatozoa. Using an in vitro system previously developed in our laboratory, the objective was to (1) characterize the impact of EV exposure on the fertilizing ability and developmental potential of immature sperm cells from the caput epididymidis and (2) examine the benefit of EV exposure to restore vitality of mature spermatozoa from the cauda epididymidis after freezing-thawing. METHODS EVs were isolated from entire epididymides and collected into pellets via ultracentrifugation. Immature spermatozoa from adult cats were isolated from the caput epididymis and incubated with EVs prior to in vitro fertilization. Similarly, mature spermatozoa were isolated from the cauda segment and cryopreserved prior to EV exposure and subsequent analysis of motility and developmental potential after fertilization. RESULTS EV exposure did not affect the percentage of caput sperm penetration; however, it improved the fertilizing ability (faster pronuclear apposition) and the developmental potential (higher proportions of morula-blastocysts) of those immature sperm cells. While EV exposure was beneficial to the frozen-thawed sperm motility, it did not significantly improve the fertilizing ability and the developmental potential. CONCLUSIONS Epididymal EVs contain multiple factors contributing to immature sperm function, specifically enhancing the ability to complete a faster pronuclear apposition with subsequently improved early embryonic development. Supplementation was also beneficial to the motility of spermatozoa that had undergone cryopreservation. Those new findings could lead to new options for male fertility treatment in animal models and humans.
Collapse
Affiliation(s)
- Tricia Rowlison
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | | | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA.
| |
Collapse
|
24
|
Abstract
Within the reproductive tract, distinct cell types must have precisely controlled communication for complex processes such as gamete production, fertilisation and implantation. Intercellular communication in many physiological processes involves extracellular vesicles (EVs). In reproductive systems, EVs have been implicated in many aspects, from gamete maturation to embryo development. Sperm develop within the testis and then exit into the epididymis in an immature form, lacking motility and fertilising capabilities. Due to their small size, compact nature of the nucleus and the lack of specific organelles, sperm are unable to perform de novo protein synthesis, and thus rely on extrinsic signals delivered from the external milieu to gain full function. Mounting evidence points to EVs as being a major provider of these signals, not just within the male reproductive tract but also within the female as the sperm make their way through a seemingly hostile environment to the oocyte. In this chapter, we review the current knowledge on EVs as mediators of sperm maturation and function and highlight their potential roles in male fertility.
Collapse
Affiliation(s)
- Natalie J Foot
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
25
|
Rowlison T, Cleland TP, Ottinger MA, Comizzoli P. Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals. Mol Cell Proteomics 2020; 19:2090-2104. [PMID: 33008835 PMCID: PMC7710135 DOI: 10.1074/mcp.ra120.002251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Indexed: 11/06/2022] Open
Abstract
Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer to spermatozoa key proteins that are essential in promoting motility and subsequent fertilization success. Using the domestic cat model, the objectives were to (1) characterize and compare protein content of EVs between segments of the epididymis, and (2) compare EV protein compositions between normo- and teratospermic individuals (producing >60% of abnormal spermatozoa). Epididymal EVs from adult cats were isolated and assessed via liquid chromatography tandem MS. Both male types shared 3008 proteins in total, with 98 and 20 EV proteins unique to normospermic and teratospermic males, respectively. Expression levels of several proteins changed between epididymal segments in both male types. Several proteins in both groups were related to sperm motility (e.g. hexokinase 1, adenylate kinase isoenzyme) and zona pellucida or oolemma binding (e.g. disintegrin and metalloproteinase domain proteins, zona binding proteins 1 and 2). Interestingly, seven cauda-derived EV proteins trended downward in teratospermic compared with normospermic males, which may relate to poor sperm quality. Collective results revealed, for the first time, EV proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals.
Collapse
Affiliation(s)
- Tricia Rowlison
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
| | - Timothy P Cleland
- Museum Conservation Institute, Smithsonian Institution, Suitland, Maryland
| | | | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC.
| |
Collapse
|
26
|
Faisal K, Akbarsha MA. Role of aposomes and epididymosomes in sperm quality control: A light and transmission electron microscopic study in an experimental rat model. Andrologia 2020; 53:e13862. [PMID: 33108830 DOI: 10.1111/and.13862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 12/01/2022] Open
Abstract
The epididymis responds to adverse conditions of misshapen spermatozoa resulting from pathological changes or toxic insults by secretion of a dense matrix that segregates the latter for complete disintegration and dissolution. The objective of this study was to find the source of this matrix and the role-player of disintegration and dissolution of misshapen spermatozoa. We chose Wistar strain male rat model to tackle this issue, and the rats were administered with aflatoxin B1 for 55 days so as to increase the incidence of misshapen spermatozoa. At the end of the treatment, different segments of epididymis were processed for microscopic observations. We found that parallel with abundant misshapen spermatozoa in the epididymis the principal cells of the initial segment secrete enormous membrane-bound apical blebs called aposomes, which contain epididymosomes. The aposomes were found to coalesce so as for the content to merge and form a dense matrix that entangles the misshapen spermatozoa and segregates them from viable spermatozoa. The epididymosomes associate with the misshapen spermatozoa, and the latter is processed to disintegration and total dissolution. Therefore, we assign the role of segregation of misshapen spermatozoa from viable ones to the dense matrix of aposomes and their disintegration and dissolution to the epididymosomes.
Collapse
Affiliation(s)
- Kunnathodi Faisal
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - Mohammad Abdulkader Akbarsha
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India.,Department of Biotechnology, National College (Autonomous), Tiruchirappalli, India
| |
Collapse
|
27
|
Candenas L, Chianese R. Exosome Composition and Seminal Plasma Proteome: A Promising Source of Biomarkers of Male Infertility. Int J Mol Sci 2020; 21:E7022. [PMID: 32987677 PMCID: PMC7583765 DOI: 10.3390/ijms21197022] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
Infertility has become a global health issue, with approximately 50% of infertility cases generated by disorders in male reproduction. Spermatozoa are conveyed towards female genital tracts in a safe surrounding provided by the seminal plasma. Interestingly, this dynamically changing medium is a rich source of proteins, essential not only for sperm transport, but also for its protection and maturation. Most of the seminal proteins are acquired by spermatozoa in transit through exosomes (epididymosomes and prostasomes). The high number of seminal proteins, the increasing knowledge of their origins and biological functions and their differential expression in the case of azoospermia, asthenozoospermia, oligozoospermia and teratozoospermia or other conditions of male infertility have allowed the identification of a wide variety of biomarker candidates and their involvement in biological pathways, thus to strongly suggest that the proteomic landscape of seminal plasma may be a potential indicator of sperm dysfunction. This review summarizes the current knowledge in seminal plasma proteomics and its potentiality as a diagnostic tool in different degrees of male infertility.
Collapse
Affiliation(s)
- Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, via Costantinopoli 16, 80138 Napoli, Italy
| |
Collapse
|
28
|
Nätt D, Öst A. Male reproductive health and intergenerational metabolic responses from a small RNA perspective. J Intern Med 2020; 288:305-320. [PMID: 32415866 DOI: 10.1111/joim.13096] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The world has recently experienced a decline in male reproductive (e.g. sperm counts and motility) and metabolic (e.g. obesity and diabetes) health. Accumulated evidence from animal models also shows that the metabolic health of the father may influence the metabolic health in his offspring. Vectors for such paternal intergenerational metabolic responses (IGMRs) involve small noncoding RNAs (sncRNAs) that often increase in spermatozoa during the last days of maturation in the epididymis. We and others have shown that the metabolic state - depending on factors such as diet, obesity and physical exercise - may affect sperm quality and sperm sncRNA. Together, this suggests that there are overlapping aetiologies between the male metabolic syndrome, male factor infertility and intergenerational responses. In this review, we present a theoretical framework for an overlap of these aetiologies by exploring the advances in our understanding of the roles of sncRNA in spermatogenesis and offspring development. A special focus will lie on novel findings about tRNA-derived small RNA (tsRNA), rRNA-derived small RNA (rsRNA) and small mitochondrial RNA (mitoRNA), and their emerging roles in intergenerational metabolic and reproductive health.
Collapse
Affiliation(s)
- D Nätt
- From the, Department of Clinical and Experimental Medicine, Linköping University, Linkoping, Sweden
| | - A Öst
- From the, Department of Clinical and Experimental Medicine, Linköping University, Linkoping, Sweden
| |
Collapse
|
29
|
Souza APB, Lopes TN, da Silva AFT, Santi L, Beys-da-Silva WO, Yates JR, Bustamante-Filho IC. Changes in porcine cauda epididymal fluid proteome by disrupting the HPT axis: Unveiling potential mechanisms of male infertility. Mol Reprod Dev 2020; 87:952-965. [PMID: 32749760 DOI: 10.1002/mrd.23408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/23/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
Male infertility or subfertility is frequently associated with disruption of the hypothalamic-pituitary-testis axis events, like secondary hypogonadism. However, little is known how this condition affects the proteomic composition of the epididymal fluid. In the present study, we evaluated the proteomic changes in the cauda epididymal fluid (CEF) in a swine model of secondary hypogonadism induced by anti-GnRH immunization using multidimensional protein identification technology. Seven hundred and eighteen proteins were identified in both GnRH-immunized and control groups. GnRH immunization doubled the number of proteins in the CEF, with 417 proteins being found exclusively in samples from GnRH-immunized boars. CEF from GnRH-immunized boars presented an increase in the number of proteins related to cellular and metabolic processes, with affinity to organic cyclic compounds, small molecules, and heterocyclic compounds, as well changed the enzymatic profile of the CEF. Also, a significant increase in the number of proteins associated to the ubiquitin-proteasome system was identified in CEF from GnRH-immunized animals. These results bring strong evidence of the impact of secondary hypogonadism on the epididymal environment, which is responsible for sperm maturation and storage prior ejaculation. Finally, the differently expressed proteins in the CEF are putative seminal biomarkers for testicular and epididymal disorders caused by secondary hypogonadism.
Collapse
Affiliation(s)
- Ana P B Souza
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Tayná N Lopes
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Anna F T da Silva
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Walter O Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Ivan C Bustamante-Filho
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| |
Collapse
|
30
|
Mei S, Chen P, Lee CL, Zhao W, Wang Y, Lam KKW, Ho PC, Yeung WSB, Fang C, Chiu PCN. The role of galectin-3 in spermatozoa-zona pellucida binding and its association with fertilization in vitro. Mol Hum Reprod 2020; 25:458-470. [PMID: 31194867 DOI: 10.1093/molehr/gaz030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Human spermatozoa can fertilize an oocyte only after post-testicular maturation and capacitation. These processes involve dynamic modification and reorganization of the sperm plasma membrane, which allow them to bind to the zona pellucida (ZP) of the oocyte. Defective sperm-ZP binding is one of the major causes of male subfertility. Galectin-3 is a secretory lectin in human seminal plasma well known for its action on cell adhesion. The aim of this study was to determine the role of galectin-3 in spermatozoa-ZP interaction and its association with fertilization rate in clinical assisted reproduction. Our studies revealed that the acrosomal region of ejaculated and capacitated spermatozoa possess strong galectin-3 immunoreactivity, which is much stronger than that of epididymal spermatozoa. Expression of galectin-3 can also be detected on seminal plasma-derived extracellular vesicles (EVs) and can be transferred to the sperm surface. Blocking of sperm surface galectin-3 function by antibody or carbohydrate substrate reduced the ZP-binding capacity of spermatozoa. Purified galectin-3 is capable of binding to ZP, indicating that galectin-3 may serve as a cross-linking bridge between ZP glycans and sperm surface glycoproteins. Galectin-3 levels in seminal plasma-derived EVs were positively associated with fertilization rates. These results suggest that galectin-3 in EVs is transferred to the sperm surface during post-testicular maturation and plays a crucial role in spermatozoa-ZP binding after capacitation. Reduced galectin-3 expression in seminal plasma-derived EVs may be a cause behind a low fertilization rate. Further studies with more clinical samples are required to confirm the relationship between galectin-3 levels and IVF outcomes.
Collapse
Affiliation(s)
- Si Mei
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR
| | - Panyu Chen
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hostpital, Shenzhen, China
| | - Weie Zhao
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ying Wang
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR
| | - Kevin K W Lam
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hostpital, Shenzhen, China
| | - Pak-Chung Ho
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hostpital, Shenzhen, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hostpital, Shenzhen, China
| | - Cong Fang
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hostpital, Shenzhen, China
| |
Collapse
|
31
|
Twenter H, Klohonatz K, Davis K, Bass L, Coleman SJ, Bouma GJ, Bruemmer JE. Transfer of MicroRNAs From Epididymal Epithelium to Equine Spermatozoa. J Equine Vet Sci 2020; 87:102841. [DOI: 10.1016/j.jevs.2019.102841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 01/22/2023]
|
32
|
Kelsey KM, Zigo M, Thompson WE, Kerns K, Manandhar G, Sutovsky M, Sutovsky P. Reciprocal surface expression of arylsulfatase A and ubiquitin in normal and defective mammalian spermatozoa. Cell Tissue Res 2020; 379:561-576. [PMID: 31897834 DOI: 10.1007/s00441-019-03144-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
Defective mammalian spermatozoa are marked on their surface by proteolytic chaperone ubiquitin. To identify potential ubiquitinated substrates in the defective spermatozoa, we resolved bull sperm protein extracts on a two-dimensional gel and isolated a 64-65-kDa spot (p64) corresponding to one of the major ubiquitin-immunoreactive bands observed in the one-dimensional Western blots. Immune serum raised against this protein recognized a prominent, possibly glycosylated band/spot in the range of 55-68 kDa, consistent with the original spot used for immunization. Internal sequences obtained by Edman degradation of this spot matched the sequence of arylsulfatase A (ARSA), the sperm acrosomal enzyme thought to be important for fertility. By immunofluorescence, a prominent signal was detected on the acrosomal surface (boar and bull) and on the sperm tail principal piece (bull). A second immune serum raised against a synthetic peptide corresponding to an immunogenic internal sequence (GTGKSPRRTL) of the porcine ARSA also labeled sperm acrosome and principal piece. Both sera showed diminished immunoreactivity in the defective bull spermatozoa co-labeled with an anti-ubiquitin antibody. Western blotting and image-based flow cytometry (IBFC) confirmed a reduced ARSA immunoreactivity in the immotile sperm fraction rich in ubiquitinated spermatozoa. Larger than expected ARSA-immunoreactive bands were found in sperm protein extracts immunoprecipitated with anti-ubiquitin antibodies and affinity purified with matrix-bound, recombinant ubiquitin-binding UBA domain. These bands did not show the typical pattern of ARSA glycosylation but overlapped with bands preferentially binding the Lens culinaris agglutinin (LCA) lectin. By both epifluorescence microscopy and IBFC, the LCA binding was increased in the ubiquitinated spermatozoa with diminished ARSA immunoreactivity. ARSA was also found in the epididymal fluid suggesting that in addition to intrinsic ARSA expression in the testis, epididymal spermatozoa take up ARSA on their surface during the epididymal passage. We conclude that sperm surface ARSA is one of the ubiquitinated sperm surface glycoproteins in defective bull spermatozoa. Defective sperm surface thus differs from normal sperm surface by increased ubiquitination, reduced ARSA binding, and altered glycosylation.
Collapse
Affiliation(s)
- Kathleen M Kelsey
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA.
| | - Winston E Thompson
- Departments of Obstetrics & Gynecology and Reproductive Health Program, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA, 30310, USA
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
| | - Gaurishankar Manandhar
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
- Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
33
|
Abstract
Exosomes are nanosized membrane vesicles secreted by wide variety of cells and found in abundance in biological fluids including semen. They contain cargo of lipids, proteins, microRNAs and mRNAs, and are known to play a major role in intracellular communication. Seminal exosomes mainly include epididymosomes and prostasomes. Most of the proteins associated with the epididymosomes are transferred to the sperm subcellular or membranous domains during their epididymal transit and are involved in the acquisition of fertilizing ability, modulation of motility and protection against oxidative stress. Proteins associated with prostasomes stimulate sperm motility and regulate the timing of capacitation to avoid premature induction of acrosome reaction. Furthermore, prostasomes protect the sperm from immune responses within the female reproductive tract. Overall, exosome-associated proteins play an indispensable role in maturation of spermatozoa and therefore, serve as an excellent biomarker in early diagnosis of male infertility.
Collapse
|
34
|
Hamilton LE, Zigo M, Mao J, Xu W, Sutovsky P, O’Flaherty C, Oko R. GSTO2 Isoforms Participate in the Oxidative Regulation of the Plasmalemma in Eutherian Spermatozoa during Capacitation. Antioxidants (Basel) 2019; 8:antiox8120601. [PMID: 31795389 PMCID: PMC6943649 DOI: 10.3390/antiox8120601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/23/2022] Open
Abstract
In addition to perinuclear theca anchored glutathione-s-transferase omega 2 (GSTO2), whose function is to participate in sperm nuclear decondensation during fertilization (Biol Reprod. 2019, 101:368–376), we herein provide evidence that GSTO2 is acquired on the sperm plasmalemma during epididymal maturation. This novel membrane localization was reinforced by the isolation and identification of biotin-conjugated surface proteins from ejaculated and capacitated boar and mouse spermatozoa, prompting us to hypothesize that GSTO2 has an oxidative/reductive role in regulating sperm function during capacitation. Utilizing an inhibitor specific to the active site of GSTO2 in spermatozoa, inhibition of this enzyme led to a decrease in tyrosine phosphorylation late in the capacitation process, followed by an expected decrease in acrosome exocytosis and motility. These changes were accompanied by an increase in reactive oxygen species (ROS) levels and membrane lipid peroxidation and culminated in a significant decrease in the percentage of oocytes successfully penetrated by sperm during in vitro fertilization. We conclude that GSTO2 participates in the regulation of sperm function during capacitation, most likely through protection against oxidative stress on the sperm surface.
Collapse
Affiliation(s)
- Lauren E. Hamilton
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.E.H.); (W.X.)
| | - Michal Zigo
- Division of Animal Sciences, College of Food, Agriculture and Natural Resources, Columbia, MO 65211, USA; (M.Z.); (J.M.); (P.S.)
| | - Jiude Mao
- Division of Animal Sciences, College of Food, Agriculture and Natural Resources, Columbia, MO 65211, USA; (M.Z.); (J.M.); (P.S.)
| | - Wei Xu
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.E.H.); (W.X.)
| | - Peter Sutovsky
- Division of Animal Sciences, College of Food, Agriculture and Natural Resources, Columbia, MO 65211, USA; (M.Z.); (J.M.); (P.S.)
- Division of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Cristian O’Flaherty
- Department of Surgery (Urology Division), Faculty of Medicine, McGill University, Montreal, QC H4A 3JI, Canada;
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.E.H.); (W.X.)
- Correspondence:
| |
Collapse
|
35
|
Battistone MA, Spallanzani RG, Mendelsohn AC, Capen D, Nair AV, Brown D, Breton S. Novel role of proton-secreting epithelial cells in sperm maturation and mucosal immunity. J Cell Sci 2019; 133:jcs.233239. [PMID: 31636115 DOI: 10.1242/jcs.233239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial cells are immune sensors and mediators that constitute the first line of defense against infections. Using the epididymis, a model for studying tubular organs, we uncovered a novel and unexpected role for professional proton-secreting 'clear cells' in sperm maturation and immune defense. The epididymal epithelium participates in the maturation of spermatozoa via the establishment of an acidic milieu and transfer of proteins to sperm cells, a poorly characterized process. We show that proton-secreting clear cells express mRNA transcripts and proteins that are acquired by maturing sperm, and that they establish close interactions with luminal spermatozoa via newly described 'nanotubes'. Mechanistic studies show that injection of bacterial antigens in vivo induces chemokine expression in clear cells, followed by macrophage recruitment into the organ. Injection of an inflammatory intermediate mediator (IFN-γ) increased Cxcl10 expression in clear cells, revealing their participation as sensors and mediators of inflammation. The functional diversity adopted by clear cells might represent a generalized phenomenon by which similar epithelial cells decode signals, communicate with neighbors and mediate mucosal immunity, depending on their precise location within an organ.
Collapse
Affiliation(s)
- Maria A Battistone
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Raul German Spallanzani
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexandra C Mendelsohn
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Diane Capen
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Anil V Nair
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Dennis Brown
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
36
|
Tarique I, Liu Y, Bai X, Haseeb A, Yang P, Huang Y, Qu W, Wu R, Vistro WA, Chen Q. Characterization of Extracellular Vesicles from Cilia and Epithelial Cells of Ductuli Efferentes in a Turtle ( Pelodiscus sinensis). Animals (Basel) 2019; 9:E888. [PMID: 31683774 PMCID: PMC6912823 DOI: 10.3390/ani9110888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
The ductuli efferentes (DE) form a transit passage for the passage of spermatozoa from the rete testis to the epididymis. After spermiation, various epithelial secretory proteins are transferred via extracellular vesicles (EVs) to the spermatozoa for their maturation and long-term viability. The aim of the present study was to investigate the distribution, classification, and source of multivesicular bodies (MVBs) and their EVs in the epithelia of the efferentes duct in a turtle species, the soft-shelled freshwater turtle Pelodiscus sinensis by using light and transmission electron microscopy. The results showed that CD63 as a classical exosome marker was strongly immunolocalized within the apical and lateral cytoplasm of the ciliated cells (CC) and moderate to weak in the non-ciliated cells (NCC) of DE. The ultrastructure revealed that early endosome was present at the basement membrane and perinuclear cytoplasm of both CC and NCC, whereas MVBs were located over the nucleus in the cytoplasm of NCC and adjacent to the basal bodies of cilia within the CC. Many EVs, as sources of MVBs, were located within the blebs that were attached to the cilia of CC, within the apical blebs from NCC, and the lateral spaces of CC and NCC. There was ultrastructure evidence of EVs associated with spermatozoa in the lumens of DE. Collectively, the present study provides cytological evidence that the DE epithelium secreted EVs to the lumen by (1) apical blebs, (2) ciliary blebs, and (3) from the basolateral region. These EVs were associated with spermatozoa in the DE lumen of this turtle. Characterization and cellular distribution of these EVs in the DE of a turtle may provide a study model to further investigate the transferring of micromolecules via EVs to the spermatozoa.
Collapse
Affiliation(s)
- Imran Tarique
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yifei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Abdul Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wenjia Qu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ruizhi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Waseem Ali Vistro
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Quisheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
37
|
Wang TE, Li SH, Minabe S, Anderson AL, Dun MD, Maeda KI, Matsuda F, Chang HW, Nixon B, Tsai PSJ. Mouse quiescin sulfhydryl oxidases exhibit distinct epididymal luminal distribution with segment-specific sperm surface associations. Biol Reprod 2019; 99:1022-1033. [PMID: 29800099 DOI: 10.1093/biolre/ioy125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
Sulfhydryl oxidation is part of the sperm maturation process essential for the acquisition of sperm fertilization competency and its structural stabilization; however, the specific sulfhydryl oxidases that fulfill these roles have yet to be identified. In this study, we investigate the potential involvement of one atypical thiol oxidase family called quiescin Q6/sulfhydryl oxidase (QSOX) using the mouse epididymis as our model system. With multidisciplinary approaches, we show that QSOX isoform 1 and 2 exhibit complementary distribution throughout the epididymal duct, but that each variant possesses distinct subcellular localization within the epididymal principal cells. While QSOX2 was exclusively present in the Golgi apparatus of the caput and corpus epididymis, QSOX1c, the most profusely express QSOX1 variant, was abundantly present in the cauda luminal fluids. Moreover, immunohistochemistry studies together with proteomic identification in isolated epididymosomes provided evidence substantiating the release of QSOX2, but not QSOX1c, via an apocrine secretory pathway. Furthermore, we demonstrate for the first time, distinct association of QSOX1c and QSOX2 with the sperm acrosome and implantation fossa, during different stages of their epididymal maturation. In conclusion, our study provides the first comprehensive comparisons between QSOX1 and QSOX2 in the mouse epididymis, revealing their distinct epididymal distribution, cellular localization, mechanisms of secretion and sperm membrane association. Together, these data suggest that QSOX1 and QSOX2 have discrete biological functions in male germ cell development.
Collapse
Affiliation(s)
- Tse-En Wang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Hsiang Li
- Department of Medical Research, Mackay Memorial Hospital, Tamshui, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Shiori Minabe
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Amanda L Anderson
- Priority Research Centre for Reproduction, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, New South Wales, Australia
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hui-Wen Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Brett Nixon
- Priority Research Centre for Reproduction, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Pei-Shiue Jason Tsai
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
38
|
Zhu Z, Li R, Wang L, Zheng Y, Hoque SAM, Lv Y, Zeng W. Glycogen Synthase Kinase-3 Regulates Sperm Motility and Acrosome Reaction via Affecting Energy Metabolism in Goats. Front Physiol 2019; 10:968. [PMID: 31417426 PMCID: PMC6682598 DOI: 10.3389/fphys.2019.00968] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Hyperactivation and acrosome reaction of sperm are pre-requisite steps for fertilization. However, the hyperactivation and acrosome reaction are critically controlled through the phosphorylation of specific proteins. Glycogen synthase kinase-3 (GSK3), a serine/threonine kinase with two different isoforms (α and β), is involved in biochemical signaling pathways. This study was aimed to investigate whether the GSK3α/β is present in goat sperm and its regulatory role in sperm motility and acrosome reaction. GSK3α/β was detected with immunofluorescence and Western blotting. Sperm motility, membrane integrity, acrosome reaction, mitochondrial membrane potential, phospho-Ser21-GSK3α and phospho-Ser9-GSK3β were analyzed. The ATP production and activities of lactate dehydrogenase (LDH), malate dehydrogenase (MDH), and succinate dehydrogenase (SDH) were measured. It was observed that the GSK3α/β was expressed in goat sperm, especially in the peri-acrosomal, mid-piece and principal piece of the tail. The abundance of GSK3α/β in sperm was increased during transit along the epididymis. Addition of either 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or CHIR99021 significantly increased the sperm motility patterns and GSK3α/β phosphorylation. Interestingly, the adenosine triphosphate (ATP) production, activities of LDH, MDH and SDH were observed to be increased in the CHIR99021 treatment. The results suggested that GSK3α/β regulates sperm motility and acrosome reaction via phospho-ser21-GSK3α and phospho-ser9-GSK3β that involved in the regulation of sperm energy metabolism.
Collapse
Affiliation(s)
- Zhendong Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rongnan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Liqiang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yi Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - S A Masudul Hoque
- Department of Animal Breeding and Genetics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Yinghua Lv
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Wenxian Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
39
|
Trigg NA, Eamens AL, Nixon B. The contribution of epididymosomes to the sperm small RNA profile. Reproduction 2019; 157:R209-R223. [DOI: 10.1530/rep-18-0480] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022]
Abstract
It is now well established that mature spermatozoa harbour a rich and diverse profile of small non-protein-coding regulatory RNAs (sRNAs). There is also growing appreciation that this sRNA profile displays considerable plasticity, being altered in response to paternal exposure to a variety of environmental stressors. Coupled with evidence that upon delivery to the oocyte at the moment of fertilisation, sperm-borne sRNAs are able to influence both early embryonic development and the subsequent health of the offspring, there is now interest in both the timing and degree of change in the composition of the sRNA cargo of sperm. Models in which such epigenetic changes are linked to the spermatogenic cycle are seemingly incompatible with the lack of overt phenotypic changes in the spermatozoa of affected males. Rather, there is mounting consensus that such changes are imposed on sperm during their transit and storage within the epididymis, a protracted developmental window that takes place over several weeks. Notably, since spermatozoa are rendered transcriptionally and translationally silent during their development in the testes, it is most likely that the epididymis-documented alterations to the sperm sRNA profile are driven extrinsically, with a leading candidate being epididymosomes: small membrane enclosed extracellular vesicles that encapsulate a complex macromolecular cargo of proteins and RNAs, including the sRNAs. Here, we review the role of epididymosome–sperm communication in contributing to the establishment of the sperm sRNA profile during their epididymal transit.
Collapse
|
40
|
Nixon B, De Iuliis GN, Dun MD, Zhou W, Trigg NA, Eamens AL. Profiling of epididymal small non-protein-coding RNAs. Andrology 2019; 7:669-680. [PMID: 31020794 DOI: 10.1111/andr.12640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/04/2019] [Accepted: 03/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Our understanding of epididymal physiology and function has been transformed over the three decades in which the International Meeting Series on the Epididymis has been hosted. This transformation has occurred along many fronts, but among the most significant advances has been the unexpected discovery of the diversity of small non-protein-coding RNAs (sRNAs) expressed in the epididymal epithelium and differentially accumulated in the luminal population of spermatozoa. OBJECTIVES Here we survey recent literature pertaining to profiling the sRNA landscape of the mammalian epididymis with the goal of demonstrating the contribution that these key regulatory elements, and their associated pathways, make to epididymal physiology and sperm maturation. RESULTS AND DISCUSSION High throughput sequencing strategies have fueled an unprecedented advance in our understanding of RNA biology. In the last decade, such high throughput profiling tools have been increasingly applied to study the mammalian epididymis, presaging the discovery of diverse classes of sRNA expressed along the length of the tract. Among the best studied sRNA classes are the microRNAs (miRNA), a sRNA species shown to act in concert with endocrine signals to fine-tune the segmental patterning of epididymal gene expression. In addition to performing this homeostatic role, epithelial cell-derived sRNAs also selectively accumulate into the epididymosomes and spermatozoa that occupy the duct lumen. This exciting discovery alludes to a novel form of intracellular communication that contributes to the establishment of the sperm epigenome and its modification under conditions of paternal stress. CONCLUSION Compelling literature has identified sRNAs as a crucial regulatory tier that allows the epididymis to fulfill its combined roles of sperm transport, maturation, and storage. Continued research in this emerging field will contribute to our growing understanding of the etiology of male factor infertility and potentially allow for the future design of rational therapeutic options for these individuals.
Collapse
Affiliation(s)
- B Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - G N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - M D Dun
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - W Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - N A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - A L Eamens
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
41
|
Zhou W, Stanger SJ, Anderson AL, Bernstein IR, De Iuliis GN, McCluskey A, McLaughlin EA, Dun MD, Nixon B. Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions. BMC Biol 2019; 17:35. [PMID: 30999907 PMCID: PMC6474069 DOI: 10.1186/s12915-019-0653-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/04/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The mammalian epididymis is responsible for the provision of a highly specialized environment in which spermatozoa acquire functional maturity and are subsequently stored in preparation for ejaculation. Making important contributions to both processes are epididymosomes, small extracellular vesicles released from the epididymal soma via an apocrine secretory pathway. While considerable effort has been focused on defining the cargo transferred between epididymosomes and spermatozoa, comparatively less is known about the mechanistic basis of these interactions. To investigate this phenomenon, we have utilized an in vitro co-culture system to track the transfer of biotinylated protein cargo between mouse epididymosomes and recipient spermatozoa isolated from the caput epididymis; an epididymal segment that is of critical importance for promoting sperm maturation. RESULTS Our data indicate that epididymosome-sperm interactions are initiated via tethering of the epididymosome to receptors restricted to the post-acrosomal domain of the sperm head. Thereafter, epididymosomes mediate the transfer of protein cargo to spermatozoa via a process that is dependent on dynamin, a family of mechanoenzymes that direct intercellular vesicle trafficking. Notably, upon co-culture of sperm with epididymosomes, dynamin 1 undergoes a pronounced relocation between the peri- and post-acrosomal domains of the sperm head. This repositioning of dynamin 1 is potentially mediated via its association with membrane rafts and ideally locates the enzyme to facilitate the uptake of epididymosome-borne proteins. Accordingly, disruption of membrane raft integrity or pharmacological inhibition of dynamin both potently suppress the transfer of biotinylated epididymosome proteins to spermatozoa. CONCLUSION Together, these data provide new mechanistic insight into epididymosome-sperm interactions with potential implications extending to the manipulation of sperm maturation for the purpose of fertility regulation.
Collapse
Affiliation(s)
- Wei Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ilana R Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Adam McCluskey
- Priority Research Centre for Chemical Biology, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.,School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand.,Faculty of Science and Technology, University of Canberra, Bruce, ACT, 2617, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW, 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
42
|
Nixon B, De Iuliis GN, Hart HM, Zhou W, Mathe A, Bernstein IR, Anderson AL, Stanger SJ, Skerrett-Byrne DA, Jamaluddin MFB, Almazi JG, Bromfield EG, Larsen MR, Dun MD. Proteomic Profiling of Mouse Epididymosomes Reveals their Contributions to Post-testicular Sperm Maturation. Mol Cell Proteomics 2019; 18:S91-S108. [PMID: 30213844 PMCID: PMC6427233 DOI: 10.1074/mcp.ra118.000946] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/28/2018] [Indexed: 01/31/2023] Open
Abstract
The functional maturation of spermatozoa that is necessary to achieve fertilization occurs as these cells transit through the epididymis, a highly specialized region of the male reproductive tract. A defining feature of this maturation process is that it occurs in the complete absence of nuclear gene transcription or de novo, protein translation in the spermatozoa. Rather, it is driven by sequential interactions between spermatozoa and the complex external milieu in which they are bathed within lumen of the epididymal tubule. A feature of this dynamic microenvironment are epididymosomes, small membrane encapsulated vesicles that are secreted from the epididymal soma. Herein, we report comparative proteomic profiling of epididymosomes isolated from different segments of the mouse epididymis using multiplexed tandem mass tag (TMT) based quantification coupled with high resolution LC-MS/MS. A total of 1640 epididymosome proteins were identified and quantified via this proteomic method. Notably, this analysis revealed pronounced segment-to-segment variation in the encapsulated epididymosome proteome. Thus, 146 proteins were identified as being differentially accumulated between caput and corpus epididymosomes, and a further 344 were differentially accumulated between corpus and cauda epididymosomes (i.e., fold change of ≤ -1.5 or ≥ 1.5; p, < 0.05). Application of gene ontology annotation revealed a substantial portion of the epididymosome proteins mapped to the cellular component of extracellular exosome and to the biological processes of transport, oxidation-reduction, and metabolism. Additional annotation of the subset of epididymosome proteins that have not previously been identified in exosomes revealed enrichment of categories associated with the acquisition of sperm function (e.g., fertilization and binding to the zona pellucida). In tandem with our demonstration that epididymosomes are able to convey protein cargo to the head of maturing spermatozoa, these data emphasize the fundamental importance of epididymosomes as key elements of the epididymal microenvironment responsible for coordinating post-testicular sperm maturation.
Collapse
Affiliation(s)
- Brett Nixon
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Geoffry N De Iuliis
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Hanah M Hart
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Wei Zhou
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Andrea Mathe
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia;; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ilana R Bernstein
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Amanda L Anderson
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Simone J Stanger
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - David A Skerrett-Byrne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - M Fairuz B Jamaluddin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia;; Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW 2305, Australia
| | - Juhura G Almazi
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia;; Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW 2305, Australia
| | - Elizabeth G Bromfield
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia;; Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
43
|
Bathala P, Fereshteh Z, Li K, Al-Dossary AA, Galileo DS, Martin-DeLeon PA. Oviductal extracellular vesicles (oviductosomes, OVS) are conserved in humans: murine OVS play a pivotal role in sperm capacitation and fertility. Mol Hum Reprod 2019; 24:143-157. [PMID: 29370405 DOI: 10.1093/molehr/gay003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/20/2018] [Indexed: 01/12/2023] Open
Abstract
STUDY QUESTIONS Are extracellular vesicles (EVs) in the murine oviduct (oviductosomes, OVS) conserved in humans and do they play a role in the fertility of Pmca4-/- females? SUMMARY ANSWER OVS and their fertility-modulating proteins are conserved in humans, arise via the apocrine pathway, and mediate a compensatory upregulation of PMCA1 (plasma membrane Ca2+-ATPase 1) in Pmca4-/- female mice during proestrus/estrus, to account for their fertility. WHAT IS KNOWN ALREADY Recently murine OVS were identified and shown during proestrus/estrus to express elevated levels of PMCA4 which they can deliver to sperm. PMCA4 is the major Ca2+ efflux pump in murine sperm and Pmca4 deletion leads to loss of sperm motility and male infertility as there is no compensatory upregulation of the remaining Ca2+ pump, PMCA1. Of the four family members of PMCAs (PMCA1-4), PMCA1 and PMCA4 are ubiquitous, and to date there have been no reports of one isoform being upregulated to compensate for another in any organ/tissue. Since Pmca4-/- females are fertile, despite the abundant expression of PMCA4 in wild-type (WT) OVS, we propose that OVS serve a role of packaging and delivering to sperm elevated levels of PMCA1 in Pmca4-/- during proestrus/estrus to compensate for PMCA4's absence. STUDY DESIGN, SIZE, DURATION Fallopian tubes from pre-menopausal women undergoing hysterectomy were used to study EVs in the luminal fluid. Oviducts from sexually mature WT mice were sectioned after perfusion fixation to detect EVs in situ. Oviducts were recovered from WT and Pmca4-/- after hormonally induced estrus and sectioned for PMCA1 immunofluorescence (IF) (detected with confocal microscopy) and hematoxylin and eosin staining. Reproductive tissues, luminal fluids and EVs were recovered after induced estrus and after natural cycling for western blot analysis of PMCA1 and qRT-PCR of Pmca1 to compare expression levels in WT and Pmca4-/-. OVS, uterosomes, and epididymal luminal fluid were included in the comparisons. WT and Pmca4-/- OVS were analyzed for the presence of known PMCA4 partners in sperm and their ability to interact with PMCA1, via co-immunoprecipitation. In vitro uptake of PMCA1 from OVS was analyzed in capacitated and uncapacitated sperm via quantitative western blot analysis, IF localization and flow cytometry. Caudal sperm were also assayed for uptake of tyrosine-phosphorylated proteins which were shown to be present in OVS. Finally, PMCA1 and PMCA4 in OVS and that delivered to sperm were assayed for enzymatic activity. PARTICIPANTS/MATERIALS, SETTING, METHODS Human fallopian tubes were flushed to recover luminal fluid which was processed for OVS via ultracentrifugation. Human OVS were negatively stained for transmission electron microscopy (TEM) and subjected to immunogold labeling, to detect PMCA4. Western analysis was used to detect HSC70 (an EV biomarker), PMCA1 and endothelial nitric oxide synthase (eNOS) which is a fertility-modulating protein delivered to human sperm by prostasomes. Oviducts of sexually mature female mice were sectioned after perfusion fixation for TEM tomography to obtain 3D information and to distinguish cross-sections of EVs from those of microvilli and cilia. Murine tissues, luminal fluids and EVs were assayed for PMCA1 (IF and western blot) or qRT-PCR. PMCA1 levels from western blots were quantified, using band densities and compared in WT and Pmca4-/- after induced estrus and in proestrus/estrus and metestrus/diestrus in cycling females. In vitro uptake of PMCA1 and tyrosine-phosphorylated proteins was quantified with flow cytometry and/or quantitative western blot. Ca2+-ATPase activity in OVS and sperm before and after PMCA1 and PMCA4 uptake was assayed, via the enzymatic hydrolysis rate of ATP. MAIN RESULTS AND THE ROLE OF CHANCE TEM revealed that human oviducts contain EVs (exosomal and microvesicular). These EVs contain PMCA4 (immunolabeling), eNOS and PMCA1 (western blot) in their cargo. TEM tomography showed the murine oviduct with EV-containing blebs which typify the apocrine pathway for EV biogenesis. Western blots revealed that during proestrus/estrus PMCA1 was significantly elevated in the oviductal luminal fluid (OLF) (P = 0.02) and in OVS (P = 0.03) of Pmca4-/-, compared to WT. Further, while PMCA1 levels did not fluctuate in OLF during the cycle in WT, they were significantly (P = 0.02) higher in proestrus/estrus than at metestrus/diestrus in Pmca4-/-. The elevated levels of PMCA1 in proestrus/estrus, which mimics PMCA4 in WT, is OLF/OVS-specific, and is not seen in oviductal tissues, uterosomes or epididymal luminal fluid of Pmca4-/-. However, qRT-PCR revealed significantly elevated levels of Pmca1 transcript in Pmca4-/- oviductal tissues, compared to WT. PMCA1 could be transferred from OVS to sperm and the levels were significantly higher for capacitated vs uncapacitated sperm, as assessed by flow cytometry (P = 0.001) after 3 h co-incubation, quantitative western blot (P < 0.05) and the frequency of immuno-labeled sperm (P < 0.001) after 30 min co-incubation. Tyrosine phosphorylated proteins were discovered in murine OVS and could be delivered to sperm after their co-incubation with OVS, as detected by western, immunofluorescence localization, and flow cytometry. PMCA1 and PMCA4 in OVS were shown to be enzymatically active and this activity increased in sperm after OVS interaction. LARGE SCALE DATA None. LIMITATIONS REASONS FOR CAUTION Although oviductal tissues of WT and Pmca4-/- showed no significant difference in PMCA1 levels, Pmca4-/- levels of OVS/OLF during proestrus/estrus were significantly higher than in WT. We have attributed this enrichment or upregulation of PMCA1 in Pmca4-/- partly to selective packaging in OVS to compensate for the lack of PMCA4. However, in the absence of a difference between WT and Pmca4-/- in the PMCA1 levels in oviductal tissues as a whole, we cannot rule out significantly higher PMCA1 expression in the oviductal epithelium that gives rise to the OVS as significantly higher Pmca1 transcripts were detected in Pmca4-/-. WIDER IMPLICATIONS OF THE FINDINGS Since OVS and fertility-modulating cargo components are conserved in humans, it suggests that murine OVS role in regulating the expression of proteins required for capacitation and fertility is also conserved. Secondly, OVS may explain some of the differences in in vivo and in vitro fertilization for mouse mutants, as seen in mice lacking the gene for FER which is the enzyme required for sperm protein tyrosine phosphorylation. Our observation that murine OVS carry and can modulate sperm protein tyrosine phosphorylation by delivering them to sperm provides an explanation for the in vivo fertility of Fer mutants, not seen in vitro. Finally, our findings have implications for infertility treatment and exosome therapeutics. STUDY FUNDING AND COMPETING INTEREST(S) The work was supported by National Institute of Health (RO3HD073523 and 5P20RR015588) grants to P.A.M.-D. There are no conflicts of interests.
Collapse
Affiliation(s)
- Pradeepthi Bathala
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zeinab Fereshteh
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kun Li
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.,Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Room 205 B, Building 3, 182 Tian Mu Shan Road, Hangzhou, Zhejiang 310013, China
| | - Amal A Al-Dossary
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.,Department of Biology, College of Medicine, University of Dammam (UOD), PO Box 2435, Dammam 31451, Saudi Arabia
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
44
|
Schuler G, Dezhkam Y, Tenbusch L, Klymiuk MC, Zimmer B, Hoffmann B. SULFATION PATHWAYS: Formation and hydrolysis of sulfonated estrogens in the porcine testis and epididymis. J Mol Endocrinol 2018; 61:M13-M25. [PMID: 29467139 DOI: 10.1530/jme-17-0245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022]
Abstract
Boars exhibit high concentrations of sulfonated estrogens (SE) mainly originating from the testicular-epididymal compartment. Intriguingly, in porcine Leydig cells, sulfonation of estrogens is colocalized with aromatase and steroid sulfatase (STS), indicating that de novo synthesis of unconjugated estrogens (UE), their sulfonation and hydrolysis of SE occur within the same cell type. So far in boars no plausible concept concerning the role of SE has been put forward. To obtain new information on SE formation and hydrolysis, the porcine testicular-epididymal compartment was screened for the expression of the estrogen-specific sulfotransferase SULT1E1 and STS applying real-time RT-qPCR, Western blot and immunohistochemistry. The epididymal head was identified as the major site of SULT1E1 expression, whereas in the testis, it was virtually undetectable. However, SE tissue concentrations are clearly consistent with the testis as the predominant site of estrogen sulfonation. Results from measurements of estrogen sulfotransferase activity indicate that in the epididymis, SULT1E1 is the relevant enzyme, whereas in the testis, estrogens are sulfonated by a different sulfotransferase with a considerably lower affinity. STS expression and activity was high in the testis (Leydig cells, rete testis epithelium) but also present throughout the epididymis. In the epididymis, SULT1E1 and STS were colocalized in the ductal epithelium, and there was evidence for their apocrine secretion into the ductal lumen. The results suggest that in porcine Leydig cells, SE may be produced as a reservoir to support the levels of bioactive UE via the sulfatase pathway during periods of low activity of the pulsatile testicular steroidogenesis.
Collapse
Affiliation(s)
- G Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Y Dezhkam
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - L Tenbusch
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - M C Klymiuk
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - B Zimmer
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - B Hoffmann
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
45
|
Wu KZ, Li K, Galileo DS, Martin-DeLeon PA. Junctional adhesion molecule A: expression in the murine epididymal tract and accessory organs and acquisition by maturing sperm. Mol Hum Reprod 2018; 23:132-140. [PMID: 28062807 DOI: 10.1093/molehr/gaw082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Is junctional adhesion molecule A (JAM-A), a sperm protein essential for normal motility, expressed in the murine post-testicular pathway and involved in sperm maturation? SUMMARY ANSWER JAM-A is present in the prostate and seminal vesicles and in all three regions of the epididymis where it is secreted in epididymosomes in the luminal fluid and can be delivered to sperm in vitro. WHAT IS KNOWN ALREADY JAM-A shares with the plasma membrane Ca2+ATPase 4 (PMCA4, the major Ca2+ efflux pump in murine sperm) a common interacting partner, CASK (Ca2+/CaM-dependent serine kinase). JAM-A, like PMCA4, plays a role in Ca2+ regulation, since deletion of Jam-A results in significantly elevated intracellular Ca2+ levels and reduced sperm motility. Recently, PMCA4 was reported to be expressed in the epididymis and along with CASK was shown to be in a complex on epididymosomes where it was transferred to sperm. Because of the association of JAM-A with CASK in sperm and because of the presence of PMCA4 and CASK in the epididymis, the present study was performed to determine whether JAM-A is expressed in the epididymis and delivered to sperm during their maturation. STUDY DESIGN, SIZE, DURATION The epididymides, prostate and seminal vesicles were collected from sexually mature C57BL/6J and Institute for Cancer Research mice and antibodies specific for JAM-A and Ser285 -phosphorylated JAM-A (pJAM-A) were used for the analysis. Tissues, sperm and epididymal luminal fluid (ELF) were studied. Epididymosomes were also isolated for study. Caput and caudal sperm were co-incubated with ELF individually to determine their abilities to acquire JAM-A in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS Sections of all three regions of the epididymis were subjected to indirect immunofluorescence analysis. Epididymal tissues, fluid, sperm, prostate and seminal vesicle tissues were analyzed for JAM-A and/or pJAM-A via western blotting analysis. The relative amounts of JAM-A and pJAM-A among epididymal tissues, ELF and sperm were detected by western blot via quantification of band intensities. Epididymosomes were isolated by ultracentrifugation of the ELF after it was clarified to remove cells and tissue fragments, and the proteins western blotted for JAM-A and pJAM-A, and exosomal biochemical markers. FACS analysis was used to quantify the amount of JAM-A present on caput and caudal sperm, as well as the amount of JAM-A acquired in vitro after their co-incubation with ELF. MAIN RESULTS AND THE ROLE OF CHANCE Western blots revealed that JAM-A is expressed in all three regions of the epididymis, the prostate and seminal vesicles. As confirmed by indirect immunofluorescence, a western blot showed that JAM-A has a higher expression in the corpus and caudal regions, where it is significantly (P < 0.01) more abundant than in the caput. Both JAM-A and Ser285-phosphorylated JAM-A (pJAM-A) are secreted into the ELF where it is highest in the distal regions. In the ELF, both JAM-A and pJAM-A were detected in epididymosomes. Western blotting of sperm proteins showed a significant (P < 0.01) increase of JAM-A and pJAM-A in caudal, compared with caput, sperm. Flow-cytometric analysis confirmed the increase in JAM-A in caudal sperm where it was 1.4-fold higher than in caput ones. Co-incubation of caput and caudal sperm with ELF demonstrated ~2.3- and ~1.3-fold increases, respectively, in JAM-A levels indicating that epididymosomes transfer more JAM-A to caput sperm that are less saturated with the protein than caudal ones. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION First, although the ELF was clarified prior to ultracentrifugation for epididymosome isolation, we cannot rule out contamination of the epididymosomal proteins by those from epididymal epithelial cells. Second, the JAM-A detected in the prostate and seminal vesicles might not necessarily be secreted from those organs and may only be present within the tissues, where it would be unable to impact sperm in the ejaculate. WIDER IMPLICATIONS OF THE FINDINGS Although performed in the mouse the study has implications for humans, as the highly conserved JAM-A is a signaling protein in human sperm. There is physiological significance to the finding that JAM-A, which regulates sperm motility and intracellular Ca2+, exists in elevated levels in the cauda where sperm gain motility and fertilizing ability. The study suggests that the acquisition of JAM-A in the epididymal tract is involved in the mechanism by which sperm gain their motility during epididymal maturation. This increased understanding of sperm physiology is important for aspects of ART. STUDY FUNDING AND COMPETING INTEREST(S) The work was supported by NIH-RO3HD073523 and NIH-5P20RR015588 grants to P.A.M.-D. The authors declare there are no conflicts of interests.
Collapse
Affiliation(s)
- Kathie Z Wu
- Department of Biological Sciences, University of Delaware, 219 Mckinly Lab, Newark, DE 19716, USA
| | - Kun Li
- Department of Biological Sciences, University of Delaware, 219 Mckinly Lab, Newark, DE 19716, USA
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, 219 Mckinly Lab, Newark, DE 19716, USA
| | - Patricia A Martin-DeLeon
- Department of Biological Sciences, University of Delaware, 219 Mckinly Lab, Newark, DE 19716, USA
| |
Collapse
|
46
|
Zhou W, De Iuliis GN, Dun MD, Nixon B. Characteristics of the Epididymal Luminal Environment Responsible for Sperm Maturation and Storage. Front Endocrinol (Lausanne) 2018; 9:59. [PMID: 29541061 PMCID: PMC5835514 DOI: 10.3389/fendo.2018.00059] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The testicular spermatozoa of all mammalian species are considered functionally immature owing to their inability to swim in a progressive manner and engage in productive interactions with the cumulus-oocyte complex. The ability to express these key functional attributes develops progressively during the cells' descent through the epididymis, a highly specialized ductal system that forms an integral part of the male reproductive tract. The functional maturation of the spermatozoon is achieved via continuous interactions with the epididymal luminal microenvironment and remarkably, occurs in the complete absence of de novo gene transcription or protein translation. Compositional analysis of the luminal fluids collected from the epididymis of a variety of species has revealed the complexity of this milieu, with a diversity of inorganic ions, proteins, and small non-coding RNA transcripts having been identified to date. Notably, both the quantitative and qualitative profile of each of these different luminal elements display substantial segment-to-segment variation, which in turn contribute to the regionalized functionality of this long tubule. Thus, spermatozoa acquire functional maturity in the proximal segments before being stored in a quiescent state in the distal segment in preparation for ejaculation. Such marked division of labor is achieved via the combined secretory and absorptive activity of the epithelial cells lining each segment. Here, we review our current understanding of the molecular mechanisms that exert influence over the unique intraluminal environment of the epididymis, with a particular focus on vesicle-dependent mechanisms that facilitate intercellular communication between the epididymal soma and maturing sperm cell population.
Collapse
Affiliation(s)
- Wei Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Matthew D. Dun
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- *Correspondence: Brett Nixon,
| |
Collapse
|
47
|
Hughes JR, Berger T. Regulation of apical blebbing in the porcine epididymis. J Anat 2017; 232:515-522. [PMID: 29205333 DOI: 10.1111/joa.12755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2017] [Indexed: 01/30/2023] Open
Abstract
Apical blebbing, a non-classical secretion mechanism, occurs in the mature porcine epididymis as part of its normal function. Proteins secreted by this mechanism contribute to the modification of the sperm plasma membrane during epididymal transit and are thought to contribute to acquisition of fertilizing ability. However, little is known about the regulation of this secretion mechanism in an in vivo model. Previous work demonstrated apical blebbing in the epididymis developed pubertally, suggesting androgens, sperm or other luminal factors regulated this process. Hence, the objective was to evaluate the hypothesized regulation of apical blebbing in the epididymis of pubertal boars by androgens and luminal factors. Androgen receptor blockade (flutamide) and surgical interventions (efferent duct ligation, orchidectomy or transection of the caput epididymis) were used to alter signaling, and the subsequent effects on apical blebbing were evaluated histologically. Apical blebbing was not altered by androgen receptor blockade with flutamide, but was significantly reduced 24 h after efferent duct ligation and after orchidectomy, treatments that eliminated luminal flow from the testis (P < 0.05). Like efferent duct ligation, epididymal transection altered luminal flow without removing the androgen source and significantly reduced the appearance of apical blebbing (P < 0.05). In conclusion, apical blebbing in the porcine epididymis appears to be regulated by luminal factors.
Collapse
Affiliation(s)
- Jennifer R Hughes
- Department of Animal Science, University of California, Davis, CA, USA
| | - Trish Berger
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
48
|
Chen H, Yang P, Chu X, Huang Y, Liu T, Zhang Q, Li Q, Hu L, Waqas Y, Ahmed N, Chen Q. Cellular evidence for nano-scale exosome secretion and interactions with spermatozoa in the epididymis of the Chinese soft-shelled turtle, Pelodiscus sinensis. Oncotarget 2017; 7:19242-50. [PMID: 26992236 PMCID: PMC4991379 DOI: 10.18632/oncotarget.8092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
The epididymis is the location of sperm maturation and sperm storage. Recent studies have shown that nano-scale exosomes play a vital role during these complicated processes. Our aim was to analyze the secretory properties of epididymal exosomes and their ultrastructural interaction with maturing spermatozoa in the Chinese soft-shelled turtle. The exosome marker CD63 was primarily localized to the apices of principal cells throughout the epididymal epithelium. Identification of nano-scale exosomes and their secretory processes were further investigated via transmission electron microscopy. The epithelium secreted epididymal exosomes (50~300 nm in diameter) through apocrine secretion and the multivesicular body (MVB) pathway. Spermatozoa absorbed epididymal exosomes through endocytosis or membrane fusion pathways. This study shows, for the first time, that nano-scale exosomes use two secretion and two absorption pathways in the reptile, which may be contribute to long-term sperm storage.
Collapse
Affiliation(s)
- Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xiaoya Chu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qian Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Quanfu Li
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Lisi Hu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| |
Collapse
|
49
|
Key factors enhancing sperm fertilizing ability are transferred from the epididymis to the spermatozoa via epididymosomes in the domestic cat model. J Assist Reprod Genet 2017; 35:221-228. [PMID: 29134478 DOI: 10.1007/s10815-017-1083-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/02/2017] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Spermatozoa undergo critical changes in structure and function during the epididymal transit. Our previous studies in the domestic cat demonstrated that incidence of cenexin-a key protein involved in the centrosomal maturation-progressively increases in sperm cells from caput to cauda epididymidis. The objectives of the study were to (1) characterize mechanisms involved in transferring key factors-using the cenexin as a marker-between the epididymis and maturing sperm cells and (2) demonstrate the impact of such mechanisms on the acquisition of functional properties by spermatozoa. METHODS Epididymides were dissected from adult cat testes to assess the presence and localization of cenexin in testicular tissues and each epididymal segment (caput, corpus, and cauda) via immunofluorescence, Western blot, and mass spectrometry. RESULTS Results showed that tissues, luminal fluid, and isolated epididymosomes from each segment contained cenexin. Co-incubation of immature sperm cells for 3 h with luminal fluid or epididymosomes followed by immunostaining revealed that percentages of sperm cells containing cenexin significantly increased in samples co-incubated with epididymosome suspensions. Additionally, epididymosome co-incubation with immature spermatozoa resulted in sustained motility compared to untreated spermatozoa while there was no significant effect on acrosome integrity. CONCLUSIONS Taken together, these results suggest that epididymosomes play a critical role in epididymal sperm maturation and could be ideal vehicles to assist in the enhancement or suppression of male fertility.
Collapse
|
50
|
Waqas MY, Zhang Q, Ahmed N, Yang P, Xing G, Akhtar M, Basit A, Liu T, Hong C, Arshad M, Rahman HMSU, Chen Q. Cellular Evidence of Exosomes in the Reproductive Tract of Chinese Soft-Shelled Turtle Pelodiscus sinensis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:18-27. [PMID: 28217961 DOI: 10.1002/jez.2065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 01/25/2023]
Abstract
The oviduct is a location of egg production, fertilization, and sperm storage. While its secretions have broadly attributes toward different physiological functions. We examined the ultrastructure of oviduct epithelium and glands in relation to the secretions, particularly with exosomes origin in Chinese soft-shelled turtle Pelodiscus sinensis using immunohistochemistry and transmission electron microscopy. The ciliated epithelial and gland cells were involved in the release of exosomes and secretions into lumen throughout the year. The exosomes were either released directly from epithelium or in relation with multivesicular body (MVB). The average size of the particles varies between 50 and 130 nm. These exosomes were also widely distributed in the epithelial ciliated cells and pericytoplasm of glands lumen. Intracellular MVB was characterized by membrane-bounded exosomes of different sizes. Exosomes were also found in close contact with the cilia and sperm membrane in the lumen, which is suggestive of their fusogenic properties. Immunohistochemistry results showed strong to moderate positive expression of exosomes, in ciliated and gland cells, during January, September, and December, as it is the time of sperm storage in this turtle, whereas they showed moderate to weak level of expression during breeding season (May). This is first study about identification of the exosomes in female turtles. Epithelial and glandular exosomes, intracellular MVB, secretions, and secretory vesicles give this turtle specie a unique secretory morphology and a potential model for investigating the secretory nature of the oviduct.
Collapse
Affiliation(s)
- Muhammad Yasir Waqas
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China.,Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Qian Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Nisar Ahmed
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ping Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Guipei Xing
- College of Life Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Masood Akhtar
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Abdul Basit
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Tengfei Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Chen Hong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Muhammad Arshad
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Qiusheng Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|