1
|
Madden AMK, Zup SL. Effects of developmental hyperserotonemia on juvenile play behavior, oxytocin and serotonin receptor expression in the hypothalamus are age and sex dependent. Physiol Behav 2014; 128:260-9. [PMID: 24530263 DOI: 10.1016/j.physbeh.2014.01.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/11/2013] [Accepted: 01/23/2014] [Indexed: 11/17/2022]
Abstract
There is a striking sex difference in the diagnosis of Autism Spectrum Disorder (ASD), such that males are diagnosed more often than females, usually in early childhood. Given that recent research has implicated elevated blood serotonin (hyperserotonemia) in perinatal development as a potential factor in the pathogenesis of ASD, we sought to evaluate the effects of developmental hyperserotonemia on social behavior and relevant brain morphology in juvenile males and females. Administration of 5-methoxytryptamine (5-MT) both pre- and postnatally was found to disrupt normal social play behavior in juveniles. In addition, alterations in the number of oxytocinergic cells in the lateral and medial paraventricular nucleus (PVN) were evident on postnatal day 18 (PND18) in 5-MT treated females, but not treated males. 5-MT treatment also changed the relative expression of 5-HT(1A) and 5-HT(2A) receptors in the PVN, in males at PND10 and in females at PND18. These data suggest that serotonin plays an organizing role in the development of the PVN in a sexually dimorphic fashion, and that elevated serotonin levels during perinatal development may disrupt normal organization, leading to neurochemical and behavioral changes. Importantly, these data also suggest that the inclusion of both juvenile males and females in studies will be necessary to fully understand the role of serotonin in development, especially in relation to ASD.
Collapse
MESH Headings
- Age Factors
- Animals
- Behavior, Animal/physiology
- Female
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Hypothalamus/physiology
- Male
- Paraventricular Hypothalamic Nucleus/drug effects
- Paraventricular Hypothalamic Nucleus/metabolism
- Paraventricular Hypothalamic Nucleus/physiology
- Play and Playthings
- Rats
- Rats, Sprague-Dawley/growth & development
- Receptor, Serotonin, 5-HT2A/biosynthesis
- Receptor, Serotonin, 5-HT2A/physiology
- Receptors, Oxytocin/biosynthesis
- Receptors, Oxytocin/physiology
- Receptors, Serotonin/biosynthesis
- Receptors, Serotonin/physiology
- Serotonin/blood
- Serotonin/pharmacology
- Sex Factors
Collapse
Affiliation(s)
- Amanda M K Madden
- Graduate Program in Developmental and Brain Sciences, University of Massachusetts Boston, Boston, MA 02125, USA; Psychology Department, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Susan L Zup
- Graduate Program in Developmental and Brain Sciences, University of Massachusetts Boston, Boston, MA 02125, USA; Psychology Department, University of Massachusetts Boston, Boston, MA 02125, USA.
| |
Collapse
|
2
|
Xue X, Shao S, Li M, Shao F, Wang W. Maternal separation induces alterations of serotonergic system in different aged rats. Brain Res Bull 2013; 95:15-20. [DOI: 10.1016/j.brainresbull.2013.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 12/18/2022]
|
3
|
Bock N, Quentin DJ, Hüther G, Moll GH, Banaschewski T, Rothenberger A. Very early treatment with fluoxetine and reboxetine causing long-lasting change of the serotonin but not the noradrenaline transporter in the frontal cortex of rats. World J Biol Psychiatry 2005; 6:107-12. [PMID: 16156483 DOI: 10.1080/15622970510029731] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Interactions of the serotonergic and noradrenergic system at different sites of the brain may be important for efficacy and side effects of antidepressant drugs. Further, serotonin and noradrenaline play a critical role in the development of neurons during brain maturation. To gain further insight how brain maturation and the two monoaminergic systems are influenced by drug treatment during early postnatal development, this animal study investigated possible effects on the noradrenaline and serotonin transporter density of the frontal cortex very early in postnatal life. Rats were treated from postnatal day 2 to 5 either with fluoxetine (5 mg/kg per day s.c.) or with reboxetine (10 mg/kg per day s.c.). At day 90 the serotonin and noradrenaline transporter density in the frontal cortex was measured by ligand binding assay. Fluoxetine treatment led to a significant long-lasting increase of serotonin (not noradrenaline) transporter density (Bmax = 1231 +/- 34) in the frontal cortex (compared with saline-treated controls (Bmax = 1112 +/- 58)). Reboxetine treatment (surprisingly) led to an even more enhanced serotonin transporter density (Bmax = 1322 +/- 46), while noradrenaline transporter density seemed to be unaffected. There were no significant differences for KD values. The results support the idea that serotonin seems to play an important role during early brain development. Moreover, drug-related modulation of the noradrenergic system during brain maturation seems to cross-influence the serotonergic system.
Collapse
Affiliation(s)
- Nathalie Bock
- Child and Adolescent Psychiatry, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Connors SL, Crowell DE, Eberhart CG, Copeland J, Newschaffer CJ, Spence SJ, Zimmerman AW. beta2-adrenergic receptor activation and genetic polymorphisms in autism: data from dizygotic twins. J Child Neurol 2005; 20:876-84. [PMID: 16417856 DOI: 10.1177/08830738050200110401] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gestational and genetic factors can contribute to autism during infancy and early childhood through their effects on fetal brain development. Previous twin studies have shown strong genetic components for the development of autism, a disorder that can have multiple causes. We investigated the effects of prenatal overstimulation of the beta2-adrenergic receptor in dizygotic twins who were exposed to terbutaline, a selective beta2-adrenergic receptor agonist used to treat premature labor, as a gestational factor. As a possible genetic mechanism, we studied two beta2-adrenergic receptor polymorphisms in twins from whom DNA was available: glycine substitution at codon 16 (16G) and glutamic acid substitution at codon 27 (27E), which show diminished desensitization in vivo compared with the wild-type receptor. Continuous terbutaline exposure for 2 weeks or longer was associated with increased concordance for autism spectrum disorders in dizygotic twins (relative risk = 2.0), with a further increase in the risk for male twins with no other affected siblings (relative risk = 4.4). A significant association was found between the presence of 16G and 27E polymorphisms in autistic patients compared with population controls (P = .006). Prenatal overstimulation of the beta2-adrenergic receptor by terbutaline or by increased signaling of genetic polymorphisms of the beta2-adrenergic receptor that have diminished desensitization can affect cellular responses and developmental programs in the fetal brain, leading to autism.
Collapse
Affiliation(s)
- Susan L Connors
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Recently, cholinergic afferents to cerebral cortex have met renewed attention regarding the regulation of plasticity as well as cognitive processing. My laboratory has developed a mouse neonatal basal forebrain lesion paradigm that has contributed considerably to the understanding of cholinergic mechanisms in cortical development. We have shown that transient cholinergic deafferentation, beginning at birth, precipitates alterations in neuronal differentiation and synaptic connectivity that persist into maturity, and contribute to altered cognitive behavior. These data are in general agreement with studies in rats in which the cholinergic basal forebrain is lesioned very early in development but contrast with effects of later developmental lesions. Moreover, in mouse, both morphological and behavioral consequences of the lesion are sex dependent. Studies of receptors and secondary messengers that are instrumental in morphogenesis and plasticity suggest that sex dependent molecular alterations occur within days if not hours following cortical cholinergic deafferentation.
Collapse
Affiliation(s)
- Christine F Hohmann
- Department of Biology, Morgan State University, Cold Spring Lane and Hillen Road, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA.
| |
Collapse
|
6
|
Oberlander TF, Eckstein Grunau R, Fitzgerald C, Ellwood AL, Misri S, Rurak D, Riggs KW. Prolonged prenatal psychotropic medication exposure alters neonatal acute pain response. Pediatr Res 2002; 51:443-53. [PMID: 11919328 DOI: 10.1203/00006450-200204000-00008] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) and benzodiazepines are frequently used to treat maternal depression during pregnancy, however the effect of increased serotonin (5HT) and gamma-amino-butyric acid (GABA) agonists in the fetal human brain remains unknown. 5HT and GABA are active during fetal neurologic growth and play early roles in pain modulation, therefore, if prolonged prenatal exposure alters neurodevelopment this may become evident in altered neonatal pain responses. To examine biologic and behavioral effects of prenatal exposure, neonatal responses to acute pain (phenylketonuria heel lance) in infants with prolonged prenatal exposure were examined. Facial action (Neonatal Facial Coding System) and cardiac autonomic reactivity derived from the relationship between respiratory activity and short term variations of heart rate (HRV) were compared between 22 infants with SSRI exposure (SE) [fluoxetine (n = 7), paroxetine (n = 11), sertraline (n = 4)]; 16 infants exposed to SSRIs and clonazepam (SE+) [paroxetine (n = 14), fluoxetine (n = 2)]; and 23 nonexposed infants during baseline, lance, and recovery periods of a heel lance. Length of maternal SSRI use did not vary significantly between exposure groups-[mean (range)] SE:SE+ 183 (31-281):141 (54-282) d (p > 0.05). Infants exposed to SE and SE+ displayed significantly less facial activity to heel lance than control infants. Mean HR increased with lance, but was significantly lower in SE infants during recovery. Using measures of HRV and the transfer relationship between heart rate and respiration, SSRI infants had a greater return of parasympathetic cardiac modulation in the recovery period, whereas a sustained sympathetic response continued in the control group. Prolonged prenatal SSRI exposure appears to be associated with reduced behavioral pain responses and increased parasympathetic cardiac modulation in recovery following an acute neonatal noxious event. Possible 5HT-mediated pain inhibition, pharmacologic factors and the developmental course remain to be studied.
Collapse
Affiliation(s)
- Tim F Oberlander
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | | | |
Collapse
|
7
|
Lauder JM, Liu J, Grayson DR. In utero exposure to serotonergic drugs alters neonatal expression of 5-HT(1A) receptor transcripts: a quantitative RT-PCR study. Int J Dev Neurosci 2000; 18:171-6. [PMID: 10715571 DOI: 10.1016/s0736-5748(99)00085-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In embryonic rat brain, serotonin (5-HT) acts as a differentiation signal for 5-HT neurons and their target cells during midgestation. Serotonin receptors expressed during this period include the 5-HT(1A) subtype, which may mediate some of these developmental effects. Using the highly sensitive method of competitive RT-PCR, we quantified the effects of maternal treatment with either p-chlorophenylalanine (pCPA; which depletes 5-HT in embryonic rat brain) or 5-methoxytryptamine (5-MT; a general 5-HT(1) /5-HT(2) agonist) from embryonic day E12-17 on expression of 5-HT(1A) receptor mRNA transcripts in brains of offspring at postnatal day 4 (PND 4). In offspring of both pCPA and 5-MT treated mothers, 5-HT(1A) transcripts were significantly reduced compared to vehicle controls, although effects of pCPA were greater than those of 5-MT. These results indicate that either under-stimulation of 5-HT(1A) receptors (due to pCPA-induced 5-HT depletion) or over-stimulation (by the agonist 5-MT) during prenatal development significantly reduced expression of 5-HT(1A) receptor transcripts in neonatal offspring. This may occur by disruption of 5-HT(1A) gene transcription or by post-transcriptional mechanisms (such as altered translation or turnover of mRNA). Whatever the mechanism, reductions in 5-HT(1A) receptor transcripts following in utero exposure to serotonergic drugs could significantly impact the number of 5-HT(1A) receptors expressed in neonatal rat brain. Whether such effects will persist into adulthood remains to be determined.
Collapse
Affiliation(s)
- J M Lauder
- Department of Cell Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA
| | | | | |
Collapse
|
8
|
Lieberman JA, Mailman RB, Duncan G, Sikich L, Chakos M, Nichols DE, Kraus JE. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatry 1998; 44:1099-117. [PMID: 9836014 DOI: 10.1016/s0006-3223(98)00187-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent attention has been focused on the involvement of serotonin (5-HT) in the pathophysiology of schizophrenia and its role in mediating antipsychotic drug effects. There are two reasons for the new emphasis: the tremendous success of the so-called "atypical" antipsychotic drugs (a common feature of which is their high affinity for specific 5-HT receptor subtypes); and the elucidation of a complex family of 5-HT receptors whose function and pharmacology is only beginning to be understood. This paper will review the evidence that pertains to the role of 5-HT in mediating antipsychotic drug effects. The interaction of dopamine and 5-HT systems will be reviewed, and the mechanisms of action of atypical antipsychotic drugs will be evaluated in this context. The impact of serotonin on neurodevelopment, and the involvement of serotonin in the psychotomimetic and psychotogenic properties of hallucinogens, will be discussed. Together, these facts will be placed into the context of changes in serotonergic function in schizophrenia.
Collapse
Affiliation(s)
- J A Lieberman
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Neurons producing serotonin are among the earliest to be born in the developing central nervous system. These cells are largely restricted to the hindbrain, where there form primarily in ventral regions. This review describes some of the mechanisms that regulate patterning and differentiation of the embryonic brain, which are implicated in neurogenesis of serotonergic neurons. It also covers the development of serotonergic axon pathways and the potential role of serotonin in regulating developmental processes.
Collapse
Affiliation(s)
- J L Rubenstein
- Department of Psychiatry, University of California, San Francisco 94143-0984, USA
| |
Collapse
|
10
|
Jarskog LF, Xiao H, Wilkie MB, Lauder JM, Gilmore JH. Cytokine regulation of embryonic rat dopamine and serotonin neuronal survival in vitro. Int J Dev Neurosci 1997; 15:711-6. [PMID: 9402221 DOI: 10.1016/s0736-5748(97)00029-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) are cytokines with pleiotropic effects in the central nervous system (CNS), including an emerging role in neurodevelopment. This study measured the effects of cytokines on the survival of tyrosine hydroxylase (TH) immunoreactive dopamine neurons from the substantia nigra (SN), and 5-hydroxytryptamine (5-HT) immunoreactive serotonin neurons from the rostral raphe (RR), using cultures from embryonic day 14 (E14) rat brain. IL-1beta, IL-6, and TNF-alpha were added to cell cultures at 1, 10 and 100 U/ml. After 3 days in vitro, TH and 5-HT neurons were counted. The survival of 5-HT neurons was significantly reduced by 20-30% at 10 U/ml of IL-6. IL-1beta and TNF-alpha at doses of 1 and 10 U/ml appeared to have a similar effect on the survival of these neurons, but this effect was not statistically significant. Comparable non-significant reductions of survival also occurred for TH neurons at the lower doses of IL-6 and TNF-alpha. In separate experiments, SN and RR cultures were exposed to the cytokines at a higher dose (1000 U/ml), causing a significant 30-40% decrease in the survival of TH neurons, but little or no change in 5-HT neuronal survival. Taken together, these results show that IL-1beta, IL-6, and TNF-alpha can affect developing monoamine neurons at physiologically relevant concentrations, and that high doses differentially inhibit the survival of TH and 5-HT neurons after short exposures.
Collapse
Affiliation(s)
- L F Jarskog
- Department of Psychiatry, University of North Carolina, Chapel Hill 27599-7160, USA
| | | | | | | | | |
Collapse
|