1
|
Kobayashi N. Optimization of flip angle and radiofrequency pulse phase to maximize steady-state magnetization in three-dimensional missing pulse steady-state free precession. NMR IN BIOMEDICINE 2024; 37:e5112. [PMID: 38299770 PMCID: PMC11078623 DOI: 10.1002/nbm.5112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Missing pulse (MP) steady-state free precession (SSFP) is a magnetic resonance imaging (MRI) pulse sequence that is highly tolerant to the magnetic field inhomogeneity. In this study, optimal flip angle and radiofrequency (RF) phase scheduling in three-dimensional (3D) MP-SSFP is introduced to maximize the steady-state magnetization while keeping broadband excitation to cover widely distributed frequencies generated by inhomogeneous magnetic fields. Numerical optimization based on extended phase graph (EPG) simulation was performed to maximize the MP-SSFP steady-state magnetization. To limit the specific absorption rate (SAR) associated with the broadband excitation in 3D MP-SSFP, SAR constraint was introduced in the numerical optimization. Optimized flip angle and RF phase settings were experimentally tested by introducing a linear inhomogeneous magnetic field in a range of 10-20 mT/m and using a phantom with known T1/T2 relaxation and diffusion parameters at 3 T. The experimental results were validated through comparisons with EPG simulation. Image contrasts and molecular diffusion effects were investigated in in vivo human brain imaging with 3D MP-SSFP with the optimal flip angle and RF phase settings. In the phantom measurements, the optimal flip angle and RF phase settings improved the MP-SSFP steady-state magnetization/signal-to-noise ratio by up to 41% under the fixed SAR conditions, which matched well with EPG simulation results. In vivo brain imaging with the optimal RF pulse settings provided T2-like image contrasts. Diffusion effects were relatively minor with the linear inhomogeneous field of 10-20 mT/m for white and gray matter, but cerebrospinal fluid showed conspicuous signal intensity attenuation as the linear inhomogeneous field increased. Numerical optimization achieved significant improvement in the steady-state magnetization in MP-SSFP compared with the RF pulse settings used in previous studies. The proposed flip angle and RF phase optimization is promising to improve 3D MP-SSFP image quality for MRI in inhomogeneous magnetic fields.
Collapse
Affiliation(s)
- Naoharu Kobayashi
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Slawig A, Wech T, Ratz V, Neubauer H, Bley T, Köstler H. Frequency-modulated bSSFP for phase-sensitive separation of water and fat. Magn Reson Imaging 2018; 53:82-88. [PMID: 29902564 DOI: 10.1016/j.mri.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/27/2018] [Accepted: 06/10/2018] [Indexed: 10/28/2022]
Abstract
Our study proposes the use of a frequency-modulated acquisition which suppresses banding artefacts in combination with a phase-sensitive water-fat separation algorithm. The performance of the phase-sensitive separation for standard bSSFP, complex sum combination thereof, and frequency-modulated bSSFP were compared in in vivo measurements of the upper and lower legs at 1.5 and 3 T. It is shown, that the standard acquisition suffered from banding artefacts and major swaps between tissues. The dual-acquisition bSSFP could alleviate banding artefacts and only minor swaps occurred, but it comes at the expense of a doubled acquisition. In the frequency-modulated acquisitions all banding artefacts and the associated phase jumps were eliminated and no swaps between tissues occurred. It therefore provides a means to robustly separate water and fat, in one single radial bSSFP scan, using the phase-sensitive approach, even in the presence of high field inhomogeneities.
Collapse
Affiliation(s)
- Anne Slawig
- University of Würzburg, Department of Diagnostic and Interventional Radiology, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
| | - Tobias Wech
- University of Würzburg, Department of Diagnostic and Interventional Radiology, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Valentin Ratz
- University of Würzburg, Department of Diagnostic and Interventional Radiology, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Henning Neubauer
- University of Würzburg, Department of Diagnostic and Interventional Radiology, Oberdürrbacher Str. 6, 97080 Würzburg, Germany; SRH Clinic of Radiology, Albert-Schweitzer-Str. 2, 98527 Suhl, Germany
| | - Thorsten Bley
- University of Würzburg, Department of Diagnostic and Interventional Radiology, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Herbert Köstler
- University of Würzburg, Department of Diagnostic and Interventional Radiology, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| |
Collapse
|
3
|
Shang H, Sukumar S, von Morze C, Bok RA, Marco-Rius I, Kerr A, Reed GD, Milshteyn E, Ohliger MA, Kurhanewicz J, Larson PEZ, Pauly JM, Vigneron DB. Spectrally selective three-dimensional dynamic balanced steady-state free precession for hyperpolarized C-13 metabolic imaging with spectrally selective radiofrequency pulses. Magn Reson Med 2016; 78:963-975. [PMID: 27770458 DOI: 10.1002/mrm.26480] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Balanced steady-state free precession (bSSFP) sequences can provide superior signal-to-noise ratio efficiency for hyperpolarized (HP) carbon-13 (13 C) magnetic resonance imaging by efficiently utilizing the nonrecoverable magnetization, but managing their spectral response is challenging in the context of metabolic imaging. A new spectrally selective bSSFP sequence was developed for fast imaging of multiple HP 13 C metabolites with high spatiotemporal resolution. THEORY AND METHODS This novel approach for bSSFP spectral selectivity incorporates optimized short-duration spectrally selective radiofrequency pulses within a bSSFP pulse train and a carefully chosen repetition time to avoid banding artifacts. RESULTS The sequence enabled subsecond 3D dynamic spectrally selective imaging of 13 C metabolites of copolarized [1-13 C]pyruvate and [13 C]urea at 2-mm isotropic resolution, with excellent spectral selectivity (∼100:1). The sequence was successfully tested in phantom studies and in vivo studies with normal mice. CONCLUSION This sequence is expected to benefit applications requiring dynamic volumetric imaging of metabolically active 13 C compounds at high spatiotemporal resolution, including preclinical studies at high field and, potentially, clinical studies. Magn Reson Med 78:963-975, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hong Shang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Subramaniam Sukumar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Irene Marco-Rius
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Adam Kerr
- Electrical Engineering, Stanford University, Stanford, California, USA
| | | | - Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - John M Pauly
- Electrical Engineering, Stanford University, Stanford, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| |
Collapse
|
4
|
Ribot EJ, Wecker D, Trotier AJ, Dallaudière B, Lefrançois W, Thiaudière E, Franconi JM, Miraux S. Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively. PLoS One 2015; 10:e0139249. [PMID: 26426849 PMCID: PMC4591352 DOI: 10.1371/journal.pone.0139249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/09/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The purpose of this paper is to develop an easy method to generate both fat signal and banding artifact free 3D balanced Steady State Free Precession (bSSFP) images at high magnetic field. METHODS In order to suppress fat signal and bSSFP banding artifacts, two or four images were acquired with the excitation frequency of the water-selective binomial radiofrequency pulse set On Resonance or shifted by a maximum of 3/4TR. Mice and human volunteers were imaged at 7 T and 3 T, respectively to perform whole-body and musculoskeletal imaging. "Sum-Of-Square" reconstruction was performed and combined or not with parallel imaging. RESULTS The frequency selectivity of 1-2-3-2-1 or 1-3-3-1 binomial pulses was preserved after (3/4TR) frequency shifting. Consequently, whole body small animal 3D imaging was performed at 7 T and enabled visualization of small structures within adipose tissue like lymph nodes. In parallel, this method allowed 3D musculoskeletal imaging in humans with high spatial resolution at 3 T. The combination with parallel imaging allowed the acquisition of knee images with ~500 μm resolution images in less than 2 min. In addition, ankles, full head coverage and legs of volunteers were imaged, demonstrating the possible application of the method also for large FOV. CONCLUSION In conclusion, this robust method can be applied in small animals and humans at high magnetic fields. The high SNR and tissue contrast obtained in short acquisition times allows to prescribe bSSFP sequence for several preclinical and clinical applications.
Collapse
Affiliation(s)
- Emeline J. Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/University Bordeaux, Bordeaux, France
- * E-mail:
| | | | - Aurélien J. Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/University Bordeaux, Bordeaux, France
| | - Benjamin Dallaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/University Bordeaux, Bordeaux, France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/University Bordeaux, Bordeaux, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/University Bordeaux, Bordeaux, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/University Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/University Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Henze Bancroft LC, Strigel RM, Hernando D, Johnson KM, Kelcz F, Kijowski R, Block WF. Utilization of a balanced steady state free precession signal model for improved fat/water decomposition. Magn Reson Med 2015; 75:1269-77. [PMID: 25946145 DOI: 10.1002/mrm.25728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/10/2015] [Accepted: 03/20/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE Chemical shift based fat/water decomposition methods such as IDEAL are frequently used in challenging imaging environments with large B0 inhomogeneity. However, they do not account for the signal modulations introduced by a balanced steady state free precession (bSSFP) acquisition. Here we demonstrate improved performance when the bSSFP frequency response is properly incorporated into the multipeak spectral fat model used in the decomposition process. THEORY AND METHODS Balanced SSFP allows for rapid imaging but also introduces a characteristic frequency response featuring periodic nulls and pass bands. Fat spectral components in adjacent pass bands will experience bulk phase offsets and magnitude modulations that change the expected constructive and destructive interference between the fat spectral components. A bSSFP signal model was incorporated into the fat/water decomposition process and used to generate images of a fat phantom, and bilateral breast and knee images in four normal volunteers at 1.5 Tesla. RESULTS Incorporation of the bSSFP signal model into the decomposition process improved the performance of the fat/water decomposition. CONCLUSION Incorporation of this model allows rapid bSSFP imaging sequences to use robust fat/water decomposition methods such as IDEAL. While only one set of imaging parameters were presented, the method is compatible with any field strength or repetition time.
Collapse
Affiliation(s)
- Leah C Henze Bancroft
- University of Wisconsin-Madison, Department of Medical Physics, Wisconsin Institutes for Medical Research, Madison, Wisconsin, USA
| | - Roberta M Strigel
- University of Wisconsin-Madison, Department of Medical Physics, Wisconsin Institutes for Medical Research, Madison, Wisconsin, USA.,University of Wisconsin School of Medicine and Public health, Department of Radiology, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, Madison, Wisconsin, USA
| | - Diego Hernando
- University of Wisconsin-Madison, Department of Radiology, Wisconsin Institutes for Medical Research, Madison, Wisconsin, USA
| | - Kevin M Johnson
- University of Wisconsin-Madison, Department of Medical Physics, Wisconsin Institutes for Medical Research, Madison, Wisconsin, USA
| | - Frederick Kelcz
- University of Wisconsin School of Medicine and Public health, Department of Radiology, Madison, Wisconsin, USA
| | - Richard Kijowski
- University of Wisconsin School of Medicine and Public health, Department of Radiology, Madison, Wisconsin, USA
| | - Walter F Block
- University of Wisconsin-Madison, Department of Medical Physics, Wisconsin Institutes for Medical Research, Madison, Wisconsin, USA.,University of Wisconsin-Madison, Department of Radiology, Wisconsin Institutes for Medical Research, Madison, Wisconsin, USA.,University of Wisconsin-Madison, Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, Madison, Wisconsin
| |
Collapse
|
6
|
Çukur T. Spectrally selective imaging with wideband balanced steady-state free precession MRI. Magn Reson Med 2015; 75:1132-41. [PMID: 25846631 DOI: 10.1002/mrm.25700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/26/2015] [Accepted: 02/25/2015] [Indexed: 11/10/2022]
Abstract
PURPOSE Unwanted, bright fat signals in balanced steady-state free precession sequences are commonly suppressed using spectral shaping. Here, a new spectral-shaping method is proposed to significantly improve the uniformity of stopband suppression without compromising the level of passband signals. METHODS The proposed method combines binomial-pattern excitation pulses with a wideband balanced steady-state free precession sequence kernel. It thereby increases the frequency separation between the centers of pass and stopbands by π radians, enabling improved water-fat contrast. Simulations were performed to find the optimal flip angles and subpulse spacing for the binomial pulses that maximize contrast and signal efficiency. RESULTS Comparisons with a conventional binomial balanced steady-state free precession sequence were performed in simulations as well as phantom and in vivo experiments at 1.5 T and 3 T. Enhanced fat suppression is demonstrated in vivo with an average improvement of 58% in blood-fat and 68% in muscle-fat contrast (P < 0.001, Wilcoxon signed-rank test). CONCLUSION The proposed binomial wideband balanced steady-state free precession method is a promising candidate for spectrally selective imaging with enhanced reliability against field inhomogeneities.
Collapse
Affiliation(s)
- Tolga Çukur
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
| |
Collapse
|
7
|
Sun H, Fessler JA, Noll DC, Nielsen JF. Strategies for improved 3D small-tip fast recovery imaging. Magn Reson Med 2014; 72:389-98. [PMID: 24127132 PMCID: PMC4428120 DOI: 10.1002/mrm.24947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/06/2022]
Abstract
PURPOSE Small-tip fast recovery (STFR) imaging is a recently proposed steady-state sequence that has similar image contrast as balanced steady-state free precession but has the potential to simultaneously remove banding artifacts and transient fluctuation. STFR relies on a "tip-up" radiofrequency (RF) pulse tailored to the accumulated phase during the free precession (data acquisition) interval, designed to bring spins back to the longitudinal axis, thereby preserving transverse magnetization as longitudinal magnetization for the next pulse repetition time. We recently proposed an RF-spoiled STFR sequence suitable for thin slab imaging, however, in many applications, e.g., functional magnetic resonance imaging or isotropic-resolution structural imaging, three-dimensional (3D) steady-state imaging is desirable. Unfortunately, 3D STFR imaging is challenging due to the need for 3D tailored RF pulses. Here, we propose new strategies for improved 3D STFR imaging, based on (i) unspoiled imaging, and (ii) joint design of nonslice-selective tip-down/tip-up RF pulses. THEORY AND METHODS We derive an analytic signal model for the proposed unspoiled STFR sequence, and propose two strategies for designing the 3D tailored tip-down/tip-up RF pulses. We validate the analytic results using phantom and in vivo imaging experiments. RESULTS Our analytic model and imaging experiments demonstrate that the proposed unspoiled STFR sequence is less sensitive to tip-up excitation error compared to the corresponding spoiled sequence, and may, therefore, be an attractive candidate for 3D imaging. The proposed "joint" RF pulse design method, in which we formulate the tip-down/tip-up RF pulse design task as a magnitude least squares problem, produces modest improvement over a simpler "Separate" design approach. Using the proposed unspoiled sequence and joint RF pulse design, we demonstrate proof-of-principle 3D STFR brain images with balanced steady-state free precession-like signal properties but with reduced banding. CONCLUSION Using the proposed unspoiled sequence and joint RF pulse design, STFR brain images in a 3D region of interest with balanced steady-state free precession-like signal properties but with reduced banding can be obtained.
Collapse
Affiliation(s)
- Hao Sun
- Departments of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey A. Fessler
- Departments of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
- Departments of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Douglas C. Noll
- Departments of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jon-Fredrik Nielsen
- Departments of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Nielsen JF, Yoon D, Noll DC. Small-tip fast recovery imaging using non-slice-selective tailored tip-up pulses and radiofrequency-spoiling. Magn Reson Med 2013; 69:657-66. [PMID: 22511367 PMCID: PMC3408566 DOI: 10.1002/mrm.24289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 03/06/2012] [Accepted: 03/16/2012] [Indexed: 11/10/2022]
Abstract
Small-tip fast recovery (STFR) imaging is a new steady-state imaging sequence that is a potential alternative to balanced steady-state free precession. Under ideal imaging conditions, STFR may provide comparable signal-to-noise ratio and image contrast as balanced steady-state free precession, but without signal variations due to resonance offset. STFR relies on a tailored "tip-up," or "fast recovery," radiofrequency pulse to align the spins with the longitudinal axis after each data readout segment. The design of the tip-up pulse is based on the acquisition of a separate off-resonance (B0) map. Unfortunately, the design of fast (a few ms) slice- or slab-selective radiofrequency pulses that accurately tailor the excitation pattern to the local B0 inhomogeneity over the entire imaging volume remains a challenging and unsolved problem. We introduce a novel implementation of STFR imaging based on "non-slice-selective" tip-up pulses, which simplifies the radiofrequency pulse design problem significantly. Out-of-slice magnetization pathways are suppressed using radiofrequency-spoiling. Brain images obtained with this technique show excellent gray/white matter contrast, and point to the possibility of rapid steady-state T(2)/T(1) -weighted imaging with intrinsic suppression of cerebrospinal fluid, through-plane vessel signal, and off-resonance artifacts. In the future, we expect STFR imaging to benefit significantly from parallel excitation hardware and high-order gradient shim systems.
Collapse
Affiliation(s)
- Jon-Fredrik Nielsen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
9
|
Fischer RF, Barmet C, Rudin M, Boesiger P, Pruessmann KP, Kozerke S. Monitoring and compensating phase imperfections in cine balanced steady-state free precession. Magn Reson Med 2013; 70:1567-79. [PMID: 23389986 DOI: 10.1002/mrm.24606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/28/2012] [Indexed: 11/10/2022]
Abstract
PURPOSE To analyze and correct for eddy current-induced phase imperfections in cardiac cine balanced steady-state free precession (bSSFP) imaging. METHODS Eddy current-induced phase offsets were measured for different phase-encoding schemes using a higher order dynamic field camera. Based on these measurements, offset phases were corrected for in postprocessing and by run-time phase compensation applying radiofrequency phase increments and additional compensatory gradient areas. The findings were validated using numerical simulations, phantom experiments, and in vivo cardiac scans. RESULTS Depending on the phase-encoding scheme, significant eddy current-induced phase offsets were detected. Time-varying phase offsets were observed at subsequent excitations leading to steady-state distortions and hence to profile-dependent amplitude modulations in k-space. Taking into account measured k-space trajectories algebraic image reconstruction allowed compensating imperfect spatial encoding. Correction of amplitude modulations was successfully accomplished by run-time phase compensation. CONCLUSION Using magnetic field monitoring, artifacts in cine balanced steady-state free precession caused by uncompensated eddy current fields can be significantly reduced.
Collapse
Affiliation(s)
- Rudolf Fritz Fischer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
10
|
Gonçalves SI, Ziech MLW, Lamerichs R, Stoker J, Nederveen AJ. Optimization of alternating TR-SSFP for fat-suppression in abdominal images at 3T. Magn Reson Med 2011; 67:595-600. [DOI: 10.1002/mrm.23215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/02/2011] [Accepted: 08/22/2011] [Indexed: 12/12/2022]
|
11
|
Grissom WA, McKinnon GC, Vogel MW. Nonuniform and multidimensional Shinnar-Le Roux RF pulse design method. Magn Reson Med 2011; 68:690-702. [PMID: 22161690 DOI: 10.1002/mrm.23269] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/02/2011] [Accepted: 10/03/2011] [Indexed: 01/01/2023]
Abstract
The Shinnar-Le Roux (SLR) radiofrequency (RF) pulse design algorithm is widely used for designing slice-selective RF pulses due to its intuitiveness, optimality, and speed. SLR is limited, however, in that it is only capable of designing one-dimensional pulses played along constant gradients. We present a nonuniform SLR RF pulse design framework that extends most of the capabilities of classical SLR to nonuniform gradient trajectories and multiple dimensions. Specifically, like classical SLR, the new method is a hard pulse approximation-based technique that uses filter design relationships to produce the lowest power RF pulse that satisfies target magnetization ripple levels. The new method is validated and compared with methods conventionally used for nonuniform and multidimensional large-tip-angle RF pulse design.
Collapse
Affiliation(s)
- William A Grissom
- Imaging Technologies Laboratory, GE Global Research, Munich, Germany.
| | | | | |
Collapse
|
12
|
Ingle RR, Cukur T, Nishimura DG. The central signal singularity phenomenon in balanced SSFP and its application to positive-contrast imaging. Magn Reson Med 2011; 67:1673-83. [PMID: 22025426 DOI: 10.1002/mrm.23156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/20/2011] [Accepted: 07/26/2011] [Indexed: 11/06/2022]
Abstract
Small perturbations of steady-state sequence parameters can induce very large spectral profile deviations that are localized to specific off-resonant frequencies, denoted critical frequencies. Although, a small number of studies have previously considered the use of these highly specific modulations for MR angiography and elastography, many potential applications still remain to be explored. An analysis of this phenomenon using a linear systems technique and a geometric magnetization trajectory technique shows that the critical frequencies correspond to singularities in the steady-state signal equation. An interleaved acquisition combined with a complex difference technique yields a spectral profile containing sharp peaks interleaved with wide stopbands, while a complex sum technique yields a spectral profile similar to that of balanced steady-state free precession. Simulations and phantom experiments are used to demonstrate a novel application of this technique for positive-contrast imaging of superparamagnetic iron-oxide nanoparticles. The technique is shown to yield images with high levels of positive contrast and good water and fat background suppression. The technique can also simultaneously yield images with contrast similar to balanced steady-state free precession.
Collapse
Affiliation(s)
- R Reeve Ingle
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA.
| | | | | |
Collapse
|
13
|
Fischer RF, Baltes C, Weiss K, Pazhenkottil A, Rudin M, Boesiger P, Kozerke S. Linear Response Equilibrium versus echo-planar encoding for fast high-spatial resolution 3D chemical shift imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 211:80-88. [PMID: 21612961 DOI: 10.1016/j.jmr.2011.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/19/2011] [Accepted: 04/22/2011] [Indexed: 05/30/2023]
Abstract
In this work Linear Response Equilibrium (LRE) and Echo-planar spectroscopic imaging (EPSI) are compared in terms of sensitivity per unit time and power deposition. In addition an extended dual repetition time scheme to generate broad stopbands for improved inherent water suppression in LRE is presented. The feasibility of LRE and EPSI for assessing cholesterol esters in human carotid plaques with high spatial resolution of 1.95×1.15×1.15 mm(3) on a clinical 3T MR system is demonstrated. In simulations and phantom experiments it is shown that LRE has comparable but lower sensitivity per unit time relative to EPSI despite stronger signal generated. This relates to the lower sampling efficiency in LRE relative to EPSI as a result of limited gradient performance on clinical MR systems. At the same time, power deposition of LRE is significantly reduced compared to EPSI making it an interesting niche application for in vivo high field spectroscopic imaging of metabolites within a limited bandwidth.
Collapse
Affiliation(s)
- Rudolf Fritz Fischer
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Yuan J, Madore B, Panych LP. Fat-water selective excitation in balanced steady-state free precession using short spatial-spectral RF pulses. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 208:219-224. [PMID: 21134770 PMCID: PMC3034310 DOI: 10.1016/j.jmr.2010.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 05/30/2023]
Abstract
Fat suppression is important but challenging in balanced steady-state free precession (bSSFP) acquisitions, for a number of clinical applications. In the present work, the practicality of performing fat-water selective excitations using spatial-spectral (SPSP) RF pulses in bSSFP sequence is examined. With careful pulse design, the overall duration of these SPSP pulses was kept short to minimize detrimental effects on TR, scan time and banding artifact content. Fat-water selective excitation using SPSP pulses was demonstrated in both phantom and human bSSFP imaging at 3T, and compared to results obtained using a two-point Dixon method. The sequence with SPSP pulses performed better than the two-point Dixon method, in terms of scan time and suppression performance. Overall, it is concluded here that SPSP RF pulses do represent a viable option for fat-suppressed bSSFP imaging.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | | | | |
Collapse
|
15
|
Miller KL. Asymmetries of the balanced SSFP profile. Part I: theory and observation. Magn Reson Med 2010; 63:385-95. [PMID: 20099328 DOI: 10.1002/mrm.22212] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The signal in balanced steady-state free precession has a strong sensitivity to off-resonance, which is typically described in terms of a signal "profile" over a range of frequencies. This profile has a well-known form for homogeneous media with a single T(1), T(2), and resonance frequency, which is symmetric about the on-resonance frequency. However, a straightforward extension to this established signal model predicts that the profile may become asymmetric in the presence of inhomogeneous frequency content, as would be expected to happen in tissue due to microstructural boundaries, compartments, and chemical shift. The presence of asymmetries in the balanced steady-state free precession profile may therefore provide a marker of tissue integrity. This manuscript describes the theory behind balanced steady-state free precession asymmetries, a method for detecting these effects, and the first measurements of balanced steady-state free precession asymmetries in tissue. Asymmetries are found in gray matter, white matter, and muscle, with excellent reproducibility. A companion paper considers the large white matter asymmetries in more detail.
Collapse
Affiliation(s)
- Karla L Miller
- Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Cukur T, Nishimura DG. Multiple repetition time balanced steady-state free precession imaging. Magn Reson Med 2009; 62:193-204. [PMID: 19449384 DOI: 10.1002/mrm.21990] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although balanced steady-state free precession (bSSFP) imaging yields high signal-to-noise ratio (SNR) efficiency, the bright lipid signal is often undesirable. The bSSFP spectrum can be shaped to suppress the fat signal with scan-efficient alternating repetition time (ATR) bSSFP. However, the level of suppression is limited, and the pass-band is narrow due to its nonuniform shape. A multiple repetition time (TR) bSSFP scheme is proposed that creates a broad stop-band with a scan efficiency comparable with ATR-SSFP. Furthermore, the pass-band signal uniformity is improved, resulting in fewer shading/banding artifacts. When data acquisition occurs in more than a single TR within the multiple-TR period, the echoes can be combined to significantly improve the level of suppression. The signal characteristics of the proposed technique were compared with bSSFP and ATR-SSFP. The multiple-TR method generates identical contrast to bSSFP, and achieves up to an order of magnitude higher stop-band suppression than ATR-SSFP. In vivo studies at 1.5 T and 3 T demonstrate the superior fat-suppression performance of multiple-TR bSSFP.
Collapse
Affiliation(s)
- Tolga Cukur
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305-9510, USA.
| | | |
Collapse
|
17
|
Cukur T, Nishimura DG. Fat-water separation with alternating repetition time balanced SSFP. Magn Reson Med 2008; 60:479-84. [PMID: 18666114 DOI: 10.1002/mrm.21692] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Balanced SSFP achieves high SNR efficiency, but suffers from bright fat signal. In this work, a multiple-acquisition fat-water separation technique using alternating repetition time (ATR) balanced SSFP is proposed. The SSFP profile can be modified using alternating repetition times and appropriate phase cycling to yield two spectra where fat and water are in-phase and out-of-phase, respectively. The signal homogeneity and the broad width of the created in-phase and out-of-phase profiles lead to signal cancellation over a broad stop-band. The stop-band suppression is achieved for a wide range of flip angles and tissue parameters. This property, coupled with the inherent flexibility of ATR SSFP in repetition time selection, makes the method a good candidate for fat-suppressed SSFP imaging. The proposed method can be tailored to achieve a smaller residual stop-band signal or a decreased sensitivity to field inhomogeneity depending on application-specific needs.
Collapse
Affiliation(s)
- Tolga Cukur
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA.
| | | |
Collapse
|
18
|
Lin HY, Raman SV, Chung YC, Simonetti OP. Rapid phase-modulated water excitation steady-state free precession for fat suppressed cine cardiovascular MR. J Cardiovasc Magn Reson 2008; 10:22. [PMID: 18477396 PMCID: PMC2429911 DOI: 10.1186/1532-429x-10-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 05/13/2008] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The purpose of this article is to describe a steady-state free precession (SSFP) sequence for fat suppressed cine cardiovascular magnetic resonance (CMR). A rapid phase-modulated binomial water excitation (WE) pulse is utilized to minimize repetition time and acquisition time. METHODS Three different water-excitation pulses were combined with cine-SSFP for evaluation. The frequency response of each sequence was simulated and examined in phantom imaging studies. The ratio of fat to water signal amplitude was measured in phantoms to evaluate the fat suppression capabilities of each method. Six volunteers underwent CMR of the heart at 1.5T to compare retrospectively-gated cine-SSFP with and without water excitation. The ratio of fat to myocardium signal amplitude was measured for conventional cine-SSFP and phase-modulated WE-SSFP. The proposed WE-SSFP method was tested in one patient referred for CMR to characterize a cardiac mass. RESULTS AND DISCUSSION The measured frequency response in a phantom corresponded to the numerical Bloch equation simulation demonstrating the widened stop-band around the fat resonant frequency for all water-excitation pulses tested. In vivo measurements demonstrated that a rapid, phase-modulated water excitation pulse significantly reduced the signal amplitude ratio of fat to myocardium from 6.92 +/- 2.9 to 0.8 +/- 0.13 (mean +/- SD) without inducing any perceptible artifacts in SSFP cine CMR. CONCLUSION Fat suppression can be achieved in SSFP cine CMR while maintaining steady-state equilibrium using rapid, phase modulated, binomial water-excitation pulses.
Collapse
Affiliation(s)
- Hung-Yu Lin
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Subha V Raman
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Orlando P Simonetti
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Radiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Çukur T, Bangerter NK, Nishimura DG. Enhanced spectral shaping in steady-state free precession imaging. Magn Reson Med 2007; 58:1216-23. [DOI: 10.1002/mrm.21413] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Wansapura JP. Abdominal fat-water separation with SSFP at 3 Tesla. Pediatr Radiol 2007; 37:69-73. [PMID: 17089116 DOI: 10.1007/s00247-006-0334-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/23/2006] [Accepted: 09/12/2006] [Indexed: 10/23/2022]
Abstract
The ability of the phase-sensitive steady-state free precession (SSFP) technique to distinguish subcutaneous and visceral adipose tissue in the abdomen at 3 T was evaluated. A phased array receiver radiofrequency coil and a commercially available SSFP sequence were used for imaging. The raw image data were postprocessed to generate fat-only and water-only images. A postprocessing algorithm that is computationally efficient and robust is presented. The postprocessing technique separates the fat and water pixels automatically without any user interference. The feasibility of the technique is demonstrated in vivo with breath-hold abdomen images. The short scan time and the ease of use of this technique are well suited to the quantification of body fat distribution in children.
Collapse
Affiliation(s)
- Janaka P Wansapura
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
21
|
Absil J, Denolin V, Metens T. Fat attenuation using a dual steady-state balanced-SSFP sequence with periodically variable flip angles. Magn Reson Med 2006; 55:343-51. [PMID: 16402382 DOI: 10.1002/mrm.20766] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A refocused-SSFP sequence based on balanced-FFE (TrueFisp, Fiesta) that attenuates fat signal is presented. The sequence uses periodically variable flip angles and produces a dual steady state of the signal, which is obtained after a dual transient phase if an appropriate preparation is used. The off-resonance profile of the steady-state signal exhibits large stopbands that can be employed for fat suppression. Numerical simulations were performed to investigate the signal behavior and the off-resonance properties of the sequence. Experimental results obtained with a Philips Gyroscan Intera 1.5T MR scanner demonstrated fat attenuation in phantoms and abdominal images in volunteers.
Collapse
Affiliation(s)
- J Absil
- Unité d'IRM-Radiologie, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | |
Collapse
|
22
|
Hargreaves BA, Bangerter NK, Shimakawa A, Vasanawala SS, Brittain JH, Nishimura DG. Dual-acquisition phase-sensitive fat–water separation using balanced steady-state free precession. Magn Reson Imaging 2006; 24:113-22. [PMID: 16455400 DOI: 10.1016/j.mri.2005.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 10/22/2005] [Indexed: 10/25/2022]
Abstract
Balanced steady-state free precession (SSFP) sequences use fully re-focussed gradient waveforms to achieve a high signal and useful image contrast in short scan times. Despite these strengths, the clinical feasibility of balanced SSFP is still limited both by bright fat signal and by the signal voids that result from off-resonance effects such as field or susceptibility variations. A new method, dual-acquisition phase-sensitive SSFP, combines the signals from two standard balanced SSFP acquisitions to separate fat and water while simultaneously reducing the signal voids. The acquisitions are added in quadrature and then phase corrected using a simple algorithm before fat and water can be identified simply by the sign of the signal. This method is especially useful for applications at high field, where the RF power deposition, spatial resolution requirements and gradient strength limit the minimum repetition times. Finally, dual-acquisition phase-sensitive SSFP can be combined with other magnetization preparation schemes to produce specific image contrast in addition to separating fat and water signals.
Collapse
Affiliation(s)
- Brian A Hargreaves
- Department of Radiology, Stanford University, Stanford, CA 94305-5488, USA
| | | | | | | | | | | |
Collapse
|
23
|
Derbyshire JA, Herzka DA, McVeigh ER. S5FP: spectrally selective suppression with steady state free precession. Magn Reson Med 2006; 54:918-28. [PMID: 16155880 DOI: 10.1002/mrm.20633] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A method is presented that employs the inherent spectral selectivity of the Steady-State Free Precession (SSFP) pulse sequence to provide a spectral band of suppression. At TE = TR/2, SSFP partitions the magnetization into two phase-opposed spectral components. Z-storing one of these components simultaneously further excites the other, which is then suppressed by gradient crushing and RF spoiling. The Spectrally Selective Suppression with SSFP (S(5)FP) method is shown to provide significant attenuation of fat signals, while the water signals are essentially unaffected and provide the normal SSFP contrast. Fat suppression is achieved with relatively little temporal overhead (less than 10% reduction in temporal resolution). S(5)FP was validated using simulations, phantoms, and human studies.
Collapse
Affiliation(s)
- J A Derbyshire
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, National Institutes of Health, DHHS, Bethesda, MD 20892-1061, USA.
| | | | | |
Collapse
|
24
|
Leupold J, Hennig J, Scheffler K. Alternating repetition time balanced steady state free precession. Magn Reson Med 2006; 55:557-65. [PMID: 16447171 DOI: 10.1002/mrm.20790] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel balanced SSFP technique for the separation or suppression of different resonance frequencies (e.g., fat suppression) is presented. The method is based on applying two alternating and different repetition times, TR(1) and TR(2). This RF scheme manipulates the sensitivity of balanced SSFP to off-resonance effects by a modification of the frequency response profile. Starting from a general approach, an optimally broadened stopband within the frequency response function is designed. This is achieved with a TR(2) being one third of TR(1) and an RF-pulse phase increment of 90 degrees . With this approach TR(2) is too short ( approximately 1 ms) to switch imaging gradients and is only used to change the frequency sensitivity. Without a significant change of the spectral position of the stopband, TR(1) can be varied over a range of values ( approximately 2.5-4.5 ms) while TR(2) and phase cycling is kept constant. On-resonance spins show a magnetization behavior similar to balanced SSFP, but with maximal magnetization at flip angles about 10 degrees lower than in balanced SSFP. The total scan time is increased by about 30% compared to conventional balanced SSFP. The new technique was applied on phantoms and volunteers to produce rapid, fat suppressed images.
Collapse
Affiliation(s)
- J Leupold
- Department of Diagnostic Radiology, Medical Physics, University Hospital Freiburg, Freiburg, Germany.
| | | | | |
Collapse
|
25
|
Eberhardt KW, Schär M, Barmet C, Tsao J, Boesiger P, Kozerke S. Linear response equilibrium. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 178:142-54. [PMID: 16226909 DOI: 10.1016/j.jmr.2005.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 08/14/2005] [Accepted: 09/14/2005] [Indexed: 05/04/2023]
Abstract
A new periodic pulse sequence employing weak excitation is presented. This type of sequence drives the system into a steady-state with periodic time evolution from which the data can be reconstructed to a spectrum. It is demonstrated that the frequency response of such a sequence can be analyzed using perturbation methods and linear system analysis. A mathematical framework is proposed allowing the frequency response to be tailored by weighting a periodic flip function. The weak excitation level used implies very low specific absorption rates while generating a highly frequency selective signal in the order of 1/T2 with signal strengths comparable to those obtainable with conventional large flip angle balanced steady-state free precession techniques. The concept is illustrated with phantom experiments and in vivo feasibility of water fat separation is shown on human knee images.
Collapse
Affiliation(s)
- Kai W Eberhardt
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|