1
|
Wilk B, Wisenberg G, Dharmakumar R, Thiessen JD, Goldhawk DE, Prato FS. Hybrid PET/MR imaging in myocardial inflammation post-myocardial infarction. J Nucl Cardiol 2020; 27:2083-2099. [PMID: 31797321 PMCID: PMC7391987 DOI: 10.1007/s12350-019-01973-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/24/2023]
Abstract
Hybrid PET/MR imaging is an emerging imaging modality combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in the same system. Since the introduction of clinical PET/MRI in 2011, it has had some impact (e.g., imaging the components of inflammation in myocardial infarction), but its role could be much greater. Many opportunities remain unexplored and will be highlighted in this review. The inflammatory process post-myocardial infarction has many facets at a cellular level which may affect the outcome of the patient, specifically the effects on adverse left ventricular remodeling, and ultimately prognosis. The goal of inflammation imaging is to track the process non-invasively and quantitatively to determine the best therapeutic options for intervention and to monitor those therapies. While PET and MRI, acquired separately, can image aspects of inflammation, hybrid PET/MRI has the potential to advance imaging of myocardial inflammation. This review contains a description of hybrid PET/MRI, its application to inflammation imaging in myocardial infarction and the challenges, constraints, and opportunities in designing data collection protocols. Finally, this review explores opportunities in PET/MRI: improved registration, partial volume correction, machine learning, new approaches in the development of PET and MRI pulse sequences, and the use of novel injection strategies.
Collapse
Affiliation(s)
- B Wilk
- Department of Medical Imaging, Western University, London, Canada.
- Lawson Health Research Institute, London, Canada.
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada.
| | - G Wisenberg
- Department of Medical Imaging, Western University, London, Canada
- MyHealth Centre, Arva, Canada
| | - R Dharmakumar
- Biomedical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - J D Thiessen
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| | - D E Goldhawk
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| | - F S Prato
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| |
Collapse
|
2
|
Svedin BT, Parker DL. Technical Note: The effect of 2D excitation profile on T1 measurement accuracy using the variable flip angle method with an average flip angle assumption. Med Phys 2017; 44:5930-5937. [PMID: 28796308 DOI: 10.1002/mp.12513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To study the accuracy and precision of T1 estimates using the Variable Flip Angle (VFA) method in 2D and 3D acquisitions. METHODS Excitation profiles were simulated using numerical implementation of the Bloch equations for Hamming-windowed sinc excitation pulses with different time-bandwidth products (TBP) of 2, 6, and 10 and for T1 values of 295 ms and 1045 ms. Experimental data were collected in 5° increments from 5° to 90° for the same T1 and TBP values. T1 was calculated for every combination of flip angle with and without a correction for B1 and slice profile variation. Calculations were also made for flat slice profile such as obtained in 3D acquisition. Monte Carlo simulations were performed to obtain T1 measurement uncertainty. RESULTS VFA T1 measurements in 2D without correction can result in a 40-80% underestimation of true T1 . Flip angle correction can reduce the underestimation, but results in accurate measurements of T1 only within a narrow band of flip angle combinations. The narrow band of accuracy increases with TBP, but remains too narrow for any practical range of T1 values or B1 variation. Simulated noisy VFA T1 measurements in 3D were accurate as long as the two angles chosen are on either side of the Ernst angle. CONCLUSIONS Accurate T1 estimates from VFA 2D acquisitions are possible, but only a narrow range of T1 values within a narrow range of flip angle combinations can be accurately calculated using a 2D slice. Unless a better flip angle correction method is used, these results demonstrate that accurate measurements of T1 in 2D cannot be obtained robustly enough for practical use and are more likely obtained by a thin slab 3D VFA acquisition than from multiple-slice 2D acquisitions. VFA T1 measurements in 3D are accurate for wide ranges of flip angle combinations and T1 values.
Collapse
Affiliation(s)
- Bryant T Svedin
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, USA
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Abstract
The availability of an accurate, noninvasive method using cardiac magnetic resonance imaging (MRI) to distinguish microscopic myocardial tissue changes at a macroscopic scale is well established. High-resolution in vivo monitoring of different pathologic tissue changes in the heart is a useful clinical tool for assessing the nature and extent of cardiac pathology. Cardiac MRI utilizes myocardial signal characteristics based on relaxation parameters such as T1, T2, and T2 star values. Identifying changes in relaxation time enables the detection of distinctive myocardial diseases such as cardiomyopathies and ischemic myocardial injury. The presented state-of-the-art review paper serves the purpose of introducing and summarizing MRI capability of tissue characterization in present clinical practice.
Collapse
|
4
|
Cuenod C, Balvay D. Perfusion and vascular permeability: Basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging 2013; 94:1187-204. [DOI: 10.1016/j.diii.2013.10.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Spernyak JA, White WH, Ethirajan M, Patel NJ, Goswami L, Chen Y, Turowski S, Missert JR, Batt C, Mazurchuk R, Pandey RK. Hexylether derivative of pyropheophorbide-a (HPPH) on conjugating with 3gadolinium(III) aminobenzyldiethylenetriaminepentaacetic acid shows potential for in vivo tumor imaging (MR, Fluorescence) and photodynamic therapy. Bioconjug Chem 2010; 21:828-35. [PMID: 20387862 DOI: 10.1021/bc9005317] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Conjugates of 3-(1'-hexyloxyethyl)-3-devinyl pyropheophorbide-a (HPPH) with multiple Gd(III)aminobenzyl diethylenetriamine pentacetic acid (ADTPA) moieties were evaluated for tumor imaging and photodynamic therapy (PDT). In vivo studies performed in both mice and rat tumor models resulted in a significant MR signal enhancement of tumors relative to surrounding tissues at 24 h postinjection. The water-soluble (pH: 7.4) HPPH-3Gd(III) ADTPA conjugate demonstrated high potential for tumor imaging by MR and fluorescence. This agent also produced long-term tumor cures via PDT. An in vivo biodistribution study with the corresponding (14)C-analogue also showed significant tumor uptake 24 h postinjection. Toxicological evaluations of HPHH-3Gd(III)ADTPA administered at and above imaging/therapeutic doses did not show any evidence of organ toxicity. Our present study illustrates a novel approach for the development of water-soluble "multifunctional agents", demonstrating efficacy for tumor imaging (MR and fluorescence) and phototherapy.
Collapse
Affiliation(s)
- Joseph A Spernyak
- Preclinical Imaging Facility, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Quantification of regional myocardial blood flow in a canine model of stunned and infarcted myocardium: comparison of rubidium-82 positron emission tomography with microspheres. Nucl Med Commun 2010; 31:67-74. [PMID: 19823095 DOI: 10.1097/mnm.0b013e328332b32a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Myocardial viability and quantification of regional myocardial blood flow (MBF) are important for the diagnosis of heart disease. Positron emission tomography is the current gold standard for determining myocardial viability, but most positron-emitting perfusion tracers require an on-site cyclotron. Rubidium-82 ((82)Rb) is a myocardial perfusion tracer that is produced using an on-site generator. This study investigates (82)Rb-measured MBF in canine models of stunned and infarcted myocardium compared with selected measurements obtained concurrently using microspheres. METHODS Myocardial stunning and infarction were created in canines by occluding the left anterior descending for 15 min and 2 h, respectively. Stunning was produced in all animals; six animals were reperfused after the 2 h occlusion, whereas the other six animals remained occluded permanently. Regional MBF was measured in each group during rest and dobutamine stress at acute and chronic (8 weeks postinsult) time points using dynamic (82)Rb perfusion imaging and radioactively labeled microspheres. RESULTS Average resting MBF with microspheres and Rb was 0.68+/-0.02 versus 0.73+/-0.01 (P<0.001) in nonischemic tissue, and 0.53+/-0.03 versus 0.42+/-0.02 (P<0.001) in the region-at-risk tissue, respectively. Average MBF during stress with microspheres and Rb was 2.78+/-0.15 versus 3.53+/-0.16 (P<0.05) in the nonischemic tissue, and 1.90+/-0.20 versus 2.31+/-0.26 (P = NS) in the region-at-risk tissue, respectively. CONCLUSION Despite the small significant differences, the dynamic (82)Rb measurements provide estimates of MBF in stunned and acutely and chronically infarcted tissue at rest and during hyperemia that correspond with clinical interpretation.
Collapse
|
7
|
Oechsner M, Mühlhäusler M, Ritter CO, Weininger M, Beissert M, Jakob PM, Beer M, Hahn D, Köstler H. Quantitative contrast-enhanced perfusion measurements of the human lung using the prebolus approach. J Magn Reson Imaging 2009; 30:104-11. [DOI: 10.1002/jmri.21793] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
8
|
Li X, Springer CS, Jerosch-Herold M. First-pass dynamic contrast-enhanced MRI with extravasating contrast reagent: evidence for human myocardial capillary recruitment in adenosine-induced hyperemia. NMR IN BIOMEDICINE 2009; 22:148-157. [PMID: 18727151 DOI: 10.1002/nbm.1293] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Human myocardial (1)H(2)O T(1)-weighted dynamic contrast-enhanced MRI data were acquired during the brief first-pass period after injection of a very small gadolinium diethylenetriaminepenta-acetate (GdDTPA(2-)) dose. The shutter-speed pharmacokinetic effects of both transendothelial and transcytolemmal equilibrium water exchange processes were investigated. Our results indicate that even for such a short acquisition window and relatively large pseudo-first-order rate constant (K(trans)) for plasma/interstitium contrast reagent (CR) transfer the kinetics of these water exchange processes cannot be treated as infinitely fast or slow. However, neither the intracellular water molecule lifetime (tau(i)) nor its intravascular counterpart (tau(b)) are among the parameters most influential in analysis of the noisy data typically associated with the cardiac perfusion application. Thus, the actual values of water exchange kinetic rate constants are relatively indeterminate as this experiment is usually conducted. Combining the K(trans) evaluations with independently determined flow (F) values allows us to estimate CR permeability coefficient surface area product (P(CR)S) values. The fact that the P(CR)S magnitudes almost equal the K(trans) values confirms that GdDTPA(2-) extravasation in resting human myocardial muscle is indeed permeation-limited and supports the validity of the K(trans) and P(CR)S estimations. Nevertheless the model analysis is most consistent with the results if P(CR)S is not assumed to be constant with changing flow. The capillary blood volume fraction (v(b)) is a sensitive parameter in the analysis. We also compared resting and hyperemic cardiac conditions, the latter resulting from the volume flow increase induced by adenosine arteriolar vasodilation. We found that the P(CR)S value increases with flow probably mostly because of an S increase associated with capillary recruitment. The v(b) values also increased in hyperemia and showed a flow-dependence with a clearly identifiable component due to capillary recruitment.
Collapse
Affiliation(s)
- Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
9
|
Schabel MC, Morrell GR. Uncertainty in T(1) mapping using the variable flip angle method with two flip angles. Phys Med Biol 2008; 54:N1-8. [PMID: 19060359 DOI: 10.1088/0031-9155/54/1/n01] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Propagation of errors, in conjunction with the theoretical signal equation for spoiled gradient echo pulse sequences, is used to derive a theoretical expression for uncertainty in quantitative variable flip angle T(1) mapping using two flip angles. This expression is then minimized to derive a rigorous expression for optimal flip angles that elucidates a commonly used empirical result. The theoretical expressions for uncertainty and optimal flip angles are combined to derive a lower bound on the achievable uncertainty for a given set of pulse sequence parameters and signal-to-noise ratio (SNR). These results provide a means of quantitatively determining the effect of changing acquisition parameters on T(1) uncertainty.
Collapse
Affiliation(s)
- Matthias C Schabel
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah Health Sciences Center, 729 Arapeen Drive, Salt Lake City, UT 84108-1218, USA.
| | | |
Collapse
|
10
|
Ahlem A, Samira M, Ali EH, Pierre G, Leila T. Ultrastructural study of the intracellular behavior of four mineral elements in the lactating mammary gland cells: Study using conventional transmission electron microscopy. Microsc Res Tech 2008; 71:849-55. [DOI: 10.1002/jemt.20628] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Friedrich MG. There Is More Than Shape and Function. J Am Coll Cardiol 2008; 52:1581-3. [DOI: 10.1016/j.jacc.2008.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 07/29/2008] [Accepted: 08/04/2008] [Indexed: 11/25/2022]
|
12
|
Schmid VJ, Gatehouse PD, Yang GZ. Attenuation resilient AIF estimation based on hierarchical Bayesian modelling for first pass myocardial perfusion MRI. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2008; 10:393-400. [PMID: 18051083 DOI: 10.1007/978-3-540-75757-3_48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Non-linear attenuation of the Arterial Input Function (AIF) is a major problem in first-pass MR perfusion imaging due to the high concentration of the contrast agent in the blood pool. This paper presents a technique to reconstruct the true AIF using signal intensities in the myocardium and the attenuated AIF based on a Hierarchical Bayesian Model (HBM). With the proposed method, both the AIF and the response function are modeled as smoothed functions by using Bayesian penalty splines (P-Splines). The derived AIF is then used to estimate the impulse response of the myocardium based on deconvolution analysis. The proposed technique is validated both with simulated data using the MMID4 model and ten in vivo data sets for estimating myocardial perfusion reserve rates. The results demonstrate the ability of the proposed technique in accurately reconstructing the desired AIF for myocardial perfusion quantification. The method does not involve any MRI pulse sequence modification, and thus is expected to have wider clinical impact.
Collapse
Affiliation(s)
- Volker J Schmid
- Institute for Biomedical Engineering, Imperial College, South Kensington, London, United Kingdom.
| | | | | |
Collapse
|
13
|
Wansapura J, Gottliebson W, Crotty E, Fleck R. Cyclic variation of T1 in the myocardium at 3 T. Magn Reson Imaging 2006; 24:889-93. [PMID: 16916706 DOI: 10.1016/j.mri.2006.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/05/2006] [Indexed: 11/20/2022]
Abstract
Standard methods of longitudinal relaxation (T1) measurements in the heart produce only one T1 map of the myocardium, usually at the end diastole (ED). In this article, we investigated the feasibility of using a dual flip angle fast gradient echo technique in the steady state to generate a movie of T1 maps in the myocardium during the cardiac cycle. The effects of nonideal slice profile and transient steady state on the T1 measurements were evaluated by Bloch simulations. Based on these results, we introduce a linear correction to the measured T1 values, which was validated by phantom experiments. In vivo T1 cine maps in healthy volunteers show 70+/-7% drop in T1 from the ED to the end systole in the septum and a 43+/-13% drop in the left ventricular lateral wall. With further improvements, this technique could be used to assess the myocardial blood volume changes during the cardiac cycle.
Collapse
Affiliation(s)
- Janaka Wansapura
- Cincinnati children's Hospital Medical Center, Imaging Research Center, Cincinnati, OH 45229, USA.
| | | | | | | |
Collapse
|
14
|
Higgins DM, Ridgway JP, Radjenovic A, Sivananthan UM, Smith MA. T1 measurement using a short acquisition period for quantitative cardiac applications. Med Phys 2005; 32:1738-46. [PMID: 16013731 DOI: 10.1118/1.1921668] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Myocardial signal intensity curves for myocardial perfusion studies may be made quantitative by the use of T1 measurements made after the first-pass of contrast agent. A short data acquisition method for T1 mapping is presented in which all data for each T1 map are acquired in a short breath hold, and the slice geometry and timing in the cardiac cycle exactly match that of the dynamic first-pass perfusion sequence. This allows accurate image registration of the T1 map with the first-pass series of images. The T1 method is based on varying the preparation-pulse delay time of a saturation recovery sequence, and in this implementation employs an ECG-triggered, single-shot, spoiled gradient echo technique with SENSE reconstruction. The method allows T1 estimates of three slices to be made in fifteen heartbeats. For a range of samples with T1 values equivalent to those found in the myocardium during the first-pass of contrast agent, T1 estimates were accurate to within 6%, and the variation between slices was 2% or less.
Collapse
Affiliation(s)
- David M Higgins
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.
| | | | | | | | | |
Collapse
|
15
|
Gatehouse PD, Elkington AG, Ablitt NA, Yang GZ, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging 2004; 20:39-45. [PMID: 15221807 DOI: 10.1002/jmri.20054] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To develop a method for accurate measurement of the arterial input function (AIF) during high-dose, single-injection, quantitative T1-weighted myocardial perfusion cardiovascular magnetic resonance (CMR). MATERIALS AND METHODS Fast injection of high-dose gadolinium with highly T1 sensitive myocardial perfusion imaging is normally incompatible with quantitative perfusion modeling because of distortion of the peak of the AIF caused by full recovery of the blood magnetization. We describe a new method that for each cardiac cycle uses a low-resolution short-axis (SA) image with a short saturation-recovery time immediately after the R-wave in order to measure the left ventricular (LV) blood pool signal, which is followed by a single SA high-resolution image with a long saturation-recovery time in order to measure the myocardial signal with high sensitivity. Fifteen subjects were studied. Using the new method, we compared the myocardial perfusion reserve (MPR) with that obtained from the dual-bolus technique (a low-dose bolus to measure the blood pool signal and a high-dose bolus to measure the myocardial signal). RESULTS A small significant difference was found between MPRs calculated using the new method and the MPRs calculated using the dual-bolus method. CONCLUSION This new method for measuring the AIF introduced no major error, while removing the practical difficulties of the dual-bolus approach. This suggests that quantification of the MPR can be achieved using the simple high-dose single-bolus technique, which could also image multiple myocardial slices.
Collapse
Affiliation(s)
- Peter D Gatehouse
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
16
|
Moran GR, Prato FS. Modeling1H exchange: An estimate of the error introduced in MRI by assuming the fast exchange limit in bolus tracking. Magn Reson Med 2004; 51:816-27. [PMID: 15065256 DOI: 10.1002/mrm.20002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A simulation is presented which calculates the MRI signal expected from a model tissue for a given pulse sequence after a bolus injection of a contrast agent. The calculation assumes two physiologic compartments only, the intravascular and extravascular spaces. The determination of the concentration of contrast in each compartment as a function of time and position has been outlined in a previous publication (Moran and Prato, Magn Reson Med 2001;45:42-45). These contrast agent concentrations are used here to determine the NMR relaxation times as a function of time and position within the tissue. Knowledge of this simulated tissue 'map' of relaxation times as a function of time provides the information required to determine whether the proton exchange rate is fast or slow on the NMR timescale. Since with a bolus injection the concentration of contrast and hence the relaxation time may vary with position along the capillary, some segments of the capillary are allowed to be in fast exchange with the extravascular space, while others may be in slow exchange. Using this information, and parameters specific to a given tissue, the MRI signal for a given pulse sequence is constructed which correctly accounts for differences in proton exchange across the length of the capillary. It is shown that extravascular contrast agents show less signal dependence on water exchange, and thus may be more appropriate for quantitative imaging when using fast exchange assumptions. It is also shown that nondistributed compartment models can incorrectly estimate the water exchange that is occurring at the capillary level if exchange-minimizing pulse sequences are not used.
Collapse
Affiliation(s)
- G R Moran
- Medical Physics and Applied Radiation Sciences Unit, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
17
|
Moran GR, Thornhill RE, Sykes J, Prato FS. Myocardial viability imaging using Gd-DTPA: physiological modeling of infarcted myocardium, and impact on injection strategy and imaging time. Magn Reson Med 2002; 48:791-800. [PMID: 12417993 DOI: 10.1002/mrm.10289] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Results of simulations are shown which illustrate how the concentration-time curves of an extravascular extracellular (EVEC) contrast agent, such as Gd-DTPA, vary in myocardial tissue. The simulations show that the variable permeability of dead myocytes within a recent myocardial infarction will significantly alter delayed enhancement patterns following a bolus injection, invariably reducing the sensitivity of this technique for the detection of permanently damaged tissue. It is further predicted that if the bolus injection is followed by a suitably selected constant infusion, the infarct size and infarct volume of distribution may be more accurately determined, even though the degree of enhancement of an infarcted region (with normal flow) above normal tissue is slightly higher for the bolus technique within the first 30 min following the injection. The degree of enhancement of an infarcted region (with normal flow) above normal tissue was comparable between the two techniques at the point in the constant infusion at which the volume of contrast injected was the same as in the bolus case, i.e., at approximately 30 min after the bolus injection. The constant infusion approach became superior thereafter as overall tissue concentrations became greater in both normal and infarcted tissue, and these concentrations remained more stable with the constant infusion approach. Preliminary experimental results in a canine model of infarction/reperfusion illustrated a delayed wash-in of contrast agent in infarcted tissue, which may be explained by a physiological model in which dead myocytes in infarcted myocardium have non-infinite permeability.
Collapse
Affiliation(s)
- G R Moran
- Department of Nuclear Medicine and Magnetic Resonance, Lawson Health Research Institute, St Joseph's Health Care, London, Canada.
| | | | | | | |
Collapse
|
18
|
Current awareness. NMR IN BIOMEDICINE 2002; 15:75-86. [PMID: 11840556 DOI: 10.1002/nbm.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|