1
|
Yao A, Balchandani P, Shrivastava RK. Metabolic In Vivo Visualization of Pituitary Adenomas: a Systematic Review of Imaging Modalities. World Neurosurg 2017; 104:489-498. [PMID: 28461279 DOI: 10.1016/j.wneu.2017.04.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Pituitary adenomas (PAs) are the most common intrasellar mass. Functional PAs constitute most of pituitary tumors and can produce symptoms related to hormonal overproduction. Timely and accurate detection is therefore of vital importance to prevent potentially irreversible sequelae. Magnetic resonance imaging is the gold standard for detecting PAs, but is limited by poor sensitivity for microadenomas and an inability to differentiate scar tissue from tumor residual or predict treatment response. Several new modalities that detect PAs have been proposed. METHODS A systematic review of the PubMed database was performed for imaging studies of PAs since its inception. Data concerning study characteristics, clinical symptoms, imaging modalities, and diagnostic accuracy were collected. RESULTS After applying exclusion criteria, 25 studies of imaging PAs using positron emission tomography (PET), magnetic resonance spectroscopy (MRS), and single photon emission computed tomography were reviewed. PET reliably detects PAs, particularly where magnetic resonance imaging is equivocal, although its efficacy is limited by high cost and low availability. Single photon emission computed tomography possesses good sensitivity for neuroendocrine tumors but its use with PAs is poorly documented. MRS consistently detects cellular proliferation and hormonal activity, but warrants further study at higher magnetic field strength. CONCLUSIONS PET and MRS appear to have the strongest predictive value in detecting PAs. MRS has the advantage of low cost, but the literature is lacking in specific studies of the pituitary. Due to high recurrence rates of functional PAs and low sensitivity of existing diagnostic workups, further investigation of metabolic imaging is necessary.
Collapse
Affiliation(s)
- Amy Yao
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York, USA
| | - Priti Balchandani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York, USA
| | - Raj K Shrivastava
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York, USA.
| |
Collapse
|
2
|
Verma A, Kumar I, Verma N, Aggarwal P, Ojha R. Magnetic resonance spectroscopy - Revisiting the biochemical and molecular milieu of brain tumors. BBA CLINICAL 2016; 5:170-8. [PMID: 27158592 PMCID: PMC4845155 DOI: 10.1016/j.bbacli.2016.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022]
Abstract
Background Magnetic resonance spectroscopy (MRS) is an established tool for in-vivo evaluation of the biochemical basis of human diseases. On one hand, such lucid depiction of ‘live biochemistry’ helps one to decipher the true nature of the pathology while on the other hand one can track the response to therapy at sub-cellular level. Brain tumors have been an area of continuous interrogation and instigation for mankind. Evaluation of these lesions by MRS plays a crucial role in the two aspects of disease management described above. Scope of review Presented is an overview of the window provided by MRS into the biochemical aspects of brain tumors. We systematically visit each metabolite deciphered by MRS and discuss the role of deconvoluting the biochemical aspects of pathologies (here in context of brain tumors) in the disease management cycle. We further try to unify a radiologist's perspective of disease with that of a biochemist to prove the point that preclinical work is the mother of the treatment we provide at bedside as clinicians. Furthermore, an integrated approach by various scientific experts help resolve a query encountered in everyday practice. Major conclusions MR spectroscopy is an integral tool for evaluation and systematic follow-up of brain tumors. A deeper understanding of this technology by a biochemist would help in a swift and more logical development of the technique while a close collaboration with radiologist would enable definitive application of the same. General significance The review aims at inciting closer ties between the two specialists enabling a deeper understanding of this valuable technology. Magnetic resonance spectroscopy is an established technology for non-invasive assessment of pathological tissue. Good understanding of the physical principles of the technique can help one exploit it maximally. An array of information from the technique is available and needs deep understanding of the results. Newer variations of this technology are being invented to evaluate different aspects of pathologies in a more refined manner. We also discuss the limitations of this technology and possible solutions there-off.
Collapse
Affiliation(s)
- Ashish Verma
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ishan Kumar
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nimisha Verma
- Department of Anesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Priyanka Aggarwal
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
3
|
Mirkes C, Shajan G, Chadzynski G, Buckenmaier K, Bender B, Scheffler K. (31)P CSI of the human brain in healthy subjects and tumor patients at 9.4 T with a three-layered multi-nuclear coil: initial results. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:579-89. [PMID: 26811174 DOI: 10.1007/s10334-016-0524-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/20/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Investigation of the feasibility and performance of phosphorus ((31)P) magnetic resonance spectroscopic imaging (MRSI) at 9.4 T with a three-layered phosphorus/proton coil in human normal brain tissue and tumor. MATERIALS AND METHODS A multi-channel (31)P coil was designed to enable MRSI of the entire human brain. The performance of the coil was evaluated by means of electromagnetic field simulations and actual measurements. A 3D chemical shift imaging approach with a variable repetition time and flip angle was used to increase the achievable signal-to-noise ratio of the acquired (31)P spectra. The impact of the resulting k-space modulation was investigated by simulations. Three tumor patients and three healthy volunteers were scanned and differences between spectra from healthy and cancerous tissue were evaluated qualitatively. RESULTS The high sensitivity provided by the 27-channel (31)P coil allowed acquiring CSI data in 22 min with a nominal voxel size of 15 × 15 × 15 mm(3). Shimming and anatomical localization could be performed with the integrated four-channel proton dipole array. The amplitudes of the phosphodiesters and phosphoethanolamine appeared reduced in tumorous tissue for all three patients. A neutral or slightly alkaline pH was measured within the brain lesions. CONCLUSION These initial results demonstrate that (31)P 3D CSI is feasible at 9.4 T and could be performed successfully in healthy subjects and tumor patients in under 30 min.
Collapse
Affiliation(s)
- Christian Mirkes
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany. .,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany.
| | - Gunamony Shajan
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Grzegorz Chadzynski
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Kai Buckenmaier
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Shi XF, Carlson PJ, Kim TS, Sung YH, Hellem TL, Fiedler KK, Kim SE, Glaeser B, Wang K, Zuo CS, Jeong EK, Renshaw PF, Kondo DG. Effect of altitude on brain intracellular pH and inorganic phosphate levels. Psychiatry Res 2014; 222:149-56. [PMID: 24768210 PMCID: PMC4699298 DOI: 10.1016/j.pscychresns.2014.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 11/30/2022]
Abstract
Normal brain activity is associated with task-related pH changes. Although central nervous system syndromes associated with significant acidosis and alkalosis are well understood, the effects of less dramatic and chronic changes in brain pH are uncertain. One environmental factor known to alter brain pH is the extreme, acute change in altitude encountered by mountaineers. However, the effect of long-term exposure to moderate altitude has not been studied. The aim of this two-site study was to measure brain intracellular pH and phosphate-bearing metabolite levels at two altitudes in healthy volunteers, using phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS). Increased brain pH and reduced inorganic phosphate (Pi) levels were found in healthy subjects who were long-term residents of Salt Lake City, UT (4720ft/1438m), compared with residents of Belmont, MA (20ft/6m). Brain intracellular pH at the altitude of 4720ft was more alkaline than that observed near sea level. In addition, the ratio of inorganic phosphate to total phosphate signal also shifted toward lower values in the Salt Lake City region compared with the Belmont area. These results suggest that long-term residence at moderate altitude is associated with brain chemical changes.
Collapse
Affiliation(s)
- Xian-Feng Shi
- The Brain Institute, University of Utah, Salt Lake City, Utah, USA; Department of Psychiatry, University of Utah, Salt Lake City, UT, USA.
| | - Paul J. Carlson
- The Brain Institute, University of Utah, Salt Lake City, Utah, USA,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Tae-Suk Kim
- The Brain Institute, University of Utah, Salt Lake City, Utah, USA
| | - Young-Hoon Sung
- The Brain Institute, University of Utah, Salt Lake City, Utah, USA,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Tracy L. Hellem
- The Brain Institute, University of Utah, Salt Lake City, Utah, USA
| | | | - Seong-Eun Kim
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Breanna Glaeser
- Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Kristina Wang
- Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Chun S. Zuo
- Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Eun-Kee Jeong
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Perry F. Renshaw
- The Brain Institute, University of Utah, Salt Lake City, Utah, USA,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA,VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Douglas G. Kondo
- The Brain Institute, University of Utah, Salt Lake City, Utah, USA,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA,VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Abstract
During the past decade or so, a wealth of information about metabolites in various human brain tumour preparations (cultured cells, tissue specimens, tumours in vivo) has been accumulated by global profiling tools. Such holistic approaches to cellular biochemistry have been termed metabolomics. Inherent and specific metabolic profiles of major brain tumour cell types, as determined by proton nuclear magnetic resonance spectroscopy ((1)H MRS), have also been used to define metabolite phenotypes in tumours in vivo. This minireview examines the recent advances in the field of human brain tumour metabolomics research, including advances in MRS and mass spectrometry technologies, and data analysis.
Collapse
Affiliation(s)
- Julian L Griffin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK.
| | | |
Collapse
|
6
|
Abstract
The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications.
Collapse
Affiliation(s)
- Stephen F Keevil
- Department of Medical Physics, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
7
|
Kurhanewicz J, Vigneron DB, Nelson SJ. Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia 2000; 2:166-89. [PMID: 10933075 PMCID: PMC1531872 DOI: 10.1038/sj.neo.7900081] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Clinical applications of magnetic resonance spectroscopic imaging (MRSI) for the study of brain and prostate cancer have expanded significantly over the past 10 years. Proton MRSI studies of the brain and prostate have demonstrated the feasibility of noninvasively assessing human cancers based on metabolite levels before and after therapy in a clinically reasonable amount of time. MRSI provides a unique biochemical "window" to study cellular metabolism noninvasively. MRSI studies have demonstrated dramatic spectral differences between normal brain tissue (low choline and high N-acetyl aspartate, NAA) and prostate (low choline and high citrate) compared to brain (low NAA, high choline) and prostate (low citrate, high choline) tumors. The presence of edema and necrosis in both the prostate and brain was reflected by a reduction of the intensity of all resonances due to reduced cell density. MRSI was able to discriminate necrosis (absence of all metabolites, except lipids and lactate) from viable normal tissue and cancer following therapy. The results of current MRSI studies also provide evidence that the magnitude of metabolic changes in regions of cancer before therapy as well as the magnitude and time course of metabolic changes after therapy can improve our understanding of cancer aggressiveness and mechanisms of therapeutic response. Clinically, combined MRI/MRSI has already demonstrated the potential for improved diagnosis, staging and treatment planning of brain and prostate cancer. Additionally, studies are under way to determine the accuracy of anatomic and metabolic parameters in providing an objective quantitative basis for assessing disease progression and response to therapy.
Collapse
Affiliation(s)
- J Kurhanewicz
- Magnetic Resonance Science Center, Department of Radiology, University of California, San Francisco 94143-1290, USA.
| | | | | |
Collapse
|
8
|
Taylor JS, Langston JW, Reddick WE, Kingsley PB, Ogg RJ, Pui MH, Kun LE, Jenkins JJ, Chen G, Ochs JJ, Sanford RA, Heideman RL. Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys 1996; 36:1251-61. [PMID: 8985051 DOI: 10.1016/s0360-3016(96)00376-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Delayed cerebral necrosis (DN) is a significant risk for brain tumor patients treated with high-dose irradiation. Although differentiating DN from tumor progression is an important clinical question, the distinction cannot be made reliably by conventional imaging techniques. We undertook a pilot study to assess the ability of proton magnetic resonance spectroscopy (1H MRS) to differentiate prospectively between DN or recurrent/residual tumor in a series of children treated for primary brain tumors with high-dose irradiation. METHODS AND MATERIALS Twelve children (ages 3-16 years), who had clinical and MR imaging (MRI) changes that suggested a diagnosis of either DN or progressive/recurrent brain tumor, underwent localized 1H MRS prior to planned biopsy, resection, or other confirmatory histological procedure. Prospective 1H MRS interpretations were based on comparison of spectral peak patterns and quantitative peak area values from normalized spectra: a marked depression of the intracellular metabolite peaks from choline, creatine, and N-acetyl compounds was hypothesized to indicate DN, and median-to-high choline with easily visible creatine metabolite peaks was labeled progressive/recurrent tumor. Subsequent histological studies identified the brain lesion as DN or recurrent/residual tumor. RESULTS The patient series included five cases of DN and seven recurrent/residual tumor cases, based on histology. The MRS criteria prospectively identified five out of seven patients with active tumor, and four out of five patients with histologically proven DN correctly. Discriminant analysis suggested that the primary diagnostic information for differentiating DN from tumor lay in the normalized MRS peak areas for choline and creatine compounds. CONCLUSIONS Magnetic resonance spectroscopy shows promising sensitivity and selectivity for differentiating DN from recurrent/progressive brain tumor. A novel diagnostic index based on peak areas for choline and creatine compounds may provide a simple discriminant for differentiating DN from recurrent or residual primary brain tumors.
Collapse
Affiliation(s)
- J S Taylor
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Brunetti A, Alfano B, Soricelli A, Tedeschi E, Mainolfi C, Covelli EM, Aloj L, Panico MR, Bazzicalupo L, Salvatore M. Functional characterization of brain tumors: an overview of the potential clinical value. Nucl Med Biol 1996; 23:699-715. [PMID: 8940713 DOI: 10.1016/0969-8051(96)00069-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Early detection and characterization are still challenging issues in the diagnostic approach to brain tumors. Among functional imaging techniques, a clinical role for positron emission tomography studies with [18F]-fluorodeoxyglucose and for single photon emission computed tomography studies with [201Tl]-thallium-chloride has emerged. The clinical role of magnetic resonance spectroscopy is still being defined, whereas functional magnetic resonance imaging seems able to provide useful data for presurgical localization of critical cortical areas. Integration of morphostructural information provided by computed tomography and magnetic resonance imaging, with functional characterization and cyto-histologic evaluation of biologic markers, may assist in answering the open diagnostic questions concerning brain tumors.
Collapse
Affiliation(s)
- A Brunetti
- Centro CNR Per La Medicina Nucleare, Università Degli Studi Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
De Beer R, Bachert-Baumann P, Bovée WM, Cady E, Chambron J, Dommisse R, van Echteld CJ, Mathur-de Vre R, Williams SR. Quality assessment in in vivo NMR spectroscopy: VI. Multicentre quantification of MRS test signals. Magn Reson Imaging 1995; 13:169-76. [PMID: 7898276 DOI: 10.1016/0730-725x(94)00092-h] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this paper the results are presented of a joint European quantitative data-analysis study on a series of in vivo NMR time-domain test signals. The purpose of this study was to investigate, whether the quantitative MRS results from the various European biomedical research-centres can be made more comparable and reproducible. From the results of the study it can be concluded that in case of heavily overlapping NMR lines the quantifications should be done by some form of model function fitting and that, whenever possible, prior knowledge on the quantitative parameters should be incorporated into the quantification algorithms.
Collapse
Affiliation(s)
- R De Beer
- Department of Applied Physics, University of Technology of Delft, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Garcia PA, Laxer KD, van der Grond J, Hugg JW, Matson GB, Weiner MW. Phosphorus magnetic resonance spectroscopic imaging in patients with frontal lobe epilepsy. Ann Neurol 1994; 35:217-21. [PMID: 8109902 DOI: 10.1002/ana.410350214] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phosphorus magnetic resonance spectroscopic imaging has previously demonstrated localized metabolic abnormalities within the epileptogenic region in patients with temporal lobe epilepsy, including alkalosis, increased inorganic phosphate level, and decreased phosphomonoester levels. We studied 8 patients with frontal lobe epilepsy, finding interictal alkalosis in the epileptogenic region compared to the contralateral frontal lobe in all patients (7.10 +/- 0.05 vs 7.00 +/- 0.06, p < 0.001). Seven patients exhibited decreased phosphomonoester levels in the epileptogenic frontal lobe compared to the contralateral frontal lobe (16.0 +/- 6.0 vs 23.0 +/- 4.0, p < 0.01). In contrast to findings in temporal lobe epilepsy, inorganic phosphate level was not increased in the epileptogenic region. Based on values derived from normal control subjects, 5 patients had elevated pH in the seizure focus and 2 patients had decreased phosphomonoesters while none had abnormalities in the contralateral frontal lobe. These data suggest that magnetic resonance spectroscopy will be useful in the presurgical evaluation of patients with frontal lobe epilepsy.
Collapse
Affiliation(s)
- P A Garcia
- Department of Neurology, University of California, San Francisco 94143
| | | | | | | | | | | |
Collapse
|
12
|
Longo R, Ricci C, Dalla Palma L, Vidimari R, Giorgini A, den Hollander JA, Segebarth CM. Quantitative 31P MRS of the normal adult human brain. Assessment of interindividual differences and ageing effects. NMR IN BIOMEDICINE 1993; 6:53-57. [PMID: 8457427 DOI: 10.1002/nbm.1940060109] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The characteristics of the 31P MR spectra from a large central volume in the brain of 47 healthy adults (aged 25-85 years) were assessed. Spectral parameters were estimated by means of a time-domain fitting technique. Statistical uncertainties of the estimates were determined by means of the Cramer-Rao theory and minimized by introducing a priori knowledge into the fitting procedure. Age-dependency of the spectral parameters was assessed by means of linear regression. Significant differences between individuals were established for some parameters. A significant age-dependency (p < or = 0.001) of ca 20% over the age range considered was found for the intensity of the phosphocreatine resonance line.
Collapse
Affiliation(s)
- R Longo
- Istituto di Radiologia, Università degli Studi di Trieste, Ospedale di Cattinara, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The literature describing 31P, 1H, 13C, 23Na and 19F MRS in vivo in human cancers is reviewed. Cancers have typical metabolic characteristics in 31P and 1H MRS including high levels of phospholipid metabolites and a cellular pH more alkaline than normal. These alone are not specific for cancer but are diagnostic in appropriate clinical settings. Some metabolic characteristics appear to be prognostic indices and correlation with treatment response is emerging as an important potentially cost-effective use of MRS in oncology. 19F MRS examines pharmacokinetics of 5-fluorouracil and by demonstrating its retention predicts response of a cancer to treatment. Current needs include improvement of diagnostic specificity by use of techniques like multivoxel MRS, proton decoupling of 31P, short echo time and fat-suppressed 1H MRS, 13C MRS direct or via 1H-observe, and statistical analysis of multiple spectral features. Trials in large populations in well defined clinical settings are needed to determine if MRS can provide independent prognostic indices useful in cancer management.
Collapse
Affiliation(s)
- W Negendank
- Department of NMR and Medical Spectroscopy, Fox Chase Cancer Center, Philadelphia, PA 19111
| |
Collapse
|
14
|
Cozzone PJ, Vion-Dury J, Confort-Gouny S. [Magnetic resonance imaging and spectroscopy of the brain: a new approach of cerebral physiopathology]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 1992; 11:666-71. [PMID: 1300065 DOI: 10.1016/s0750-7658(05)80787-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- P J Cozzone
- Centre de Résonance Magnétique Biologique et Médicale, URA CNRS 1186, Faculté de Médecine, Marseille
| | | | | |
Collapse
|
15
|
Hugg JW, Matson GB, Twieg DB, Maudsley AA, Sappey-Marinier D, Weiner MW. Phosphorus-31 MR spectroscopic imaging (MRSI) of normal and pathological human brains. Magn Reson Imaging 1992; 10:227-43. [PMID: 1564992 DOI: 10.1016/0730-725x(92)90483-g] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The goals of this study were to evaluate 31P MR spectroscopic imaging (MRSI) for clinical studies and to survey potentially significant spatial variations of 31P metabolite signals in normal and pathological human brains. In normal brains, chemical shifts and metabolite ratios corrected for saturation were similar to previous studies using single-volume localization techniques (n = 10; pH = 7.01 +/- 0.02; PCr/Pi = 2.0 +/- 0.4; PCr/ATP = 1.4 +/- 0.2; ATP/Pi = 1.6 +/- 0.2; PCr/PDE = 0.52 +/- 0.06; PCr/PME = 1.3 +/- 0.2; [Mg2+]free = 0.26 +/- 0.02 mM.) In 17 pathological case studies, ratios of 31P metabolite signals between the pathological regions and normal-appearing (usually homologous contralateral) regions were obtained. First, in subacute and chronic infarctions (n = 9) decreased Pi (65 +/- 12%), PCr (38 +/- 6%), ATP (55 +/- 6%), PDE (47 +/- 9%), and total 31P metabolite signals (50 +/- 8%) were observed. Second, regions of decreased total 31P metabolite signals were observed in normal pressure hydrocephalus (NPH, n = 2), glioblastoma (n = 2), temporal lobe epilepsy (n = 2), and transient ischemic attacks (TIAs, n = 2). Third, alkalosis was detected in the NPH periventricular tissue, glioblastoma, epilepsy ipsilateral ictal foci, and chronic infarction regions; acidosis was detected in subacute infarction regions. Fourth, in TIAs with no MRI-detected infarction, regions consistent with transient neurological deficits were detected with decreased Pi, ATP, and total 31P metabolite signals. These results demonstrate an advantage of 31P MRSI over single-volume 31P MRS techniques in that metabolite information is derived simultaneously from multiple regions of brain, including those outside the primary pathological region of interest. These preliminary findings also suggest that abnormal metabolite distributions may be detected in regions that appear normal on MR images.
Collapse
Affiliation(s)
- J W Hugg
- MR Unit, Department of Veterans Affairs Medical Center, San Francisco, CA
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Arnold DL, Emrich JF, Shoubridge EA, Villemure JG, Feindel W. Characterization of astrocytomas, meningiomas, and pituitary adenomas by phosphorus magnetic resonance spectroscopy. J Neurosurg 1991; 74:447-53. [PMID: 1993910 DOI: 10.3171/jns.1991.74.3.0447] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phosphorus magnetic resonance (MR) spectroscopy allows noninvasive measurement of phosphate-containing compounds and pH within brain cells. The authors obtained localized phosphorus MR spectra from 10 normal brains, four low-grade astrocytomas, six glioblastomas, four meningiomas, and three pituitary adenomas and found differences in the spectra of each tumor type. Compared to normal brain, the spectra from low-grade astrocytomas showed a significant reduction of the phosphodiester (PDE) peak. Glioblastomas were characterized by a significant reduction of the PDE peak, elevation of the phosphomonoester (PME) peak, and a relatively alkaline intracellular pH. The spectra from meningiomas and pituitary adenomas were markedly different from the glial tumors. Meningiomas showed significant reductions in phosphocreatine, PDE, and inorganic phosphate, as well as a relatively alkaline pH. Pituitary adenomas resembled meningiomas, but had a much higher PME peak. Although the number of tumors studied was small, there appears to be a characteristic spectrum associated with these different tumor types. The present findings can be useful in the preoperative identification of these tumors and in furthering understanding of their growth and metabolism in vivo.
Collapse
Affiliation(s)
- D L Arnold
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Quebec, Canada
| | | | | | | | | |
Collapse
|
18
|
Segebarth C, Grivegnée AR, Longo R, Luyten PR, den Hollander JA. In vivo monitoring of fructose metabolism in the human liver by means of 31P magnetic resonance spectroscopy. Biochimie 1991; 73:105-8. [PMID: 2031955 DOI: 10.1016/0300-9084(91)90082-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It has been shown that fructose metabolism in the human liver can be monitored quantitatively by means of 1H image-guided 31P MRS, implemented on a clinical MR imaging system equipped with surface coils and with appropriate data processing software. Temporal resolution of the 31P MRS measurements is of the order of 2 min.
Collapse
Affiliation(s)
- C Segebarth
- Hôpital Erasme, Unité de Résonance Magnétique Nucléaire, Brussels, Belgium
| | | | | | | | | |
Collapse
|
19
|
Abstract
The search for a universal tumor marker continues. Present markers range from tumor products (polyamines, glycoproteins, peptides, hormones or carbohydrate-linked markers) to reaction products produced by the host tissues during tumor invasion. Techniques used to identify them include the classical methods of histology and cytochemistry as well as the more recent radioimmunoassay and metabolic probes. The in vivo techniques of increasing use for patient monitoring are MRS (magnetic resonance spectroscopy) and MRI (magnetic resonance imaging). The efficiency of some markers and statistical methods used in analyzing data are discussed, as are the ethical problems surrounding the use of new testing methods. Recent developments in MRI and MRS, marker elucidation, and evidence for a new autocrine differentiation-inhibiting factor (ADIF) are reviewed. Future needs and approaches focus on greater utilization of indicators of the preneoplastic state and of risk to cancer, as well as more careful attention to statistical analysis.
Collapse
Affiliation(s)
- M Czuba
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | | |
Collapse
|
20
|
Van Ormondt D, De Beer R, Mariën A, Den Hollander J, Luyten P, Vermeulen J. 2D approach to quantitation of inversion-recovery data. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0022-2364(90)90298-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|