1
|
Martenne-Duplan A, Tricou C, Finck M, Cartiaux B, Arribarat G, Mogicato G. The magnetization transfer ratio of the post-mortem canine intervertebral disk is positively correlated to Pfirrmann grading on high field 3.0T MRI: a pilot study. Front Vet Sci 2024; 11:1335331. [PMID: 38420211 PMCID: PMC10899331 DOI: 10.3389/fvets.2024.1335331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Objective Intervertebral disk (IVD) degeneration usually occurs earlier in chondrodystrophic dog breeds than in other breeds. Spinal cord compression secondary to IVD degeneration is the most common cause of myelopathy in these dogs. Standard magnetic resonance imaging (MRI) sequences permit the identification of IVD degeneration and its consequences on adjacent neurological structures. In human medicine, quantitative MRI sequences, such as magnetization transfer ratio (MTR) sequences, are developed and used to detect early IVD degeneration. This prospective randomized post-mortem comparative study aimed to evaluate the correlation between a qualitative Pfirrmann MRI grading and the MTR values of the IVD in chondrodystrophic dogs. Materials and methods Vertebral columns of eight canine cadavers were frozen and thawed prior to imaging with T2-weighted and MTR sequences using a 3.0 T high-field MRI. These sequences were reviewed by two observers. A Spearman correlation coefficient was calculated in order to compare the MTR values with the Pfirrmann grade. Pearson correlation coefficients were calculated to evaluate the inter-observer agreement of the delineation of the region of interest (ROI) around the NP and the MTR values. A Wilcoxon-Mann-Whitney test was used to conclude on the significance of the correlation between the MTR values and the Pfirrmann grades. Results There were 138 intervertebral disks analyzed: 29/138 (21.0%) IVD were grade I, 74/138 (53.6%) grade II, and 35/138 (25.4%) grade III. No grades IV and V were present in this study. Inter-observer agreement for delineation of IVD ROI was fair (r = 0.54) but inter-observer agreement of mean MTR value within the ROI was very good (r = 0.89). Mean MTR values were 16.459% (10.0305-21.0950%) for grade I, 18.888% (10.0750-27.2400%) for grade II, and 22.813% (12.5700-31.7600%) for grade III. The mean MTR value was significantly different between each Pfirrmann grade: between grades I and II (p < 0.005), grades II and III (p < 0.05), and grades I and III (p < 0.005). There was a significant moderate positive correlation between Pfirrmann grading and mean MTR values (r = 0.516). Conclusion The magnetization transfer ratio seems to be an objective method to detect early intervertebral disk degeneration via quantitative analysis.
Collapse
Affiliation(s)
| | - Corentin Tricou
- Anatomy and Diagnostic Imaging Department of Ecole Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse, Toulouse, France
| | - Marlène Finck
- Centre Hospitalier Vétérinaire Massilia, Animedis, Marseille, France
| | - Benjamin Cartiaux
- Toulouse Neuroimaging Center (ToNIC), University of Toulouse Paul Sabatier-INSERM-ENVT, Toulouse, France
| | - Germain Arribarat
- Toulouse Neuroimaging Center (ToNIC), University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| | - Giovanni Mogicato
- Toulouse Neuroimaging Center (ToNIC), University of Toulouse Paul Sabatier-INSERM-ENVT, Toulouse, France
| |
Collapse
|
2
|
Jang A, Han PK, Ma C, El Fakhri G, Wang N, Samsonov A, Liu F. B 1 inhomogeneity-corrected T 1 mapping and quantitative magnetization transfer imaging via simultaneously estimating Bloch-Siegert shift and magnetization transfer effects. Magn Reson Med 2023; 90:1859-1873. [PMID: 37427533 PMCID: PMC10528411 DOI: 10.1002/mrm.29778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE To introduce a method of inducing Bloch-Siegert shift and magnetization Transfer Simultaneously (BTS) and demonstrate its utilization for measuring binary spin-bath model parameters free pool spin-lattice relaxation (T 1 F $$ {T}_1^{\mathrm{F}} $$ ), macromolecular fraction (f $$ f $$ ), magnetization exchange rate (k F $$ {k}_{\mathrm{F}} $$ ) and local transmit field (B 1 + $$ {B}_1^{+} $$ ). THEORY AND METHODS Bloch-Siegert shift and magnetization transfer is simultaneously induced through the application of off-resonance irradiation in between excitation and acquisition of an RF-spoiled gradient-echo scheme. Applying the binary spin-bath model, an analytical signal equation is derived and verified through Bloch simulations. Monte Carlo simulations were performed to analyze the method's performance. The estimation of the binary spin-bath parameters withB 1 + $$ {B}_1^{+} $$ compensation was further investigated through experiments, both ex vivo and in vivo. RESULTS Comparing BTS with existing methods, simulations showed that existing methods can significantly biasT 1 $$ {T}_1 $$ estimation when not accounting for transmitB 1 $$ {B}_1 $$ heterogeneity and MT effects that are present. Phantom experiments further showed that the degree of this bias increases with increasing macromolecular proton fraction. Multi-parameter fit results from an in vivo brain study generated values in agreement with previous literature. Based on these studies, we confirmed that BTS is a robust method for estimating the binary spin-bath parameters in macromolecule-rich environments, even in the presence ofB 1 + $$ {B}_1^{+} $$ inhomogeneity. CONCLUSION A method of estimating Bloch-Siegert shift and magnetization transfer effect has been developed and validated. Both simulations and experiments confirmed that BTS can estimate spin-bath parameters (T 1 F $$ {T}_1^{\mathrm{F}} $$ ,f $$ f $$ ,k F $$ {k}_{\mathrm{F}} $$ ) that are free fromB 1 + $$ {B}_1^{+} $$ bias.
Collapse
Affiliation(s)
- Albert Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Paul K Han
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Nian Wang
- Indiana University, Indianapolis, Indiana, United States
| | | | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Macromolecular fraction (MMF) from 3D ultrashort echo time cones magnetization transfer (3D UTE-Cones-MT) imaging predicts meniscal degeneration and knee osteoarthritis. Osteoarthritis Cartilage 2021; 29:1173-1180. [PMID: 33882334 PMCID: PMC8971054 DOI: 10.1016/j.joca.2021.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Meniscal degeneration is strongly associated with osteoarthritis (OA). We aimed to evaluate a 3D ultrashort-echo-time Cones magnetization transfer (UTE-Cones-MT) sequence for quantification of macromolecular fraction (MMF) and MT ratio (MTR) in menisci of healthy volunteers and patients with different degrees of OA. METHODS Patients with mild OA (n = 19; 37-86 years; 10 males) or advanced OA (n = 12; 52-88 years; 4 males) and healthy volunteers (n = 17; 20-49 years; 7 males) were scanned with T2-FSE and UTE-Cones-MT sequences at 3T. Morphological assessment was performed using meniscal whole-organ magnetic resonance imaging score (WORMS). MMF and MTR were calculated for menisci, and correlated with age and meniscal WORMS scores. The diagnostic efficiency was performed by using receiver operating characteristic (ROC) curve and the area under the curve (AUC) analyses. RESULTS Decreased MMF and MTR were observed in menisci of patients with mild or advanced OA compared with healthy subjects, and in menisci with tears (Grade 2-4) compared with normal menisci (Grade 0). Significant negative correlations were observed between MMF (r = -0.769, P < 0.01), MTR (r = -0.320, P < 0.01), and meniscal WORMS score. There was a mild negative correlation between MMF (r = -0.438, P < 0.01), MTR (r = -0.289, P < 0.01), and age. The AUC values of MMF and MTR in the four horns of meniscus and the posterior horn medial meniscus for differentiating OA patients from healthy volunteers were 0.762 and 0.699, and 0.835 and 0.883, respectively. CONCLUSION The 3D UTE-Cones-MT biomarkers of MTR and especially MMF can detect compositional changes in meniscus and differentiate healthy subjects from patients with mild or advanced knee OA.
Collapse
|
4
|
Haliot K, Dubes V, Constantin M, Pernot M, Labrousse L, Busuttil O, Walton RD, Bernus O, Rogier J, Nubret K, Dos Santos P, Benoist D, Haïssaguerre M, Magat J, Quesson B. A 3D high resolution MRI method for the visualization of cardiac fibro-fatty infiltrations. Sci Rep 2021; 11:9266. [PMID: 33927217 PMCID: PMC8084928 DOI: 10.1038/s41598-021-85774-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Modifications of the myocardial architecture can cause abnormal electrical activity of the heart. Fibro-fatty infiltrations have been implicated in various cardiac pathologies associated with arrhythmias and sudden cardiac death, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Here, we report the development of an MRI protocol to observe these modifications at 9.4 T. Two fixed ex vivo human hearts, one healthy and one ARVC, were imaged with an Iterative decomposition with echo asymmetry and least-square estimations (IDEAL) and a magnetization transfer (MT) 3D sequences. The resulting fat fraction and MT ratio (MTR) were analyzed and compared to histological analysis of the three regions (“ARVC triangle”) primarily involved in ARVC structural remodeling. In the ARVC heart, high fat content was observed in the “ARVC triangle” and the superimposition of the MTR and fat fraction allowed the identification of fibrotic regions in areas without the presence of fat. The healthy heart exhibited twice less fat than the ARVC heart (31.9%, 28.7% and 1.3% of fat in the same regions, respectively). Localization of fat and fibrosis were confirmed by means of histology. This non-destructive approach allows the investigation of structural remodeling in human pathologies where fibrosis and/or fatty tissue infiltrations are expected to occur.
Collapse
Affiliation(s)
- K Haliot
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France. .,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France. .,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.
| | - V Dubes
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - M Constantin
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - M Pernot
- Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - L Labrousse
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - O Busuttil
- Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - R D Walton
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - O Bernus
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - J Rogier
- Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - K Nubret
- Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - P Dos Santos
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - D Benoist
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - M Haïssaguerre
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - J Magat
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - B Quesson
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
5
|
Tan Z, Lam WW, Oakden W, Murray L, Koletar MM, Liu SK, Stanisz GJ. Saturation transfer properties of tumour xenografts derived from prostate cancer cell lines 22Rv1 and DU145. Sci Rep 2020; 10:21315. [PMID: 33277574 PMCID: PMC7718243 DOI: 10.1038/s41598-020-78353-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
Histopathology is currently the most reliable tool in assessing the aggressiveness and prognosis of solid tumours. However, developing non-invasive modalities for tumour evaluation remains crucial due to the side effects and complications caused by biopsy procedures. In this study, saturation transfer MRI was used to investigate the microstructural and metabolic properties of tumour xenografts in mice derived from the prostate cancer cell lines 22Rv1 and DU145, which express different aggressiveness. The magnetization transfer (MT) and chemical exchange saturation transfer (CEST) effects, which are associated with the microstructural and metabolic properties in biological tissue, respectively, were analyzed quantitatively and compared amongst different tumour types and regions. Histopathological staining was performed as a reference. Higher cellular density and metabolism expressed in more aggressive tumours (22Rv1) were associated with larger MT and CEST effects. High collagen content in the necrotic regions might explain their higher MT effects compared to tumour regions.
Collapse
Affiliation(s)
- Ziyu Tan
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wilfred W Lam
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Leedan Murray
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Stanley K Liu
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
6
|
Feasibility of T2 Mapping and Magnetic Transfer Ratio for Diagnosis of Intervertebral Disc Degeneration at the Cervicothoracic Junction: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6396073. [PMID: 31187047 PMCID: PMC6521330 DOI: 10.1155/2019/6396073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/09/2019] [Indexed: 11/18/2022]
Abstract
Background Intervertebral disc degeneration (IDD) at the cervicothoracic junction of spine is clinically relevant, however, little attention had been paid. T2 mapping and magnetic transfer ratio (MTR) are useful magnetic resonance imaging (MRI) techniques to quantitatively evaluate IDD, revealing the biochemical changes within the intervertebral disc. To compare T2 mapping with MTR imaging regarding their accuracy to quantitatively diagnose intervertebral disc degeneration at the cervicothoracic junction, influences of anatomical level, gender, age, and Pfirrmann grade of T2 relaxation time values and MTR values were evaluated. Methods Sixty-seven patients with neck and upper back pain were included and examined with both T2 mapping and MTR imaging. The Pfirrmann grade, T2 relaxation time values, and MTR value of each disc between C7 and T3 were measured. Differences were investigated among different segmental levels, genders, age ranges, and Pfirrmann grades. The diagnostic accuracy of both MRI techniques was compared using the receiver operating characteristic (ROC) curves. Results No significant difference was detected comparing T2 relaxation time values or MTR values among different anatomical levels, genders, and segmental levels. And we generally found that T2 relaxation time values decreased, while MTR value increased with increasing age. Importantly, we demonstrated the significant correlation between either T2 relaxation time values or MTR value and Pfirrmann grade. Conclusion We proved the better accuracy of T2 mapping over MTR imaging to quantitatively evaluate the intervertebral disc degeneration of the cervicothoracic junction.
Collapse
|
7
|
Ferizi U, Ruiz A, Rossi I, Bencardino J, Raya JG. A robust diffusion tensor model for clinical applications of MRI to cartilage. Magn Reson Med 2017; 79:1157-1164. [PMID: 28556394 DOI: 10.1002/mrm.26702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/06/2023]
Abstract
PURPOSE Diffusion tensor imaging (DTI) of articular cartilage is a promising technique for the early diagnosis of osteoarthritis (OA). However, in vivo diffusion tensor (DT) measurements suffer from low signal-to-noise ratio (SNR) that can result in bias when estimating the six parameters of the full DT, thus reducing sensitivity. This study seeks to validate a simplified four-parameter DT model (zeppelin) for obtaining more robust and sensitive in vivo DTI biomarkers of cartilage. METHODS We use simulations in a substrate to mimic changes during OA; and analytic simulations of the DT drawn from a range of fractional anisotropies (FA) measured with high-quality DT data from ex vivo human cartilage. We also use in vivo data from the knees of a healthy subject and two OA patients with Kellgren-Lawrence (KL) grades 1 and 2. RESULTS For simulated in vivo cartilage SNR (∼25) and anisotropy levels, the estimated mean values of MD from the DT and zeppelin models were identical to the ground truth values. However, zeppelin's FA is more accurate in measuring water restriction. More specifically, the FA estimations of the DT model were additionally biased by between +2% and +48% with respect to zeppelin values. Additionally, both mean diffusivity (MD) and FA of the zeppelin had lower parameter variance compared to the full DT (F-test, P < 0.05). We observe the same trends from in vivo values of patient data. CONCLUSION The zeppelin is more robust than the full DT for cartilage diffusion anisotropy and SNR at levels typically encountered in clinical applications of articular cartilage. Magn Reson Med 79:1157-1164, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Uran Ferizi
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Amparo Ruiz
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ignacio Rossi
- Centro de Diagnostico Dr. Enrique Rossi, Buenos Aires, Argentina
| | - Jenny Bencardino
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - José G Raya
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
8
|
Niitsu M, Hirohata H, Yoshioka H, Anno I, Campeau NG, Itai Y. Magnetization Transfer Contrast on Gradient Echo MR Imaging of the Temporomandibular Joint. Acta Radiol 2016. [DOI: 10.1177/028418519503600317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thirty-nine temporomandibular joints (TMJ) from 20 patients with suspected internal derangements were imaged by a 1.5 T MR imager. The on-resonance binomial magnetization transfer contrast (MTC) pulse was applied to gradient echo images with a dual receiver coil (9 s/section). With the use of an opening device, a series of sequential images were obtained at increments of mouth opening and closing. The tissue signal intensities with (Ms) and without (Mo) MTC were measured and subjective image analysis was performed. Compared with the standard images, MTC technique provided selective signal suppression of disks. The average of Ms/Mo ratio of the disks (0.56) was lower than that of the retrodiskal pad (0.79) and of the effusion (0.89). With MTC technique, fluid conspicuity was superior to standard image. However, no significant superiority was found in disk definition subjectively.
Collapse
|
9
|
Liu F, Block WF, Kijowski R, Samsonov A. Rapid multicomponent relaxometry in steady state with correction of magnetization transfer effects. Magn Reson Med 2016; 75:1423-33. [PMID: 25959974 PMCID: PMC4637271 DOI: 10.1002/mrm.25672] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/26/2015] [Accepted: 02/06/2015] [Indexed: 11/07/2022]
Abstract
PURPOSE To study the effects of magnetization transfer (MT) on multicomponent T2 parameters obtained using mcDESPOT in macromolecule-rich tissues and to propose a new method called mcRISE to correct MT-induced biases. METHODS The two-pool mcDESPOT model was modified by the addition of an exchanging macromolecule proton pool to model the MT effect in cartilage. The mcRISE acquisition scheme was developed to provide sensitivity to all pools. An incremental fitting was applied to estimate MT and relaxometry parameters with minimized coupling. The interaction between MT and relaxometry parameters, efficacy of MT correction, and feasibility of mcRISE in vivo were investigated in simulations and in healthy volunteers. RESULTS The MT effect caused significant errors in multicomponent T1/T2 values and in fast-relaxing water fraction fF , which is consistent with previous experimental observations. fF increased significantly with macromolecule content if MT was ignored. mcRISE resulted in a multifold reduction of MT biases and yielded decoupled multicomponent T1/T2 relaxometry and quantitative MT parameters. CONCLUSION mcRISE is an efficient approach for correcting MT biases in multicomponent relaxometry based on steady state sequences. Improved specificity of mcRISE may help to elucidate the sources of the previously described high sensitivity of noncorrected mcDESPOT parameters to disease-related changes in cartilage and the brain.
Collapse
Affiliation(s)
- Fang Liu
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Walter F Block
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Richard Kijowski
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Alexey Samsonov
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
10
|
|
11
|
Chen C, Jia Z, Han Z, Gu T, Li W, Li H, Tang Y, Wu J, Wang D, He Q, Ruan D. Quantitative T2 relaxation time and magnetic transfer ratio predict endplate biochemical content of intervertebral disc degeneration in a canine model. BMC Musculoskelet Disord 2015; 16:157. [PMID: 26123048 PMCID: PMC4485356 DOI: 10.1186/s12891-015-0610-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/29/2015] [Indexed: 12/24/2022] Open
Abstract
Background Direct measurement of disc biochemical content is impossible in vivo. Therefore, magnetic resonance imaging (MRI) is used to evaluate disc health. Unfortunately, current clinical imaging techniques do not adequately assess degeneration, especially in the early stage of cartilage endplate, and subchondral bone zone (CEPZ). Therefore, this study aimed to investigate the sensitivity of quantitative MRI methods, namely T2 relaxation time and Magnetic Transfer Ratio (MTR), to identify early disc degeneration, especially for the CEPZ, using an experimental canine model of intervertebral disc injury and to investigate their sensitivity in depicting biochemically and histologically controlled degenerative changes in the disc. Methods Sixteen juvenile dogs underwent iatrogenic annular disruption via stab incisions. The animals underwent repeated 3.0 T MR imaging, and were sacrificed 4, 8, and 12 weeks post-operatively. A continuous rectangle drawing method was used to select regions of interest for the intervertebral disc from the cephalic to caudal CEPZ including the vertebrae, nucleus pulposus (NP) and annulus fibrosus (AF), which resembled pixel measurement for imaging analysis. Presence of degenerative changes was controlled by biochemical and histological analyses. The correlations between histological score, biochemical content, and quantitative MRI signal intensities were also analyzed. Results Both T2 relaxation time and MTR values changed for CEPZ, NP, and AF tissues within 12 weeks. T2 relaxation time values decreased significantly in the NP, AF, and CEPZ separately at pre-operation, 4, 8, and 12 weeks when compared each time (P < 0.05). MTR values showed no significant differences for the CEPZ between 8 and 4 weeks or 12 weeks, or compared to pre-operative values; there were significant differences for the AF. Biochemical and histological analysis showed changes consistent with quantitative MRI signal intensities for early stage degeneration. Conclusions Early traumatic or degenerative changes are detectable with both T2 and MTR. T2 changes were more sensitive to the differences in disc status, especially for the CEPZ. Since T2 and MTR reflect different disc properties, performing both imaging under the same conditions would be helpful in the evaluation of disc degeneration. The continuous rectangle drawing can be a sensitive method to detect the changes of CEPZ. Electronic supplementary material The online version of this article (doi:10.1186/s12891-015-0610-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun Chen
- Department of Orthopedic Surgery, Navy General Hospital, NO. 6 Fu-cheng Road, 100048, Beijing, People's Republic of China. .,Department of Orthopedic Surgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Zhiwei Jia
- Department of Orthopedic Surgery, Navy General Hospital, NO. 6 Fu-cheng Road, 100048, Beijing, People's Republic of China.
| | - Zhihua Han
- Department of Orthopedic Surgery, Navy General Hospital, NO. 6 Fu-cheng Road, 100048, Beijing, People's Republic of China.
| | - Tao Gu
- Department of Orthopedic Surgery, Navy General Hospital, NO. 6 Fu-cheng Road, 100048, Beijing, People's Republic of China.
| | - Wei Li
- Department of Orthopedic Surgery, Navy General Hospital, NO. 6 Fu-cheng Road, 100048, Beijing, People's Republic of China.
| | - Hao Li
- Department of Orthopedic Surgery, Navy General Hospital, NO. 6 Fu-cheng Road, 100048, Beijing, People's Republic of China.
| | - Yong Tang
- Department of Orthopedic Surgery, Navy General Hospital, NO. 6 Fu-cheng Road, 100048, Beijing, People's Republic of China.
| | - Jianhong Wu
- Department of Orthopedic Surgery, Navy General Hospital, NO. 6 Fu-cheng Road, 100048, Beijing, People's Republic of China.
| | - Deli Wang
- Department of Orthopedic Surgery, Navy General Hospital, NO. 6 Fu-cheng Road, 100048, Beijing, People's Republic of China.
| | - Qin He
- Department of Orthopedic Surgery, Navy General Hospital, NO. 6 Fu-cheng Road, 100048, Beijing, People's Republic of China.
| | - Dike Ruan
- Department of Orthopedic Surgery, Navy General Hospital, NO. 6 Fu-cheng Road, 100048, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Raya JG. Techniques and applications of in vivo diffusion imaging of articular cartilage. J Magn Reson Imaging 2015; 41:1487-504. [PMID: 25865215 DOI: 10.1002/jmri.24767] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/11/2014] [Indexed: 01/07/2023] Open
Abstract
Early in the process of osteoarthritis (OA) the composition (water, proteoglycan [PG], and collagen) and structure of articular cartilage is altered leading to changes in its mechanical properties. A technique that can assess the composition and structure of the cartilage in vivo can provide insight in the mechanical integrity of articular cartilage and become a powerful tool for the early diagnosis of OA. Diffusion tensor imaging (DTI) has been proposed as a biomarker for cartilage composition and structure. DTI is sensitive to the PG content through the mean diffusivity and to the collagen architecture through the fractional anisotropy. However, the acquisition of DTI of articular cartilage in vivo is challenging due to the short T2 of articular cartilage (∼40 ms at 3 Tesla) and the high resolution needed (0.5-0.7 mm in plane) to depict the cartilage anatomy. We describe the pulse sequences used for in vivo DTI of articular cartilage and discus general strategies for protocol optimization. We provide a comprehensive review of measurements of DTI of articular cartilage from ex vivo validation experiments to its recent clinical applications.
Collapse
Affiliation(s)
- José G Raya
- Department Radiology, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
13
|
Knoll F, Raya JG, Halloran RO, Baete S, Sigmund E, Bammer R, Block T, Otazo R, Sodickson DK. A model-based reconstruction for undersampled radial spin-echo DTI with variational penalties on the diffusion tensor. NMR IN BIOMEDICINE 2015; 28:353-66. [PMID: 25594167 PMCID: PMC4339452 DOI: 10.1002/nbm.3258] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 05/04/2023]
Abstract
Radial spin-echo diffusion imaging allows motion-robust imaging of tissues with very low T2 values like articular cartilage with high spatial resolution and signal-to-noise ratio (SNR). However, in vivo measurements are challenging, due to the significantly slower data acquisition speed of spin-echo sequences and the less efficient k-space coverage of radial sampling, which raises the demand for accelerated protocols by means of undersampling. This work introduces a new reconstruction approach for undersampled diffusion-tensor imaging (DTI). A model-based reconstruction implicitly exploits redundancies in the diffusion-weighted images by reducing the number of unknowns in the optimization problem and compressed sensing is performed directly in the target quantitative domain by imposing a total variation (TV) constraint on the elements of the diffusion tensor. Experiments were performed for an anisotropic phantom and the knee and brain of healthy volunteers (three and two volunteers, respectively). Evaluation of the new approach was conducted by comparing the results with reconstructions performed with gridding, combined parallel imaging and compressed sensing and a recently proposed model-based approach. The experiments demonstrated improvements in terms of reduction of noise and streaking artifacts in the quantitative parameter maps, as well as a reduction of angular dispersion of the primary eigenvector when using the proposed method, without introducing systematic errors into the maps. This may enable an essential reduction of the acquisition time in radial spin-echo diffusion-tensor imaging without degrading parameter quantification and/or SNR.
Collapse
Affiliation(s)
- Florian Knoll
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA
- Correspondence to: Florian Knoll, PhD, New York University School of Medicine, Center for Biomedical Imaging, 660 First Avenue, 4th Floor, New York, NY 10016, Phone: 212-263-0335,
| | - José G Raya
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA
| | - Rafael O Halloran
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Steven Baete
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA
| | - Eric Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA
| | - Roland Bammer
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Tobias Block
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA
| | - Ricardo Otazo
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
14
|
Vandsburger M, Vandoorne K, Oren R, Leftin A, Mpofu S, Delli Castelli D, Aime S, Neeman M. Cardio-chemical exchange saturation transfer magnetic resonance imaging reveals molecular signatures of endogenous fibrosis and exogenous contrast media. Circ Cardiovasc Imaging 2014; 8:CIRCIMAGING.114.002180. [PMID: 25550399 DOI: 10.1161/circimaging.114.002180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Application of emerging molecular MRI techniques, including chemical exchange saturation transfer (CEST)-MRI, to cardiac imaging is desirable; however, conventional methods are poorly suited for cardiac imaging, particularly in small animals with rapid heart rates. We developed a CEST-encoded steady state and retrospectively gated cardiac cine imaging sequence in which the presence of fibrosis or paraCEST contrast agents was directly encoded into the steady-state myocardial signal intensity (cardioCEST). METHODS AND RESULTS Development of cardioCEST: A CEST-encoded cardiac cine MRI sequence was implemented on a 9.4T small animal scanner. CardioCEST of fibrosis was serially performed by acquisition of a series of CEST-encoded cine images at multiple offset frequencies in mice (n=7) after surgically induced myocardial infarction. Scar formation was quantified using a spectral modeling approach and confirmed with histological staining. Separately, circulatory redistribution kinetics of the paramagnetic CEST agent Eu-HPDO3A were probed in mice using cardioCEST imaging, revealing rapid myocardial redistribution, and washout within 30 minutes (n=6). Manipulation of vascular tone resulted in heightened peak CEST contrast in the heart, but did not alter redistribution kinetics (n=6). At 28 days after myocardial infarction (n=3), CEST contrast kinetics in infarct zone tissue were altered, demonstrating gradual accumulation of Eu-HPDO3A in the increased extracellular space. CONCLUSIONS cardioCEST MRI enables in vivo imaging of myocardial fibrosis using endogenous contrast mechanisms, and of exogenously delivered paraCEST agents, and can enable multiplexed imaging of multiple molecular targets at high-resolution coupled with conventional cardiac MRI scans.
Collapse
Affiliation(s)
- Moriel Vandsburger
- From the Departments of Biological Regulation (M.V., K.V., R.O., S.M., M.N.) and Chemical Physics (A.L.), Weizmann Institute of Science, Rehovot, Israel; Department of Physiology and Biomedical Engineering, University of Kentucky, Lexington (M.V.); and Molecular Biotechnology Center, University of Torino, Torino, Italy (D.D.C., S.A.)
| | - Katrien Vandoorne
- From the Departments of Biological Regulation (M.V., K.V., R.O., S.M., M.N.) and Chemical Physics (A.L.), Weizmann Institute of Science, Rehovot, Israel; Department of Physiology and Biomedical Engineering, University of Kentucky, Lexington (M.V.); and Molecular Biotechnology Center, University of Torino, Torino, Italy (D.D.C., S.A.)
| | - Roni Oren
- From the Departments of Biological Regulation (M.V., K.V., R.O., S.M., M.N.) and Chemical Physics (A.L.), Weizmann Institute of Science, Rehovot, Israel; Department of Physiology and Biomedical Engineering, University of Kentucky, Lexington (M.V.); and Molecular Biotechnology Center, University of Torino, Torino, Italy (D.D.C., S.A.)
| | - Avigdor Leftin
- From the Departments of Biological Regulation (M.V., K.V., R.O., S.M., M.N.) and Chemical Physics (A.L.), Weizmann Institute of Science, Rehovot, Israel; Department of Physiology and Biomedical Engineering, University of Kentucky, Lexington (M.V.); and Molecular Biotechnology Center, University of Torino, Torino, Italy (D.D.C., S.A.)
| | - Senzeni Mpofu
- From the Departments of Biological Regulation (M.V., K.V., R.O., S.M., M.N.) and Chemical Physics (A.L.), Weizmann Institute of Science, Rehovot, Israel; Department of Physiology and Biomedical Engineering, University of Kentucky, Lexington (M.V.); and Molecular Biotechnology Center, University of Torino, Torino, Italy (D.D.C., S.A.)
| | - Daniela Delli Castelli
- From the Departments of Biological Regulation (M.V., K.V., R.O., S.M., M.N.) and Chemical Physics (A.L.), Weizmann Institute of Science, Rehovot, Israel; Department of Physiology and Biomedical Engineering, University of Kentucky, Lexington (M.V.); and Molecular Biotechnology Center, University of Torino, Torino, Italy (D.D.C., S.A.)
| | - Silvio Aime
- From the Departments of Biological Regulation (M.V., K.V., R.O., S.M., M.N.) and Chemical Physics (A.L.), Weizmann Institute of Science, Rehovot, Israel; Department of Physiology and Biomedical Engineering, University of Kentucky, Lexington (M.V.); and Molecular Biotechnology Center, University of Torino, Torino, Italy (D.D.C., S.A.)
| | - Michal Neeman
- From the Departments of Biological Regulation (M.V., K.V., R.O., S.M., M.N.) and Chemical Physics (A.L.), Weizmann Institute of Science, Rehovot, Israel; Department of Physiology and Biomedical Engineering, University of Kentucky, Lexington (M.V.); and Molecular Biotechnology Center, University of Torino, Torino, Italy (D.D.C., S.A.).
| |
Collapse
|
15
|
Kijowski R, Chaudhary R. Quantitative magnetic resonance imaging of the articular cartilage of the knee joint. Magn Reson Imaging Clin N Am 2014; 22:649-69. [PMID: 25442027 DOI: 10.1016/j.mric.2014.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Osteoarthritis is characterized by a decrease in the proteoglycan content and disruption of the highly organized collagen fiber network of articular cartilage. Various quantitative magnetic resonance imaging techniques have been developed for noninvasive assessment of the proteoglycan and collagen components of cartilage. These techniques have been extensively used in clinical practice to detect early cartilage degeneration and in osteoarthritis research studies to monitor disease-related and treatment-related changes in cartilage over time. This article reviews the role of quantitative magnetic resonance imaging in evaluating the composition and ultrastructure of the articular cartilage of the knee joint.
Collapse
Affiliation(s)
- Richard Kijowski
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA.
| | - Rajeev Chaudhary
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA
| |
Collapse
|
16
|
Sritanyaratana N, Samsonov A, Mossahebi P, Wilson JJ, Block WF, Kijowski R. Cross-relaxation imaging of human patellar cartilage in vivo at 3.0T. Osteoarthritis Cartilage 2014; 22:1568-76. [PMID: 25278066 PMCID: PMC4185154 DOI: 10.1016/j.joca.2014.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/10/2014] [Accepted: 06/03/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare quantitative magnetization transfer (qMT) parameters of patellar cartilage measured using cross-relaxation imaging (CRI) in asymptomatic volunteers and patients with osteoarthritis. DESIGN The study was performed with Institutional Review Board approval and with all subjects signing informed consent. CRI of the knee joint was performed at 3.0T on 20 asymptomatic volunteers and 11 patients with osteoarthritis. The fraction of macromolecular bound protons (f), the exchange rate constant between macromolecular bound protons and free water protons (k), and the T2 relaxation time of macromolecular bound protons (T2(B)) of patellar cartilage were measured. Mann-Whitney-Wilcoxon rank-sum tests were used to compare qMT parameters between asymptomatic volunteers and patients with osteoarthritis. RESULTS Average f, k, and T2(B) of patellar cartilage was 12.46%, 7.22 s(-1), and 6.49 μs respectively for asymptomatic volunteers and 12.80%, 6.13 s(-1), and 6.80 μs respectively for patients with osteoarthritis. There were statistically significant differences between groups of subjects for k (P < 0.01) and T2(B) (P < 0.0001) but not f (P = 0.38) of patellar cartilage. CONCLUSION Patients with osteoarthritis had significantly lower k and significantly higher T2(B) of patellar cartilage than asymptomatic volunteers which suggests that qMT parameters can detect changes in the macromolecular matrix of degenerative cartilage.
Collapse
Affiliation(s)
- N Sritanyaratana
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3252, USA.
| | - A Samsonov
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3252, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3252, USA
| | - P Mossahebi
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3252, USA
| | - J J Wilson
- Department of Orthopedic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3252, USA
| | - W F Block
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3252, USA
| | - R Kijowski
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3252, USA
| |
Collapse
|
17
|
Ho LC, Sigal IA, Jan NJ, Squires A, Tse Z, Wu EX, Kim SG, Schuman JS, Chan KC. Magic angle-enhanced MRI of fibrous microstructures in sclera and cornea with and without intraocular pressure loading. Invest Ophthalmol Vis Sci 2014; 55:5662-72. [PMID: 25103267 DOI: 10.1167/iovs.14-14561] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The structure and biomechanics of the sclera and cornea are central to several eye diseases such as glaucoma and myopia. However, their roles remain unclear, partly because of limited noninvasive techniques to assess their fibrous microstructures globally, longitudinally, and quantitatively. We hypothesized that magic angle-enhanced magnetic resonance imaging (MRI) can reveal the structural details of the corneoscleral shell and their changes upon intraocular pressure (IOP) elevation. METHODS Seven ovine eyes were extracted and fixed at IOP = 50 mm Hg to mimic ocular hypertension, and another 11 eyes were unpressurized. The sclera and cornea were scanned at different angular orientations relative to the main magnetic field inside a 9.4-Tesla MRI scanner. Relative MRI signal intensities and intrinsic transverse relaxation times (T2 and T2*) were determined to quantify the magic angle effect on the corneoscleral shells. Three loaded and eight unloaded tendon samples were scanned as controls. RESULTS At magic angle, high-resolution MRI revealed distinct scleral and corneal lamellar fibers, and light/dark bands indicative of collagen fiber crimps in the sclera and tendon. Magic angle enhancement effect was the strongest in tendon and the least strong in cornea. Loaded sclera, cornea, and tendon possessed significantly higher T2 and T2* than unloaded tissues at magic angle. CONCLUSIONS Magic angle-enhanced MRI can detect ocular fibrous microstructures without contrast agents or coatings and can reveal their MR tissue property changes with IOP loading. This technique may open up new avenues for assessment of the biomechanical and biochemical properties of ocular tissues in aging and in diseases involving the corneoscleral shell.
Collapse
Affiliation(s)
- Leon C Ho
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ian A Sigal
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ning-Jiun Jan
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Alexander Squires
- Medical Robotics Lab, College of Engineering, University of Georgia, Athens, Georgia, United States
| | - Zion Tse
- Medical Robotics Lab, College of Engineering, University of Georgia, Athens, Georgia, United States
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Seong-Gi Kim
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Joel S Schuman
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
18
|
Markhardt BK, Chang EY. Hypointense signal lesions of the articular cartilage: a review of current concepts. Clin Imaging 2014; 38:785-91. [PMID: 24928821 DOI: 10.1016/j.clinimag.2014.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/04/2014] [Indexed: 11/28/2022]
Abstract
Discussion of articular cartilage disease detection by MRI usually focuses on the presence of bright signal on T2-weighted sequences, such as in Grade 1 chondromalacia and cartilage fissures containing fluid. Less emphasis has been placed on how cartilage disease may be manifested by dark signal on T2-weighted sequences. The appearance of the recently described "cartilage black line sign" of the femoral trochlea highlights these lesions and further raises the question of their etiology. We illustrate various hypointense signal lesions that are not restricted to the femoral trochlea of the knee joint and discuss the possible etiologies for these lesions.
Collapse
Affiliation(s)
- B Keegan Markhardt
- Department of Radiology, Community Division, University of Wisconsin, Madison, WI.
| | - Eric Y Chang
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA; Department of Radiology, University of California, San Diego Medical Center, San Diego, CA.
| |
Collapse
|
19
|
|
20
|
Li X, Majumdar S. Quantitative MRI of articular cartilage and its clinical applications. J Magn Reson Imaging 2013; 38:991-1008. [PMID: 24115571 DOI: 10.1002/jmri.24313] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 06/21/2013] [Indexed: 12/27/2022] Open
Abstract
Cartilage is one of the most essential tissues for healthy joint function and is compromised in degenerative and traumatic joint diseases. There have been tremendous advances during the past decade using quantitative MRI techniques as a noninvasive tool for evaluating cartilage, with a focus on assessing cartilage degeneration during osteoarthritis (OA). In this review, after a brief overview of cartilage composition and degeneration, we discuss techniques that grade and quantify morphologic changes as well as the techniques that quantify changes in the extracellular matrix. The basic principles, in vivo applications, advantages, and challenges for each technique are discussed. Recent studies using the OA Initiative (OAI) data are also summarized. Quantitative MRI provides noninvasive measures of cartilage degeneration at the earliest stages of joint degeneration, which is essential for efforts toward prevention and early intervention in OA.
Collapse
Affiliation(s)
- Xiaojuan Li
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | | |
Collapse
|
21
|
Nieminen MT, Nissi MJ, Mattila L, Kiviranta I. Evaluation of chondral repair using quantitative MRI. J Magn Reson Imaging 2013; 36:1287-99. [PMID: 23165732 DOI: 10.1002/jmri.23644] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 02/17/2012] [Indexed: 01/30/2023] Open
Abstract
Various quantitative magnetic resonance imaging (qMRI) biomarkers, including but not limited to parametric MRI mapping, semiquantitative evaluation, and morphological assessment, have been successfully applied to assess cartilage repair in both animal and human studies. Through the interaction between interstitial water and constituent macromolecules the compositional and structural properties of cartilage can be evaluated. In this review a comprehensive view of a variety of quantitative techniques, particularly those involving parametric mapping, and their relationship to the properties of cartilage repair is presented. Some techniques, such as T2 relaxation time mapping and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), are well established, while the full potential of more recently introduced techniques remain to be demonstrated. A combination of several MRI techniques is necessary for a comprehensive characterization of chondral repair.
Collapse
Affiliation(s)
- Miika T Nieminen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | | | | | | |
Collapse
|
22
|
Phinikaridou A, Andia ME, Saha P, Modarai B, Smith A, Botnar RM. In vivo magnetization transfer and diffusion-weighted magnetic resonance imaging detects thrombus composition in a mouse model of deep vein thrombosis. Circ Cardiovasc Imaging 2013; 6:433-440. [PMID: 23564561 DOI: 10.1161/circimaging.112.000077] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Deep vein thrombosis remains a major health problem necessitating accurate diagnosis. Thrombolysis is associated with significant morbidity and is effective only for the treatment of unorganized thrombus. We tested the feasibility of in vivo magnetization transfer (MT) and diffusion-weighted magnetic resonance imaging to detect thrombus organization in a murine model of deep vein thrombosis. METHODS AND RESULTS Deep vein thrombosis was induced in the inferior vena cava of male BALB/C mice. Magnetic resonance imaging was performed at days 1, 7, 14, 21, and 28 after thrombus induction using MT, diffusion-weighted, inversion-recovery, and T1-mapping protocols. Delayed enhancement and T1 mapping were repeated 2 hours after injection of a fibrin contrast agent. Finally, excised thrombi were used for histology. We found that MT and diffusion-weighted imaging can detect histological changes associated with thrombus aging. MT rate (MTR) maps and percentage of MT rate (%MTR) allowed visualization and quantification of the thrombus protein content, respectively. The %MTR increased with thrombus organization and was significantly higher at days 14, 21, and 28 after thrombus induction (days 1, 7, 14, 21, 28: %MTR=2483±451, 2079±1210, 7029±2490, 10 295±4356, 32 994±25 449; PANOVA<0.05). There was a significant positive correlation between the %MTR and the histological protein content of the thrombus (r=0.70; P<0.05). The apparent diffusion coefficient was lower in erythrocyte-rich and collagen-rich thrombus (0.72±0.10 and 0.69±0.05 [×10(-3) mm(2)/s]). Thrombus at days 7 and 14 had the highest apparent diffusion coefficient values (0.95±0.09 and 1.10±0.18 [×10(-3) mm(2)/s]). CONCLUSIONS MT and diffusion-weighted magnetic resonance imaging sequences are promising for the staging of thrombus composition and could be useful in guiding medical intervention.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., R.M.B.), Cardiovascular Division, Academic Department of Surgery (P.S., B.M., A.S.), Cardiovascular Division, BHF Centre of Excellence (A.P., P.S., A.S., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (R.M.B.), King's College London, London, UK; and Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile (M.E.A.)
| | - Marcelo E Andia
- Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., R.M.B.), Cardiovascular Division, Academic Department of Surgery (P.S., B.M., A.S.), Cardiovascular Division, BHF Centre of Excellence (A.P., P.S., A.S., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (R.M.B.), King's College London, London, UK; and Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile (M.E.A.)
| | - Prakash Saha
- Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., R.M.B.), Cardiovascular Division, Academic Department of Surgery (P.S., B.M., A.S.), Cardiovascular Division, BHF Centre of Excellence (A.P., P.S., A.S., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (R.M.B.), King's College London, London, UK; and Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile (M.E.A.)
| | - Bijan Modarai
- Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., R.M.B.), Cardiovascular Division, Academic Department of Surgery (P.S., B.M., A.S.), Cardiovascular Division, BHF Centre of Excellence (A.P., P.S., A.S., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (R.M.B.), King's College London, London, UK; and Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile (M.E.A.)
| | - Alberto Smith
- Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., R.M.B.), Cardiovascular Division, Academic Department of Surgery (P.S., B.M., A.S.), Cardiovascular Division, BHF Centre of Excellence (A.P., P.S., A.S., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (R.M.B.), King's College London, London, UK; and Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile (M.E.A.)
| | - René M Botnar
- Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., R.M.B.), Cardiovascular Division, Academic Department of Surgery (P.S., B.M., A.S.), Cardiovascular Division, BHF Centre of Excellence (A.P., P.S., A.S., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (R.M.B.), King's College London, London, UK; and Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile (M.E.A.)
| |
Collapse
|
23
|
Phinikaridou A, Qiao Y, Giordano N, Hamilton JA. Detection of thrombus size and protein content by ex vivo magnetization transfer and diffusion weighted MRI. J Cardiovasc Magn Reson 2012; 14:45. [PMID: 22731842 PMCID: PMC3419091 DOI: 10.1186/1532-429x-14-45] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/06/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To utilize a rabbit model of plaque disruption to assess the accuracy of different magnetic resonance sequences [T1-weighted (T1W), T2-weighted (T2W), magnetization transfer (MT) and diffusion weighting (DW)] at 11.7 T for the ex vivo detection of size and composition of thrombus associated with disrupted plaques. METHODS Atherosclerosis was induced in the aorta of male New Zealand White rabbits (n = 17) by endothelial denudation and high-cholesterol diet. Subsequently, plaque disruption was induced by pharmacological triggering. Segments of infra-renal aorta were excised fixed in formalin and examined by ex vivo magnetic resonance imaging (MRI) at 11.7 T and histology. RESULTS MRI at 11.7 T showed that: (i) magnetization transfer contrast (MTC) and diffusion weighted images (DWI) detected thrombus with higher sensitivity compared to T1W and T2W images [sensitivity: MTC = 88.2%, DWI = 76.5%, T1W = 66.6% and T2W = 43.7%, P < 0.001]. Similarly, the contrast-to-noise (CNR) between the thrombus and the underlying plaque was superior on the MTC and DWI images [CNR: MTC = 8.5 ± 1.1, DWI = 6.0 ± 0.8, T1W = 1.8 ± 0.5, T2W = 3.0 ± 1.0, P < 0.001]; (ii) MTC and DWI provided a more accurate detection of thrombus area with histology as the gold-standard [underestimation of 6% (MTC) and 17.6% (DWI) compared to an overestimation of thrombus area of 53.7% and 46.4% on T1W and T2W images, respectively]; (iii) the percent magnetization transfer rate (MTR) correlated with the fibrin (r = 0.73, P = 0.003) and collagen (r = 0.9, P = 0.004) content of the thrombus. CONCLUSIONS The conspicuity of the thrombus was increased on MTC and DW compared to T1W and T2W images. Changes in the %MTR and apparent diffusion coefficient can be used to identify the organization stage of the thrombus.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Ye Qiao
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Nick Giordano
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - James A Hamilton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
24
|
Abstract
Osteoarthritis (OA) is a common disease that results in cartilage degeneration in the joints and is a disabling condition for millions of individuals. Poor sensitivity and specificity of standard diagnostic methods have relegated treatment options to mitigating pain or surgical replacement. The advent of disease-modifying drugs holds the potential for reversing the normal course of OA and rebuilding cartilage. To aid these therapies, novel magnetic resonance imaging-based tools are required for detecting subtle early changes in cartilage physiology due to OA that may provide improved diagnoses and clinical management of patients. Some of the techniques reviewed here such as T1ρ and T2 relaxometry, magnetization transfer, chemical exchange saturation transfer, and Na magnetic resonance imaging are all biomarkers of cartilage pathological diseases that are sensitive to early biochemical changes in the extracellular matrix of cartilage. These techniques have the potential to noninvasively detect early pathological changes with the goal of aiding clinical decision making as well as contributing to the development and evaluation of potential disease-modifying therapies.
Collapse
|
25
|
Wang N, Xia Y. Depth and orientational dependencies of MRI T(2) and T(1ρ) sensitivities towards trypsin degradation and Gd-DTPA(2-) presence in articular cartilage at microscopic resolution. Magn Reson Imaging 2012; 30:361-70. [PMID: 22244543 DOI: 10.1016/j.mri.2011.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/15/2011] [Accepted: 10/21/2011] [Indexed: 11/26/2022]
Abstract
Depth and orientational dependencies of microscopic magnetic resonance imaging (MRI) T(2) and T(1ρ) sensitivities were studied in native and trypsin-degraded articular cartilage before and after being soaked in 1 mM Gd-DTPA(2-) solution. When the cartilage surface was perpendicular to B(0), a typical laminar appearance was visible in T(2)-weighted images but not in T(1ρ)-weighted images, especially when the spin-lock field was high (2 kHz). At the magic angle (55°) orientation, neither T(2)- nor T(1ρ)-weighted image had a laminar appearance. Trypsin degradation caused a depth- and orientational-dependent T(2) increase (4%-64%) and a more uniform T(1ρ) increase at a sufficiently high spin-lock field (55%-81%). The presence of the Gd ions caused both T(2) and T(1ρ) to decrease significantly in the degraded tissue (6%-38% and 44%-49%, respectively) but less notably in the native tissue (5%-10% and 16%-28%, respectively). A quantity Sensitivity was introduced that combined both the percentage change and the absolute change in the relaxation analysis. An MRI experimental protocol based on two T(1ρ) measurements (without and with the presence of the Gd ions) was proposed to be a new imaging marker for cartilage degradation.
Collapse
Affiliation(s)
- Nian Wang
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | | |
Collapse
|
26
|
Broche LM, Ashcroft GP, Lurie DJ. Detection of osteoarthritis in knee and hip joints by fast field-cycling NMR. Magn Reson Med 2011; 68:358-62. [PMID: 22161576 DOI: 10.1002/mrm.23266] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 09/22/2011] [Accepted: 10/03/2011] [Indexed: 11/07/2022]
Abstract
It is known that in the early stages of osteoarthritis, the concentration of glycan proteins decreases in articular cartilage. This phenomenon is under active research to develop a means to characterize osteoarthritis accurately in the early stages of the disease, when still reversible. However, no method of quantification has yet shown clear success in this area. In this article, we propose a novel approach to detect glycan depletion using fast field-cycling NMR. This technique was previously reported to allow noninvasive measurement of protein concentration via the (14)N quadrupolar relaxation in certain amide groups. We have demonstrated that the articular cartilage exhibits clear quadrupolar peaks that can be measured by a benchtop fast field-cycling NMR device and which changes significantly between normal and diseased tissues (P < 0.01). This signal is probably glycan specific. The method may have potential for early evaluation of osteoarthritis in patients on fast field-cycling-MRI scanners currently under evaluation in the authors' laboratory.
Collapse
Affiliation(s)
- Lionel M Broche
- Aberdeen Biomedical Imaging Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, Scotland, United Kingdom.
| | | | | |
Collapse
|
27
|
Qiao Y, Hallock KJ, Hamilton JA. Magnetization transfer magnetic resonance of human atherosclerotic plaques ex vivo detects areas of high protein density. J Cardiovasc Magn Reson 2011; 13:73. [PMID: 22107813 PMCID: PMC3278375 DOI: 10.1186/1532-429x-13-73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/22/2011] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Proteins are major plaque components, and their degradation is related to the plaque instability. We sought to assess the feasibility of magnetization transfer (MT) magnetic resonance (MR) for identifying fibrin and collagen in carotid atherosclerotic plaques ex vivo. METHODS Human carotid artery specimens (n = 34) were obtained after resection from patients undergoing endarterectomy. MR was completed within 12 hr after surgery on an 11.7T MR microscope prior to fixation. Two sets of T1W spoiled gradient echo images were acquired with and without the application of a saturation pulse set to 10 kHz off resonance. The magnetization transfer ratio (MTR) was calculated, and the degree of MT contrast was correlated with histology. RESULTS MT with appropriate calibration clearly detected regions with high protein density, which showed a higher MTR (thick fibers (collagen type I) (54 ± 8%)) compared to regions with a low amount of protein including lipid (46 ± 8%) (p = 0.05), thin fibers (collagen type III) (11 ± 6%) (p = 0.03), and calcification (6.8 ± 4%) (p = 0.02). Intraplaque hemorrhage (IPH) with different protein density demonstrated different MT effects. Old (rich in protein debris) and recent IPH (rich in fibrin) had a much higher MTR 69 ± 6% and 55 ± 9%, respectively, compared to fresh IPH (rich in intact red blood cells)(9 ± 3%). CONCLUSIONS MT MR enhances plaque tissue contrast and identifies the protein-rich regions of carotid artery specimens. The additional information from MTR of IPH may provide important insight into the role of IPH on plaque stability, evolution, and the risk for future ischemic events.
Collapse
Affiliation(s)
- Ye Qiao
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street (W302), Boston, MA 02118-2526, USA
| | - Kevin J Hallock
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - James A Hamilton
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street (W302), Boston, MA 02118-2526, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
28
|
Orientational dependent sensitivities of T2 and T1ρ towards trypsin degradation and Gd-DTPA2- presence in bovine nasal cartilage. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 25:297-304. [PMID: 22071581 DOI: 10.1007/s10334-011-0288-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 10/15/2022]
Abstract
OBJECTIVE To study the orientational dependencies of T(2) and T(1ρ) in native and trypsin-degraded bovine nasal cartilage, with and without the presence of 1 mM Gd-DTPA(2-). MATERIALS AND METHODS Sixteen specimens were prepared in two orthogonal fibril directions (parallel and perpendicular), treated using different protocols (native, Gd treated, trypsin-treated, and combination), and imaged using μMRI at 0° and 55° (the magic angle) fibril orientations with respect to the magnetic field B(0). Two-dimensional (2D) T(2) and T(1ρ) images were then calculated quantitatively. RESULTS Without Gd, native perpendicular tissues demonstrated significant T(1ρ) dispersion (including T(2) at the zero spin-lock field) at 0° and less dispersion at 55°, while native parallel specimens exhibited smaller T(1ρ) dispersion at both 0° and 55°. Trypsin degradation caused a minimum 50% increase in T(1ρ). With Gd, trypsin degradation caused significant reduction in T(1ρ) values up to 60%. CONCLUSION The collagen orientation in nasal cartilage can influence T(2) and T(1ρ) MRI of cartilage. Without Gd, T(1ρ) was sensitive to the proteoglycan content and its sensitivity was nearly constant regardless of fibril orientation. In comparison, the T(2) sensitivity to proteoglycan was dependant upon fibril orientation, i.e., more sensitive at 55° than 0°. When Gd ions were present, both T(2) and T(1ρ) became insensitive to the proteoglycan content.
Collapse
|
29
|
Abstract
The newer magnetic resonance (MR) imaging methods can give insights into the initiation, progression, and eventual treatment of osteoarthritis. Sodium imaging is specific for changes in proteoglycan (PG) content without the need for an exogenous contrast agent. T1ρ imaging is sensitive to early PG depletion. Delayed gadolinium-enhanced MR imaging has high resolution and sensitivity. T2 mapping is straightforward and is sensitive to changes in collagen and water content. Ultrashort echo time MR imaging examines the osteochondral junction. Magnetization transfer provides improved contrast between cartilage and fluid. Diffusion-weighted imaging may be a valuable tool in postoperative imaging.
Collapse
|
30
|
Novel mineral contrast agent for magnetic resonance studies of bone implants grown on a chick chorioallantoic membrane. Magn Reson Imaging 2011; 29:1244-54. [PMID: 21920685 DOI: 10.1016/j.mri.2011.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/24/2011] [Accepted: 07/27/2011] [Indexed: 11/20/2022]
Abstract
Magnetic resonance imaging (MRI) studies of tissue engineered constructs prior to implantation clearly demonstrate the utility of the MRI technique for studying the bone formation process. To test the utility of our MRI protocols for explant studies, we present a novel test platform in which osteoblast-seeded scaffolds were implanted on the chorioallantoic membrane of a chick embryo. Scaffolds from the following experimental groups were examined by high-resolution MRI: (a) cell-seeded implanted scaffolds (CIM), (b) unseeded implanted scaffolds (UCIM), (c) cell-seeded scaffolds in static culture (CIV) and (d) unseeded scaffolds in static culture (UCIV). The reduction in water proton transverse relaxation times and the concomitant increase in water proton magnetization transfer ratios for CIM and CIV scaffolds, compared to UCIV scaffolds, were consistent with the formation of a bone-like tissue within the polymer scaffold, which was confirmed by immunohistochemistry and fluorescence microscopy. However, the presence of angiogenic vessels and fibrotic adhesions around UCIM scaffolds can confound MRI findings of bone deposition. Consequently, to improve the specificity of the MRI technique for detecting mineralized deposits within explanted tissue engineered bone constructs, we introduce a novel contrast agent that uses alendronate to target a Food and Drug Administration-approved MRI contrast agent (Gd-DOTA) to bone mineral. Our contrast agent termed GdALN was used to uniquely identify mineralized deposits in representative samples from our four experimental groups. After GdALN treatment, both CIM and CIV scaffolds, containing mineralized deposits, showed marked signal enhancement on longitudinal relaxation time-weighted (T1W) images compared to UCIV scaffolds. Relative to UCIV scaffolds, some enhancement was observed in T1W images of GdALN-treated UCIM scaffolds, subjacent to the dark adhesions at the scaffold surface, possibly from dystrophic mineral formed in the fibrotic adhesions. Notably, residual dark areas on T1W images of CIM and UCIM scaffolds were attributable to blood inside infiltrating vessels. In summary, we present the efficacy of GdALN for sensitizing the MRI technique to the deposition of mineralized deposits in explanted polymeric scaffolds.
Collapse
|
31
|
Stikov N, Keenan KE, Pauly JM, Smith RL, Dougherty RF, Gold GE. Cross-relaxation imaging of human articular cartilage. Magn Reson Med 2011; 66:725-34. [PMID: 21416504 DOI: 10.1002/mrm.22865] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/01/2010] [Accepted: 01/10/2011] [Indexed: 11/11/2022]
Abstract
In this article, cross-relaxation imaging is applied to human ex vivo knee cartilage, and correlations of the cross-relaxation imaging parameters with macromolecular content in articular cartilage are reported. We show that, unlike the more commonly used magnetization transfer ratio, the bound pool fraction, the cross-relaxation rate (k) and the longitudinal relaxation time (T(1)) vary with depth and can therefore provide insight into the differences between the top and bottom layers of articular cartilage. Our cross-relaxation imaging model is more sensitive to macromolecular content in the top layers of cartilage, with bound pool fraction showing moderate correlations with proteoglycan content, and k and T(1) exhibiting moderate correlations with collagen.
Collapse
Affiliation(s)
- Nikola Stikov
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California 94305-9510, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Wang C, Witschey W, Goldberg A, Elliott M, Borthakur A, Reddy R. Magnetization transfer ratio mapping of intervertebral disc degeneration. Magn Reson Med 2011; 64:1520-8. [PMID: 20677229 DOI: 10.1002/mrm.22533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The magnetization transfer ratio of the lumbar discs was spatially quantified from age-matched subjects and the nucleus pulposus magnetization transfer ratio was correlated with T2-weighted Pfirrmann grades. A moderate and significant linear correlation between magnetization transfer ratio and Pfirrmann grades was observed, suggesting that nucleus pulposus collagen relative density increases with degeneration. High-resolution axial magnetization transfer ratio maps revealed elevated magnetization transfer ratio in the nucleus pulposa of injured and heavily degenerated discs. In the injured disc, significant elevation in nucleus pulposa magnetization transfer ratio was not accompanied by significant decrease in disc height. This observation may suggest a possible increase in absolute collagen content, in addition to increased collagen relative density. In summary, magnetization transfer MRI of the disc may serve as a noninvasive diagnostic tool for disc degeneration, in addition to other MRI techniques specific to proteoglycan content.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Trattnig S, Winalski CS, Marlovits S, Jurvelin JS, Welsch GH, Potter HG. Magnetic Resonance Imaging of Cartilage Repair: A Review. Cartilage 2011; 2:5-26. [PMID: 26069565 PMCID: PMC4300792 DOI: 10.1177/1947603509360209] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries.
Collapse
Affiliation(s)
- Siegfried Trattnig
- MR Centre - High Field MR, Department of Radiology, Medical University of Vienna, Vienna, Austria,Siegfried Trattnig, MR Centre - High Field MR, Department of Radiology, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria
| | | | - Stephan Marlovits
- Trauma Surgery Department, Medical University of Vienna, Vienna, Austria
| | - Jukka S. Jurvelin
- Department of Physics and Mathematics, University of Eastern Finland, Kuopio, Finland
| | - Goetz H. Welsch
- MR Centre - High Field MR, Department of Radiology, Medical University of Vienna, Vienna, Austria,Department of Trauma Surgery, University Hospital of Erlangen, Erlangen, Germany
| | | |
Collapse
|
34
|
Du J, Takahashi AM, Bydder M, Chung CB, Bydder GM. Ultrashort TE imaging with off-resonance saturation contrast (UTE-OSC). Magn Reson Med 2009; 62:527-31. [PMID: 19449436 DOI: 10.1002/mrm.22007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Short T(2) species such as the Achilles tendon and cortical bone cannot be imaged with conventional MR sequences. They have a much broader absorption lineshape than long T(2) species, therefore they are more sensitive to an appropriately placed off-resonance irradiation. In this work, a technique termed ultrashort TE (UTE) with off-resonance saturation contrast (UTE-OSC) is proposed to image short T(2) species. A high power saturation pulse was placed +1 to +2 kHz off the water peak to preferentially saturate signals from short T(2) species, leaving long T(2) water and fat signals largely unaffected. The subtraction of UTE images with and without an off-resonance saturation pulse effectively suppresses long T(2) water and fat signals, creating high contrast for short T(2) species. The UTE-OSC technique was validated on a phantom, and applied to bone samples and healthy volunteers on a clinical 3T scanner. High-contrast images of the Achilles tendon and cortical bone were generated with a high contrast-to-noise ratio (CNR) of the order of 12 to 20 between short T(2) and long T(2) species within a total scan time of 4 to 10 min.
Collapse
Affiliation(s)
- Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, CA 92103-8756, USA.
| | | | | | | | | |
Collapse
|
35
|
Avni R, Mangoubi O, Bhattacharyya R, Degani H, Frydman L. Magnetization transfer magic-angle-spinning z-spectroscopy of excised tissues. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 199:1-9. [PMID: 19409825 DOI: 10.1016/j.jmr.2009.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 03/11/2009] [Indexed: 05/27/2023]
Abstract
NMR experiments devised to aid in analyses of tissues include magnetization transfer (MT), which can highlight the signals of biological macromolecules through cross-relaxation and/or chemical exchange processes with the bulk (1)H water resonance, and high-resolution magic-angle-spinning (HRMAS) methods, akin to those used in solid-state NMR to introduce additional spectral resolution via the averaging of spin anisotropies. This paper explores the result of combining these methodologies, and reports on MT "z-spectroscopy" between water and cell components in excised tissues under a variety of HRMAS conditions. Main features arising from the resulting (1)H "MTMAS" experiments include strong spinning sideband manifolds centered at the liquid water shift, high-resolution isotropic features coinciding with aliphatic and amide proton resonances, and a second sideband manifold arising as spinning speeds are increased. Interpretations are given for the origin of these various features, including simulations shedding further light onto the nature of MT NMR signals observed for tissue samples. Concurrently, histological examinations are reported validating the limits of HRMAS NMR procedures to the analysis of tissue samples preserved in a number of different ways.
Collapse
Affiliation(s)
- Reut Avni
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | |
Collapse
|
36
|
Bieri O, Mamisch TC, Trattnig S, Scheffler K. Steady state free precession magnetization transfer imaging. Magn Reson Med 2009; 60:1261-6. [PMID: 18956423 DOI: 10.1002/mrm.21781] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The formerly proposed concept for magnetization transfer imaging (MTI) using balanced steady-state free precession (SSFP) image acquisitions is in this work extended to nonbalanced protocols. This allows SSFP-based MTI of targets with high susceptibility variation (such as the musculoskeletal system), or at ultra-high magnetic fields (where balanced SSFP suffers from considerable off-resonance related image degradations). In the first part, SSFP-based MTI in human brain is analyzed based on magnetization transfer ratio (MTR) histograms. High correlations are observed among all different SSFP MTI protocols and thereby ensure proper conceptual extension to nonbalanced SSFP. The second part demonstrates SSFP-based MTI allowing fast acquisition of high resolution volumetric MTR data from human brain and cartilage at low (1.5T) to ultra-high (7.0T) magnetic fields.
Collapse
Affiliation(s)
- Oliver Bieri
- Department of Medical Radiology, University of Basel, Basel, Switzerland.
| | | | | | | |
Collapse
|
37
|
Welsch GH, Trattnig S, Scheffler K, Szomonanyi P, Quirbach S, Marlovits S, Domayer S, Bieri O, Mamisch TC. Magnetization transfer contrast and T2 mapping in the evaluation of cartilage repair tissue with 3T MRI. J Magn Reson Imaging 2009; 28:979-86. [PMID: 18821633 DOI: 10.1002/jmri.21516] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To use magnetization transfer (MT) imaging in the visualization of healthy articular cartilage and cartilage repair tissue after different cartilage repair procedures, and to assess global as well as zonal values and compare the results to T2-relaxation. MATERIALS AND METHODS Thirty-four patients (17 after microfracture [MFX] and 17 after matrix-associated autologous cartilage transplantation [MACT]) were examined with 3T MRI. The MT ratio (MTR) was calculated from measurements with and without MT contrast. T2-values were evaluated using a multiecho, spin-echo approach. Global (full thickness of cartilage) and zonal (deep and superficial aspect) region-of-interest assessment of cartilage repair tissue and normal-appearing cartilage was performed. RESULTS In patients after MFX and MACT, the global MTR of cartilage repair tissue was significantly lower compared to healthy cartilage. In contrast, using T2, cartilage repair tissue showed significantly lower T2 values only after MFX, whereas after MACT, global T2 values were comparable to healthy cartilage. For zonal evaluation, MTR and T2 showed a significant stratification within healthy cartilage, and T2 additionally within cartilage repair tissue after MACT. CONCLUSION MT imaging is capable and sensitive in the detection of differences between healthy cartilage and areas of cartilage repair and might be an additional tool in biochemical cartilage imaging. For both MTR and T2 mapping, zonal assessment is desirable.
Collapse
Affiliation(s)
- Goetz H Welsch
- MR Center, Department of Radiology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Recent technical developments in high-field magnetic resonance (MR) scanners, improvement in radio frequency coil design and gradient performance along with the development of efficient pulse sequences and new methods of enhancing contrast have made high-quality imaging of animal arthritis models feasible. MR can provide high-resolution structural information about the osteoarthritic changes in animal models, and also information about the biophysical properties of cartilage. This paper reviews the MR techniques available for animal knee imaging, and the various MR-derived readouts of knee osteoarthritis in animal models. Pitfalls in interpreting animal joint anatomy and joint composition are highlighted.
Collapse
Affiliation(s)
- Yi-Xiang Wang
- Department of Radiology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
39
|
Systematic Variation of Off-Resonance Prepulses for Clinical Magnetization Transfer Contrast Imaging at 0.2, 1.5, and 3.0 Tesla. Invest Radiol 2008; 43:16-26. [DOI: 10.1097/rli.0b013e3181559949] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Watanabe A, Boesch C, Obata T, Anderson SE. Effect of multislice acquisition on T1 and T2 measurements of articular cartilage at 3T. J Magn Reson Imaging 2007; 26:109-17. [PMID: 17659569 DOI: 10.1002/jmri.20962] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of magnetization transfer on multislice T1 and T2 measurements of articular cartilage. MATERIALS AND METHODS A set of phantoms with different concentrations of collagen and contrast agent (Gd-DTPA2-) were used for the in vitro study. A total of 20 healthy knees were used for the in vivo study. T1 and T2 measurements were performed using fast-spin-echo inversion-recovery (FSE-IR) sequence and multi-spin-echo (MSE) sequence, respectively, in both in vitro and in vivo studies. We investigated the difference in T1 and T2 values between that measured by single-slice acquisition and that measured by multislice acquisition. RESULTS Regarding T1 measurement, a large drop of T1 in all slices and also a large interslice variation in T1 were observed when multislice acquisition was used. Regarding T2 measurement, a substantial drop of T2 in all slices was observed; however, there was no apparent interslice variation when multislice acquisition was used. CONCLUSION This study demonstrated that the adaptation of multislice acquisition technique for T1 measurement using FSE-IR methodology is difficult and its use for clinical evaluation is problematic. In contrast, multislice acquisition for T2 measurement using MSE was clinically applicable if inaccuracies caused by multislice acquisition were taken into account.
Collapse
Affiliation(s)
- Atsuya Watanabe
- Department of Clinical Research, Unit for MR Spectroscopy and Methodology, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
41
|
Qazi AA, Folkesson J, Pettersen PC, Karsdal MA, Christiansen C, Dam EB. Separation of healthy and early osteoarthritis by automatic quantification of cartilage homogeneity. Osteoarthritis Cartilage 2007; 15:1199-206. [PMID: 17493841 DOI: 10.1016/j.joca.2007.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 03/20/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cartilage loss as determined either by magnetic resonance imaging (MRI) or by joint space narrowing in X-rays is the result of cartilage erosion. However, metabolic processes within the cartilage that later result in cartilage loss may be a more accurate assessment method for early changes. Early biological processes of cartilage destruction are among other things, a combination of proteoglycan turnover, as a result of altered charge distributions, and local alterations in water content (edema). As water distribution is detectable by MRI, the aim of this study was to investigate cartilage homogeneity visualized by MRI related to water distribution, as a potential very early marker for early detection of knee osteoarthritis (OA). DESIGN One hundred and fourteen right and left knees from 71 subjects aged 22-79 years were scanned using a Turbo 3D T(1) sequence on a 0.18T MRI Esaote scanner. The medial compartment of the tibial cartilage sheet was segmented using a fully automatic voxel classification scheme based on supervised learning. From the segmented cartilage sheet, homogeneity was quantified by measuring entropy from the distribution of signal intensities inside the compartment. For each knee an X-ray was acquired and the knees were categorized by the Kellgren and Lawrence (KL) index and the joint space width (JSW) was measured. The P-values for separating the groups by each of JSW, cartilage volume, cartilage mean intensity, and cartilage homogeneity were calculated using the unpaired t-test. RESULTS The P-value for separating the group diagnosed as KL 0 from the group being KL 1 based on JSW, volume and mean signal intensity the values were P=0.9, P=0.4 and P=0.0009, respectively. In contrast, the P-value for homogeneity was P=0.0004. The precision of the measures assessed, as a test-retest root mean square coefficient of variation (RMS-CV%) was 3.9% for JSW, 7.4% for volume, 3.9% for mean signal intensity and 3.0% for homogeneity quantification. CONCLUSION These data demonstrate that the distribution of components of the articular matrix precedes erosion, as measured by cartilage homogeneity related to water concentration. We show that homogeneity was able to separate early OA from healthy individuals in contrast to traditional volume and JSW quantifications. These data suggest that cartilage homogeneity quantification may be able to quantify early biochemical changes in articular cartilage prior to cartilage loss and thereby provide better identification of patients for OA trials who may respond better to medicinal intervention of some treatments. In addition, this study supports the feasibility of using low-field MRI in clinical studies.
Collapse
Affiliation(s)
- A A Qazi
- Image Group, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
42
|
Chesnick IE, Todorov TI, Centeno JA, Newbury DE, Small JA, Potter K. Manganese-enhanced magnetic resonance microscopy of mineralization. Magn Reson Imaging 2007; 25:1095-104. [PMID: 17707172 DOI: 10.1016/j.mri.2006.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/16/2006] [Accepted: 11/17/2006] [Indexed: 11/19/2022]
Abstract
Paramagnetic manganese (II) can be employed as a calcium surrogate to sensitize magnetic resonance microscopy (MRM) to the processing of calcium during bone formation. At high doses, osteoblasts can take up sufficient quantities of manganese, resulting in marked changes in water proton T(1), T(2) and magnetization transfer ratio values compared to those for untreated cells. Accordingly, inductively coupled plasma mass spectrometry (ICP-MS) results confirm that the manganese content of treated cell pellets was 10-fold higher than that for untreated cell pellets. To establish that manganese is processed like calcium and deposited as bone, calvaria from the skull of embryonic chicks were grown in culture medium supplemented with 1 mM MnCl(2) and 3 mM CaCl(2). A banding pattern of high and low T(2) values, consistent with mineral deposits with high and low levels of manganese, was observed radiating from the calvarial ridge. The results of ICP-MS studies confirm that manganese-treated calvaria take up increasing amounts of manganese with time in culture. Finally, elemental mapping studies with electron probe microanalysis confirmed local variations in the manganese content of bone newly deposited on the calvarial surface. This is the first reported use of manganese-enhanced MRM to study the process whereby calcium is taken up by osteoblasts cells and deposited as bone.
Collapse
Affiliation(s)
- Ingrid E Chesnick
- Magnetic Resonance Microscopy Facility, Department of Biophysics, Armed Forces Institute of Pathology Annex, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
43
|
Chesnick IE, Avallone F, Leapman RD, Landis WJ, Eidelman N, Potter K. Evaluation of bioreactor-cultivated bone by magnetic resonance microscopy and FTIR microspectroscopy. Bone 2007; 40:904-12. [PMID: 17174620 PMCID: PMC1876686 DOI: 10.1016/j.bone.2006.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/23/2006] [Accepted: 10/25/2006] [Indexed: 11/30/2022]
Abstract
We present a three-dimensional mineralizing model based on a hollow fiber bioreactor (HFBR) inoculated with primary osteoblasts isolated from embryonic chick calvaria. Using non-invasive magnetic resonance microscopy (MRM), the growth and development of the mineralized tissue around the individual fibers were monitored over a period of 9 weeks. Spatial maps of the water proton MRM properties of the intact tissue, with 78 microm resolution, were used to determine changes in tissue composition with development. Unique changes in the mineral and collagen content of the tissue were detected with high specificity by proton density (PD) and magnetization transfer ratio (MTR) maps, respectively. At the end of the growth period, the presence of a bone-like tissue was verified by histology and the formation of poorly crystalline apatite was verified by selected area electron diffraction and electron probe X-ray microanalysis. FTIR microspectroscopy confirmed the heterogeneous nature of the bone-like tissue formed. FTIR-derived phosphate maps confirmed that those locations with the lowest PD values contained the most mineral, and FTIR-derived collagen maps confirmed that bright pixels on MTR maps corresponded to regions of high collagen content. In conclusion, the spatial mapping of tissue constituents by FTIR microspectroscopy corroborated the findings of non-invasive MRM measurements and supported the role of MRM in monitoring the bone formation process in vitro.
Collapse
Affiliation(s)
- Ingrid E. Chesnick
- Magnetic Resonance Microscopy Facility, Department of Biophysics, Armed Forces Institute of Pathology Annex, Rockville, MD
| | - Frank Avallone
- Department of Genitourinary Pathology, Armed Forces Institute of Pathology, Washington, DC
| | - Richard D. Leapman
- Division of Bioengineering and Physical Science, Office of the Director, National Institutes of Health, Bethesda, MD
| | - William J. Landis
- Dept. of Microbiology, Immunology, and Biochemistry, Northeastern Ohio Universities College of Medicine, Rootstown, OH
| | - Naomi Eidelman
- Paffenbarger Research Center, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, MD
| | - Kimberlee Potter
- Magnetic Resonance Microscopy Facility, Department of Biophysics, Armed Forces Institute of Pathology Annex, Rockville, MD
| |
Collapse
|
44
|
Laouar L, Fishbein K, McGann LE, Horton WE, Spencer RG, Jomha NM. Cryopreservation of porcine articular cartilage: MRI and biochemical results after different freezing protocols. Cryobiology 2007; 54:36-43. [PMID: 17174945 DOI: 10.1016/j.cryobiol.2006.10.193] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/23/2006] [Accepted: 10/18/2006] [Indexed: 11/25/2022]
Abstract
The objective of this study was to investigate the effects of cryopreservation on the components of articular cartilage (AC) matrix by utilizing magnetic resonance imaging (MRI) and biochemical assessments. Porcine AC (10mm osteochondral dowels) was collected into four groups - (1) phosphate buffered saline (PBS) control, (2) PBS snap frozen in liquid nitrogen, (3) slow-cooled in dimethyl sulfoxide (DMSO), and (4) slow cooled in PBS (in absence of DMSO). MRI results demonstrated three distinct zones in the cartilage. After exposure to ice formation during cryopreservation procedures, alterations in MRI determined matrix fixed charged density and magnetization transfer rate were noted. In addition, biochemical assays demonstrated significant alterations in chondroitin sulfate and hydroxyproline content over time without differences in hydration or DNA content. In conclusion, MRI was able to detect some changes in the intact cartilage matrix structure consistent with biochemical assessments after ice formation during cryopreservation of intact porcine AC. Furthermore, biochemical assessments supported some of these findings and changed significantly after incubating the cartilage matrix for 36-72 h in PBS in terms of chondroitin sulfate and hydroxyproline content.
Collapse
Affiliation(s)
- Leila Laouar
- 2D2.32 WMC, Department of Surgery, University of Alberta Hospital, 8440-112St Edmonton, Alta., Canada T6G 2B7
| | | | | | | | | | | |
Collapse
|
45
|
Palmieri F, De Keyzer F, Maes F, Van Breuseghem I. Magnetization transfer analysis of cartilage repair tissue: a preliminary study. Skeletal Radiol 2006; 35:903-8. [PMID: 16738915 DOI: 10.1007/s00256-006-0146-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 12/26/2005] [Accepted: 03/29/2006] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the magnetization transfer ratio (MTR) after two different cartilage repair procedures, and to compare these data with the MTR of normal cartilage. DESIGN AND PATIENTS Twenty-seven patients with a proven cartilage defect were recruited: 13 were treated with autologous chondrocyte implantation (ACI) and 14 were treated with the microfracture technique (MFR). All patients underwent MRI examinations with MT-sequences before the surgical treatment, after 12 months (26 patients) and after 24 months (11 patients). Eleven patients received a complete follow-up study at all three time points (five of the ACI group and six of the MFR group). All images were transferred to a workstation to calculate MTR images. For every MT image set, different ROIs were delineated by two radiologists. Means were calculated per ROI type in the different time frames and in both groups of cartilage repair. The data were analyzed with unpaired t- and ANOVA tests, and by calculating Pearson's correlation coefficient. RESULTS No significant differences were found in the MTR of fatty bone marrow, muscle and normal cartilage in the different time frames. There was a significant but small difference between the MTR of normal cartilage and the cartilage repair area after 12 months for both procedures. After 24 months, the MTR of ACI repaired cartilage (0.31+/-0.07) was not significantly different from normal cartilage MTR (0.34+/-0.05). The MTR of MFR repaired cartilage (0.28+/-0.02), still showed a significant difference from normal cartilage. CONCLUSION The differences between damaged and repaired cartilage MTR are too small to enable MT-imaging to be a useful tool for postoperative follow-up of cartilage repair procedures. There is, however, an evolution towards normal MTR-values in the cartilage repair tissue (especially after ACI repair).
Collapse
Affiliation(s)
- F Palmieri
- Department of Radiology, University Federico II, Via Pansini 5, 80131 Naples, Italy
| | | | | | | |
Collapse
|
46
|
Burstein D. MRI for development of disease-modifying osteoarthritis drugs. NMR IN BIOMEDICINE 2006; 19:669-80. [PMID: 16986116 DOI: 10.1002/nbm.1071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
MRI has advantages as an imaging modality for drug development through its potential to provide information regarding localized morphological parameters, in addition to metrics of the structural and molecular state of cartilage. These metrics have the potential to provide earlier indications of pathology and may progress more rapidly than radiographic measures. These combined scans of localized morphology and matrix parameters will most likely provide a fuller assessment of cartilage state and will improve the cost and practicality of an overall evaluation of cartilage status by MRI. In the first part of this review, the relevant parameters are presented in terms of the information content they might provide in the drug development process. In the second part, applications of the MRI parameters in preclinical and clinical drug development are presented.
Collapse
Affiliation(s)
- Deborah Burstein
- Department of Radiology, Beth Israel Deaconess Medical Center, 4 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Antoniou J, Mwale F, Demers CN, Beaudoin G, Goswami T, Aebi M, Alini M. Quantitative magnetic resonance imaging of enzymatically induced degradation of the nucleus pulposus of intervertebral discs. Spine (Phila Pa 1976) 2006; 31:1547-54. [PMID: 16778686 DOI: 10.1097/01.brs.0000221995.77177.9d] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The structural integrity of the nucleus pulposus (NP) of intervertebral discs was targeted by enzyme-specific degradations to correlate their effects to the magnetic resonance (MR) signal. OBJECTIVE To develop quantitative MR imaging as an accurate and noninvasive diagnostic tool to better understand and treat disc degeneration. SUMMARY OF BACKGROUND DATA Quantitative MR analysis has been previously shown to reflect not only the disc matrix composition, but also the structural integrity of the disc matrix. Further work is required to identify the contribution of the structural integrity versus the matrix composition to the MR signal. METHODS The bovine coccygeal NPs were injected with either enzyme or buffer, incubated at 37 degrees C as static, unloaded and closed 3-disc segments, and analyzed by a 1.5-Tesla MR scanner to measure MR parameters. RESULTS Collagenase degradation of the NP significantly decreased the relaxation times, slightly decreased the magnetization transfer ratio, and slightly increased the apparent diffusion coefficient. Targeting the proteoglycan and/or hyaluronan integrity by trypsin and hyaluronidase did not significantly affect the MR parameters, except for an increase in the apparent diffusion coefficient of the disc after trypsin treatment. CONCLUSIONS Our results demonstrate that changes in the structural integrity of matrix proteins can be assessed by quantitative MR.
Collapse
Affiliation(s)
- John Antoniou
- Lady Davis Institute and Department of Surgery, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
48
|
Potter K, Sweet DE, Anderson P, Davis GR, Isogai N, Asamura S, Kusuhara H, Landis WJ. Non-destructive studies of tissue-engineered phalanges by magnetic resonance microscopy and X-ray microtomography. Bone 2006; 38:350-8. [PMID: 16256448 DOI: 10.1016/j.bone.2005.08.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 08/08/2005] [Accepted: 08/31/2005] [Indexed: 11/22/2022]
Abstract
One of the intents of tissue engineering is to fabricate biological materials for the augmentation or replacement of impaired, damaged, or diseased human tissue. In this context, novel models of the human phalanges have been developed recently through suturing of polymer scaffolds supporting osteoblasts, chondrocytes, and tenocytes to mimic bone, cartilage, and tendon, respectively. Characterization of the model constructs has been accomplished previously through histological and biochemical means, both of which are necessarily destructive to the constructs. This report describes the application of two complementary, non-destructive, non-invasive techniques, magnetic resonance microscopy (MRM) and X-ray microtomography (XMT or quantitative computed tomography), to evaluate the spatial and temporal growth and developmental status of tissue elements within tissue-engineered constructs obtained after 10 and 38 weeks of implantation in athymic (nude) mice. These two times represent respective points at which model middle phalanges are comprised principally of organic components while being largely unmineralized and later become increasingly more mineralized. The spatial distribution of mineralized deposits within intact constructs was readily detected by XMT (qCT) and was comparable to low intensity zones observed on MRM hydration maps. Moreover, the MRM-derived hydration values for mineralized zones were inversely correlated with mineral densities measured by XMT. In addition, the MRM method successfully mapped fat deposits, collagenous tissues, and the hydration state of the soft tissue elements comprising the specimens. These results support the application of non-destructive, non-invasive, quantitative MRM and XMT for the evaluation of constituent tissue elements within complex constructs of engineered implants.
Collapse
Affiliation(s)
- Kimberlee Potter
- Magnetic Resonance Microscopy Facility, Armed Forces Institute of Pathology Annex, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Until recently, imaging evaluation of osteoarthritis has relied primarily on conventional radiography. Using radiography in clinical practice or clinical research, however, has been fraught with difficulty. Techniques for reproducibly acquiring serial radiographs of joints have improved considerably over the past several years. However, the greatest promise for advancing knowledge about osteoarthritis and its treatment lies in MRI and its unique ability to examine the joint as a whole organ. In contrast to conventional radiography, MRI can directly visualize the articular cartilage, synovium, menisci, and other intra-articular structures important to the functional integrity of joints. There have been considerable advances in MRI of articular cartilage in particular over the past several years. However, much of this has come from small cross-sectional studies. Larger, longitudinal studies are ongoing, and publications are just emerging. This paper reviews the current status of x-ray and MRI in osteoarthritis and points to where changes might be anticipated in the future.
Collapse
Affiliation(s)
- Charles Peterfy
- Scientific Client Services, Synarc San Francisco, 575 Market Street, 17th Floor, San Francisco, CA 94105, USA
| | | |
Collapse
|
50
|
Boss A, Martirosian P, Küper K, Fierlbeck G, Claussen CD, Schick F. Whole-body magnetization transfer contrast imaging. J Magn Reson Imaging 2006; 24:1183-7. [PMID: 17031816 DOI: 10.1002/jmri.20754] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To demonstrate the feasibility of whole-body magnetization transfer (MT) contrast imaging. MATERIALS AND METHODS Whole-body MT imaging was performed on eight healthy volunteers and five patients (mean age=40.5+/-17.8 years) with diagnoses of dermatomyositis (N=1), B-symptoms with suspicion of paraneoplastic disease (N=1), metastatic malignant melanoma (N=1), and multiple sclerosis (MS) (N=2). Measurements were carried out on a 1.5-Tesla whole-body MR scanner capable of parallel signal reception. A three-dimensional (3D) gradient-echo sequence (TR=17 msec, TE=4.8 msec, flip angle=10 degrees) was applied in combination with a Gaussian off-resonance MT preparation pulse acting at an off-resonance of 1.500 Hz with a 500 degrees effective flip angle. Whole-body images were constructed from five different body regions. RESULTS In all subjects, whole-body MT contrast images were obtained within less than 20 minutes of measuring time. The images showed sufficient diagnostic image quality to assess the patients' pathologies. The MT ratios (MTRs, in percent units) for the volunteers were as follows: white matter (WM) 51.1+/-1.0, gray matter (GM) 42.2+/-1.3, skeletal muscle (mean value of four muscle groups) 50.3+/-2.1, liver 39.4+/-3.2, spleen 31.8+/-2.6, renal cortex 30.4+/-1.9, and renal medulla 25.6+/-1.3. The MTRs for the pathologies were as follows: skeletal muscle in dermatomyositis approximately 30, metastases in malignant melanoma 30.7-36.0, uterus myoma 49.3, and MS lesions 30-40. CONCLUSION Our preliminary data indicate that MT contrast in whole-body MRI is feasible, and may be useful for rapid whole-body assessment of diseases that exhibit high contrast in MT imaging, such as MS and muscular disorders.
Collapse
Affiliation(s)
- Andreas Boss
- Section of Experimental Radiology, Department of Diagnostic Radiology, Eberhard Karls University, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|