1
|
Bogner W, Hangel G, Esmaeili M, Andronesi OC. 1D-spectral editing and 2D multispectral in vivo 1H-MRS and 1H-MRSI - Methods and applications. Anal Biochem 2017; 529:48-64. [PMID: 28034791 DOI: 10.1016/j.ab.2016.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 12/27/2022]
Abstract
This article reviews the methodological aspects of detecting low-abundant J-coupled metabolites via 1D spectral editing techniques and 2D nuclear magnetic resonance (NMR) methods applied in vivo, in humans, with a focus on the brain. A brief explanation of the basics of J-evolution will be followed by an introduction to 1D spectral editing techniques (e.g., J-difference editing, multiple quantum coherence filtering) and 2D-NMR methods (e.g., correlation spectroscopy, J-resolved spectroscopy). Established and recently developed methods will be discussed and the most commonly edited J-coupled metabolites (e.g., neurotransmitters, antioxidants, onco-markers, and markers for metabolic processes) will be briefly summarized along with their most important applications in neuroscience and clinical diagnosis.
Collapse
Affiliation(s)
- Wolfgang Bogner
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria.
| | - Gilbert Hangel
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria.
| | - Morteza Esmaeili
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Ovidiu C Andronesi
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Wind RA, Hu JZ, Majors PD. Slow-MAS NMR: A new technology for in vivo metabolomic studies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 2:291-4. [PMID: 24981950 DOI: 10.1016/j.ddtec.2005.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obtaining detailed in vivo metabolic information has been identified as key elements of better understanding the efficacy and toxicity of new therapies. A new nuclear magnetic resonance (NMR) technology called LOCMAT is reported in this paper that yields substantially increased spectral resolution in spatially localized in vivo H NMR metabolite spectra, as illustrated by measurements in the liver of a live mouse. LOCMAT promises to significantly enhance the utility of NMR spectroscopy for biomedical research.:
Collapse
Affiliation(s)
- Robert A Wind
- Pacific Northwest National Laboratory, P.O. Box 999, MS K8-98, 3335 Q Avenue, Richland, WA 99352, USA.
| | - Jian Z Hu
- Pacific Northwest National Laboratory, P.O. Box 999, MS K8-98, 3335 Q Avenue, Richland, WA 99352, USA
| | - Paul D Majors
- Pacific Northwest National Laboratory, P.O. Box 999, MS K8-98, 3335 Q Avenue, Richland, WA 99352, USA
| |
Collapse
|
3
|
Serkova NJ, Niemann CU. Pattern recognition and biomarker validation using quantitative1H-NMR-based metabolomics. Expert Rev Mol Diagn 2014; 6:717-31. [PMID: 17009906 DOI: 10.1586/14737159.6.5.717] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The collection of global metabolic data and their interpretation (both spectral and biochemical) using modern spectroscopic techniques and appropriate statistical approaches, are known as 'metabolic profiling', 'metabonomics' or 'metabolomics'. This review addresses 1H-nuclear magnetic resonance (NMR)-based metabolomic principles and their application in biomedical science, with special emphasis on their potential in translational research in transplantation, oncology, and drug toxicity or discovery. Various steps in metabolomics analysis are described in order to illustrate the types of biological samples, their respective handling and preparation for 1H-NMR analysis; provide a rationale for using pattern-recognition techniques (spectral database concept) versus quantitative 1H-NMR-based metabolomics (metabolite database concept); and identify necessary technological and logistical future developments that will allow 1H-NMR-based metabolomics to become an established tool in biomedical research and patient care.
Collapse
Affiliation(s)
- Natalie J Serkova
- University of Colorado Health Sciences Center, Biomedical MRI/MRS Cancer Center Core, Department of Anesthesiology, Denver, CO 80262, USA.
| | | |
Collapse
|
4
|
Kumar V, Dwivedi DK, Jagannathan NR. High-resolution NMR spectroscopy of human body fluids and tissues in relation to prostate cancer. NMR IN BIOMEDICINE 2014; 27:80-89. [PMID: 23828638 DOI: 10.1002/nbm.2979] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 06/02/2023]
Abstract
High-resolution NMR spectroscopic studies of prostate tissue extracts, prostatic fluid, seminal fluid, serum and urine can be used for the detection of prostate cancer, based on the differences in their metabolic profiles. Useful diagnostic information is obtained by the detection or quantification of as many metabolites as possible and comparison with normal samples. Only a few studies have shown the potential of high-resolution in vitro NMR of prostate tissues. A survey of the literature has revealed that studies on body fluids, such as urine and serum, in relation to prostate cancer are rare. In addition, the potential of NMR of nuclei other than (1)H, such as (13)C and (31)P, has not been exploited fully. The metabolomic analysis of metabolites, detected by high-resolution NMR, may help to identify metabolites which could serve as useful biomarkers for prostate cancer detection. Such NMR-derived biomarkers would not only help in prostate cancer detection and in understanding the in vivo MRS metabolic profile, but also to investigate the biochemical and metabolic changes associated with cancer. Here, we review the published research work on body fluids in relation to prostate and prostate tissue extracts, and highlight the potential of such studies for future work.
Collapse
Affiliation(s)
- Virendra Kumar
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
5
|
Decelle EA, Cheng LL. High-resolution magic angle spinning 1H MRS in prostate cancer. NMR IN BIOMEDICINE 2014; 27:90-99. [PMID: 23529951 PMCID: PMC3797175 DOI: 10.1002/nbm.2944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/23/2013] [Accepted: 02/19/2013] [Indexed: 06/02/2023]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed malignancy in men worldwide, largely as a result of the increased use of the annual serum prostate-specific antigen (PSA) screening test for detection. PSA screening has saved lives, but it has also resulted in the overtreatment of many patients with PCa because of a limited ability to accurately localize and characterize PCa lesions through imaging. High-resolution magic angle spinning (HRMAS) (1)H MRS has proven to be a strong potential clinical tool for PCa diagnosis and prognosis. The HRMAS technique allows valuable metabolic information to be obtained from ex vivo intact tissue samples and also enables the performance of histopathology on the same tissue specimens. Studies have found that the quantification of individual metabolite levels and metabolite ratios, as well as metabolomic profiles, shows strong potential to improve accuracy in PCa detection, diagnosis and monitoring. Ex vivo HRMAS is also a valuable tool for the interpretation of in vivo results, including the localization of tumors, and thus has the potential to improve in vivo diagnostic tests used in the clinic. Here, we primarily review publications of HRMAS (1)H MRS and its use for the study of intact human prostate tissue.
Collapse
Affiliation(s)
- Emily A Decelle
- Departments of Pathology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
6
|
Mao XA, Jiang B, Jiang L, Liu M. (1)H- (31)P soft-HSQC pulse sequence specifically for detecting phosphomono- and diesters in biological samples. Mol Imaging Biol 2012; 15:245-9. [PMID: 23229351 DOI: 10.1007/s11307-012-0607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Phosphomono- and diesters (PME and PDE) are important metabolites that are potential biomarkers for a number of cancers. We designed a new NMR pulse sequence, i.e., (1)H-(31)P soft-heteronuclear single quantum correlation (HSQC), specifically for noninvasively detecting PME and PDE in biological samples. PROCEDURE The nonselective (1)H refocusing π pulses in the conventional heteronuclear single quantum correlation pulse sequence are replaced by selective π pulses. When the selective pulses are offset on the CH2O resonances, the homonuclear couplings between the NCH2 and CH2O protons are effectively removed, and the spectrum of PME and PDE is significantly enhanced. RESULTS The sensitivity of this pulse sequence has been demonstrated with milk and mouse brain samples. A soft-HSQC spectrum, where only PME and PDE signals appear, can be recorded from these biological samples in minutes with remarkably high signal-to-noise ratio. CONCLUSION This pulse sequence provides a new and quick method for in vivo studies of phosphorus metabolite in the human brain and other tissues for medical purposes.
Collapse
Affiliation(s)
- Xi-an Mao
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
7
|
Quantitative analysis in magnetic resonance spectroscopy: from metabolic profiling to in vivo biomarkers. Bioanalysis 2012; 4:321-41. [PMID: 22303835 DOI: 10.4155/bio.11.320] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nuclear magnetic resonance spectroscopy (called NMR for ex vivo techniques and MRS for in vivo techniques) has become a useful analytical and diagnostic tool in biomedicine. In the past two decades, an MR-based spectroscopic approach for translational and clinical research has emerged that allows for biochemical characterization of the tissue of interest either ex vivo (NMR-based metabolomics) or in vivo (localized MRS-single voxel or multivoxel-spectroscopic imaging). The greatest advantages of MRS techniques are their ability to detect multiple tissue-specific metabolites in a single experiment, their quantitative nature and translational component (in vitro/ex vivo-discovered metabolic biomarkers can be translated into noninvasive spectroscopic imaging protocols). Disadvantages of MRS include low sensitivity and spectral resolution and, in case of NMR-metabolomics, metabolite degradation and incomplete recovery in processed samples. In vivo MRS has worse spectral resolution than ex vivo high-resolution NMR due to the inherently wider lines of metabolites in vivo and the difficulty of using traditional line-narrowing methods (e.g., sample spinning). It also suffers from poor time-resolution, therefore offering fewer metabolic biomarkers to be followed in vivo. In the present review article, we provide considerations for establishing reliable protocols (both in vivo and ex vivo) for metabolite detection, recovery and quantification from in vivo and ex vivo MR spectra.
Collapse
|
8
|
Kurth J, Defeo E, Cheng LL. Magnetic resonance spectroscopy: a promising tool for the diagnostics of human prostate cancer? Urol Oncol 2012; 29:562-71. [PMID: 21930088 DOI: 10.1016/j.urolonc.2011.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND Prostate cancer (CaP) is one of the topmost diagnosed malignant diseases worldwide. In developed countries, early cancer detection methods have led to an increase of incidence rates over the last decades; however, with great variance of the prognosis. There is no diagnostic tool for an exact prediction of tumor aggressiveness, thus there is a lack of adequate and optimal treatment planning. METHODS Electronic databases (Medline, PubMed) were scanned for scientific literature. Basic concepts of magnetic resonance spectroscopy (MRS), important results and its clinical applications were extracted and reviewed in this article. CONCLUSIONS MRS provides crucial information about the metabolic status of human prostate samples while preserving the specimens for further investigations. Single metabolites and metabolomic profiles can be quantified to distinguish benign from malignant tissue and to predict aggressiveness, such as the recurrence rates of CaP. Studies are also anticipating that MRS might be beneficially applicable for in vivo investigations in the future.
Collapse
|
9
|
Keshari KR, Tsachres H, Iman R, Delos Santos L, Tabatabai ZL, Shinohara K, Vigneron DB, Kurhanewicz J. Correlation of phospholipid metabolites with prostate cancer pathologic grade, proliferative status and surgical stage - impact of tissue environment. NMR IN BIOMEDICINE 2011; 24:691-9. [PMID: 21793074 PMCID: PMC3653775 DOI: 10.1002/nbm.1738] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study investigates the relationship between phospholipid metabolite concentrations, Gleason score, rate of cellular proliferation and surgical stage in malignant prostatectomy samples by performing one- and two-dimensional, high-resolution magic angle spinning, total correlation spectroscopy, pathology and Ki-67 staining on the same surgical samples. At radical prostatectomy, surgical samples were obtained from 49 patients [41 with localized TNM stage T1 and T2, and eight with local cancer spread (TNM stage T3)]. Thirteen of the tissue samples were high-grade prostate cancer [Gleason score: 4 + 3 (n = 7); 4 + 4 (n = 6)], 22 low-grade prostate cancer [Gleason score: 3 + 3 (n = 17); 3 + 4 (n = 5)] and 14 benign prostate tissues. This study demonstrates that high-grade prostate cancer shows significantly higher Ki-67 staining and concentrations of phosphocholine (PC) and glycerophosphocholine (GPC) than does low-grade prostate cancer (2.4 ± 2.8% versus 7.6 ± 3.5%, p < 0.005, and 0.671 ± 0.461 versus 1.87 ± 2.15 mmolal, p < 0.005, respectively). In patients with local cancer spread, increases in [PC + GPC + PE + GPE] (PE, phosphoethanolamine; GPE, glycerophosphoethanolamine] and Ki-67 index approached significance (4.2 ± 2.5 versus 2.7 ± 2.4 mmolal, p = 0.07, and 5.3 ± 3.8% versus 2.9 ± 3.8%, p = 0.07, respectively). PC and Ki-67 were significantly lower and GPC higher in prostate tissues when compared with cell cultures, presumably because of a lack of important stromal-epithelial interactions in cell cultures. The findings of this study will need to be validated in a larger cohort of surgical patients with clinical outcome data, but support the role of in vivo (1)H MRSI in discriminating between low- and high-grade prostate cancer based on the magnitude of elevation of the in vivo total choline resonance.
Collapse
Affiliation(s)
- K R Keshari
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
DeFeo EM, Wu CL, McDougal WS, Cheng LL. A decade in prostate cancer: from NMR to metabolomics. Nat Rev Urol 2011; 8:301-11. [PMID: 21587223 DOI: 10.1038/nrurol.2011.53] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past 30 years, continuous progress in the application of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance spectroscopic imaging (MRSI) to the detection, diagnosis and characterization of human prostate cancer has turned what began as scientific curiosity into a useful clinical option. In vivo MRSI technology has been integrated into the daily care of prostate cancer patients, and innovations in ex vivo methods have helped to establish NMR-based prostate cancer metabolomics. Metabolomic and multimodality imaging could be the future of the prostate cancer clinic--particularly given the rationale that more accurate interrogation of a disease as complex as human prostate cancer is most likely to be achieved through paradigms involving multiple, instead of single and isolated, parameters. The research and clinical results achieved through in vivo MRSI and ex vivo NMR investigations during the first 11 years of the 21st century illustrate areas where these technologies can be best translated into clinical practice.
Collapse
Affiliation(s)
- Elita M DeFeo
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
11
|
RIGHI VALERIA, APIDIANAKIS YIORGOS, MINTZOPOULOS DIONYSSIOS, ASTRAKAS LOUKAS, RAHME LAURENCEG, TZIKA AARIA. In vivo high-resolution magic angle spinning magnetic resonance spectroscopy of Drosophila melanogaster at 14.1 T shows trauma in aging and in innate immune-deficiency is linked to reduced insulin signaling. Int J Mol Med 2010; 26:175-84. [PMID: 20596596 PMCID: PMC3722717 DOI: 10.3892/ijmm_00000450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/12/2010] [Indexed: 01/07/2023] Open
Abstract
In vivo magnetic resonance spectroscopy (MRS), a non-destructive biochemical tool for investigating live organisms, has yet to be used in the fruit fly Drosophila melanogaster, a useful model organism for investigating genetics and physiology. We developed and implemented a high-resolution magic-angle-spinning (HRMAS) MRS method to investigate live Drosophila at 14.1 T. We demonstrated, for the first time, the feasibility of using HRMAS MRS for molecular characterization of Drosophila with a conventional MR spectrometer equipped with an HRMAS probe. We showed that the metabolic HRMAS MRS profiles of injured, aged wild-type (wt) flies and of immune deficient (imd) flies were more similar to chico flies mutated at the chico gene in the insulin signaling pathway, which is analogous to insulin receptor substrate1-4 (IRS1-4) in mammals and less to those of adipokinetic hormone receptor (akhr) mutant flies, which have an obese phenotype. We thus provide evidence for the hypothesis that trauma in aging and in innate immune-deficiency is linked to insulin signaling. This link may explain the mitochondrial dysfunction that accompanies insulin resistance and muscle wasting that occurs in trauma, aging and immune system deficiencies, leading to higher susceptibility to infection. Our approach advances the development of novel in vivo non-destructive research approaches in Drosophila, suggests biomarkers for investigation of biomedical paradigms, and thus may contribute to novel therapeutic development.
Collapse
Affiliation(s)
- VALERIA RIGHI
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burn Institute, Harvard Medical School
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
| | - YIORGOS APIDIANAKIS
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burn Institute, Harvard Medical School
- Molecular Surgery Laboratory, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114,
USA
| | - DIONYSSIOS MINTZOPOULOS
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burn Institute, Harvard Medical School
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
| | - LOUKAS ASTRAKAS
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burn Institute, Harvard Medical School
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
| | - LAURENCE G. RAHME
- Molecular Surgery Laboratory, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114,
USA
| | - A. ARIA TZIKA
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burn Institute, Harvard Medical School
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
| |
Collapse
|
12
|
Righi V, Apidianakis Y, Rahme LG, Tzika AA. Magnetic resonance spectroscopy of live Drosophila melanogaster using magic angle spinning. J Vis Exp 2010:1710. [PMID: 20395938 DOI: 10.3791/1710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
High-Resolution Magic Angle Spinning (HRMAS) proton magnetic resonance spectroscopy ((1)H-MRS) is a novel non-destructive technique that improves spectral line-widths and allows high-resolution spectra to be obtained from extracts, intact cells, cell cultures, and more importantly intact tissue to investigate relationships between metabolites and cellular processes. In vivo HRMAS (1)H-MRS studies have yet to be reported in the live fruit fly Drosophila melanogaster. Drosophila, as a simpler genetic organism, allows the multiple biological functions and various evolutionarily conserved signaling pathways to be examined at the whole organism level and it is a useful model for investigating genetics and physiology. To this end, we developed and implemented an in vivo HRMAS (1)H-MRS method to investigate live Drosophila at 14.1 T. Here, we outline an HRMAS (1)H-MRS protocol for the molecular characterization of Drosophila with a conventional MR spectrometer equipped with an HRMAS probe. This technique is a novel, in vivo, non-destructive Drosophila metabolite measurement approach, which enables the identification of disease biomarkers and thus may contribute to novel therapeutic development.
Collapse
Affiliation(s)
- Valeria Righi
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | | | | | | |
Collapse
|
13
|
Wright AJ, Fellows GA, Griffiths JR, Wilson M, Bell BA, Howe FA. Ex-vivo HRMAS of adult brain tumours: metabolite quantification and assignment of tumour biomarkers. Mol Cancer 2010; 9:66. [PMID: 20331867 PMCID: PMC2858738 DOI: 10.1186/1476-4598-9-66] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/23/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND High-resolution magic angle spinning (HRMAS) NMR spectroscopy allows detailed metabolic analysis of whole biopsy samples for investigating tumour biology and tumour classification. Accurate biochemical assignment of small molecule metabolites that are "NMR visible" will improve our interpretation of HRMAS data and the translation of NMR tumour biomarkers to in-vivo studies. RESULTS 1D and 2D 1H HRMAS NMR was used to determine that 29 small molecule metabolites, along with 8 macromolecule signals, account for the majority of the HRMAS spectrum of the main types of brain tumour (astrocytoma grade II, grade III gliomas, glioblastomas, metastases, meningiomas and also lymphomas). Differences in concentration of 20 of these metabolites were statistically significant between these brain tumour types. During the course of an extended 2D data acquisition the HRMAS technique itself affects sample analysis: glycine, glutathione and glycerophosphocholine all showed small concentration changes; analysis of the sample after HRMAS indicated structural damage that may affect subsequent histopathological analysis. CONCLUSIONS A number of small molecule metabolites have been identified as potential biomarkers of tumour type that may enable development of more selective in-vivo 1H NMR acquisition methods for diagnosis and prognosis of brain tumours.
Collapse
Affiliation(s)
- Alan J Wright
- Cardiac and Vascular Sciences, St George's, University of London, London, UK
| | - Greg A Fellows
- Academic Neurosurgery Unit, St George's, University of London, London, UK
| | | | - M Wilson
- Cancer Sciences, University of Birmingham, Birmingham, UK
- Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - B Anthony Bell
- Academic Neurosurgery Unit, St George's, University of London, London, UK
| | - Franklyn A Howe
- Cardiac and Vascular Sciences, St George's, University of London, London, UK
| |
Collapse
|
14
|
Righi V, Andronesi O, Mintzopoulos D, Tzika AA. Molecular characterization and quantification using state of the art solid-state adiabatic TOBSY NMR in burn trauma. Int J Mol Med 2010; 24:749-57. [PMID: 19885614 PMCID: PMC3722686 DOI: 10.3892/ijmm_00000288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We describe a novel solid-state nuclear magnetic resonance (NMR) method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS), relative conventional liquid-state NMR approaches, when applied to intact biopsies of skeletal muscle specimens collected from burn trauma patients. This novel method, termed optimized adiabatic TOtal through Bond correlation SpectroscopY (TOBSY) solid-state NMR pulse sequence for two-dimensional (2D)1H-1H homonuclear scalar-coupling longitudinal isotropic mixing, was demonstrated to provide a 40–60% improvement in signal-to-noise ratio (SNR) relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). Using 1-and 2-dimensional HRMAS NMR experiments, we identified several metabolites in burned tissues. Quantification of metabolites in burned tissues showed increased levels of lipid compounds, intracellular metabolites (e.g., taurine and phosphocreatine) and substantially decreased water-soluble metabolites (e.g., glutathione, carnosine, glucose, glutamine/glutamate and alanine). These findings demonstrate that HRMAS NMR Spectroscopy using TOBSY is a feasible technique that reveals new insights into the pathophysiology of burn trauma. Moreover, this method has applications that facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Valeria Righi
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burn Institute, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
15
|
Aaronson DS, Iman R, Walsh TJ, Kurhanewicz J, Turek PJ. A novel application of 1H magnetic resonance spectroscopy: non-invasive identification of spermatogenesis in men with non-obstructive azoospermia. Hum Reprod 2010; 25:847-52. [PMID: 20124393 DOI: 10.1093/humrep/dep475] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND About 10% of infertile men have no sperm in their ejaculate due to poor or absent spermatogenesis, also known as non-obstructive azoospermia (NOA). Testis (1)H magnetic resonance spectroscopy ((1)H-MRS) is a non-invasive imaging tool that can potentially identify and localize spermatogenesis in the testis. This study sought to identify metabolic signatures associated with various histological states of spermatogenesis in infertile men. METHODS Quantitative high resolution magic angle spinning spectroscopy was performed on snap frozen testicular tissue from 27 men with three classic histological patterns: (i) normal spermatogenesis (men with prior paternity undergoing vasectomy reversal), (ii) maturation arrest (early or late, MA) or (iii) Sertoli-cell only (SCO). Concentrations of 19 tissue metabolites were acquired from each biopsy specimen. One-way ANOVA analysis was used to determine inter-group differences in metabolite concentrations among the three histologic groups. RESULTS Phosphocholine (PC) and taurine tissue concentrations were significantly different between normal and SCO tissue. Mean PC concentrations were three times higher in normal testes compared with SCO (5.4 +/- 1.4 versus 1.5 +/- 0.3 mmol/kg; P = 0.01). No differences in metabolite concentrations were observed between normal and MA testes or between SCO and MA testes. Further histologic stratification of MA testes into subsets of those with (early) and without (late) spermatids or mature sperm, identified differences in PC concentrations. A predictive model for sperm presence with (1)H-MRS was developed based upon PC tissue concentrations. CONCLUSIONS PC concentrations are significantly higher in testes with spermatogenesis. This suggests that a unique metabolic signature for spermatogenesis is possible using (1)H-MRS which could aid in the non-invasive diagnosis of sperm in men with NOA.
Collapse
Affiliation(s)
- David S Aaronson
- Department of Urology, University of California San Francisco, Ambulatory Care Center, Suite A633, San Francisco, CA 94117, USA.
| | | | | | | | | |
Collapse
|
16
|
Tessem MB, Swanson MG, Keshari KR, Albers MJ, Joun D, Tabatabai ZL, Simko JP, Shinohara K, Nelson SJ, Vigneron DB, Gribbestad IS, Kurhanewicz J. Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn Reson Med 2009; 60:510-6. [PMID: 18727052 DOI: 10.1002/mrm.21694] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The goal of this study was to investigate the use of lactate and alanine as metabolic biomarkers of prostate cancer using (1)H high-resolution magic angle spinning (HR-MAS) spectroscopy of snap-frozen transrectal ultrasound (TRUS)-guided prostate biopsy tissues. A long-echo-time rotor-synchronized Carr-Purcell-Meiboom-Gill (CPMG) sequence including an electronic reference to access in vivo concentrations (ERETIC) standard was used to determine the concentrations of lactate and alanine in 82 benign and 16 malignant biopsies (mean 26.5% +/- 17.2% of core). Low concentrations of lactate (0.61 +/- 0.28 mmol/kg) and alanine (0.14 +/- 0.06 mmol/kg) were observed in benign prostate biopsies, and there was no significant difference between benign predominantly glandular (N = 54) and stromal (N = 28) biopsies between patients with (N = 38) and without (N = 44) a positive clinical biopsy. In biopsies containing prostate cancer there was a highly significant (P < 0.0001) increase in lactate (1.59 +/- 0.61 mmol/kg) and alanine (0.26 +/- 0.07 mmol/kg), and minimal overlap with lactate concentrations in benign biopsies. This study demonstrates for the first time very low concentrations of lactate and alanine in benign prostate biopsy tissues. The significant increase in the concentration of both lactate and alanine in biopsy tissue containing as little as 5% cancer could be exploited in hyperpolarized (13)C spectroscopic imaging (SI) studies of prostate cancer patients.
Collapse
Affiliation(s)
- May-Britt Tessem
- Department of Radiology, University of California-San Francisco, San Francisco, California 94158-2330, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Swanson MG, Keshari KR, Tabatabai ZL, Simko JP, Shinohara K, Carroll PR, Zektzer AS, Kurhanewicz J. Quantification of choline- and ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy. Magn Reson Med 2008; 60:33-40. [PMID: 18581409 DOI: 10.1002/mrm.21647] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A fast and quantitative 2D high-resolution magic angle spinning (HR-MAS) total correlation spectroscopy (TOCSY) experiment was developed to resolve and quantify the choline- and ethanolamine-containing metabolites in human prostate tissues in approximately 1 hr prior to pathologic analysis. At a 40-ms mixing time, magnetization transfer efficiency constants were empirically determined in solution and used to calculate metabolite concentrations in tissue. Phosphocholine (PC) was observed in 11/15 (73%) cancer tissues but only 6/32 (19%) benign tissues. PC was significantly higher (0.39 +/- 0.40 mmol/kg vs. 0.02 +/- 0.07 mmol/kg, z = 3.5), while ethanolamine (Eth) was significantly lower in cancer versus benign prostate tissues (1.0 +/- 0.8 mmol/kg vs. 2.3 +/- 1.9 mmol/kg, z = 3.3). Glycerophosphocholine (GPC) (0.57 +/- 0.87 mmol/kg vs. 0.29 +/- 0.26 mmol/kg, z = 1.2), phosphoethanolamine (PE) (4.4 +/- 2.2 mmol/kg vs. 3.4 +/- 2.6 mmol/kg, z = 1.4), and glycerophosphoethanolamine (GPE) (0.54 +/- 0.82 mmol/kg vs. 0.15 +/- 0.15 mmol/kg, z = 1.8) were higher in cancer versus benign prostate tissues. The ratios of PC/GPC (3.5 +/- 4.5 vs. 0.32 +/- 1.4, z = 2.6), PC/PE (0.08 +/- 0.08 vs. 0.01 +/- 0.03, z = 3.5), PE/Eth (16 +/- 22 vs. 2.2 +/- 2.0, z = 2.4), and GPE/Eth (0.41 +/- 0.51 vs. 0.06 +/- 0.06, z = 2.6) were also significantly higher in cancer versus benign tissues. All samples were pathologically interpretable following HR-MAS analysis; however, degradation experiments showed that PC, GPC, PE, and GPE decreased 7.7 +/- 2.2%, while Cho+mI and Eth increased 18% in 1 hr at 1 degrees C and a 2250 Hz spin rate.
Collapse
Affiliation(s)
- Mark G Swanson
- Department of Radiology, University of California-San Francisco, 1700 4th Street, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Andronesi OC, Mintzopoulos D, Struppe J, Black PM, Tzika AA. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 193:251-258. [PMID: 18556227 DOI: 10.1016/j.jmr.2008.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/12/2008] [Accepted: 05/12/2008] [Indexed: 05/26/2023]
Abstract
We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H-1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9(15)1 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.
Collapse
Affiliation(s)
- Ovidiu C Andronesi
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriner's Burn Institute, Harvard Medical School, 51 Blossom Street, Room 261, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
19
|
Ling W, Regatte RR, Schweitzer ME, Jerschow A. Characterization of bovine patellar cartilage by NMR. NMR IN BIOMEDICINE 2008; 21:289-95. [PMID: 17659534 DOI: 10.1002/nbm.1193] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metabolic and structural changes in cartilage tissue are thought to be at the root of degenerative joint disease. We identify here the NMR resonances in bovine patellar cartilage tissue by static and high-resolution magic angle spinning (HRMAS) NMR spectroscopy, (1)H-(13)C heteronuclear single-quantum correlation (HSQC) spectroscopy, total correlation spectroscopy (TOCSY), and saturation transfer experiments. Some differences between the patellar cartilage samples studied here and earlier nasal cartilage and intervertebrate disc studies were found. In addition, we show assignments downfield of the water signal, which also includes the assignment of amide and hydroxy protons on the basis of their exchangeability with water. These results will allow an identification of spectroscopic markers of cartilage degradation using techniques such as chemical exchange saturation transfer imaging.
Collapse
Affiliation(s)
- Wen Ling
- Chemistry Department, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
20
|
Li W. Multidimensional HRMAS NMR: a platform for in vivo studies using intact bacterial cells. Analyst 2007; 131:777-81. [PMID: 16874945 DOI: 10.1039/b605110c] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In vivo analysis in whole cell bacteria, especially the native tertiary structures of the bacterial cell wall, remains an unconquered frontier. The current understanding of bacterial cell wall structures has been based on destructive analysis of individual components. These in vitro results may not faithfully reflect the native structural and conformational information. Multidimensional High Resolution Magic Angle Spinning NMR (HRMAS NMR) has evolved to be a powerful technique in a variety of in vivo studies, including live bacterial cells. Existing studies of HRMAS NMR in bacteria, technical consideration of its successful application, and current limitations in studying true human pathogens are briefly reviewed in this report.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
21
|
Li W, Lee REB, Lee RE, Li J. Methods for acquisition and assignment of multidimensional high-resolution magic angle spinning NMR of whole cell bacteria. Anal Chem 2007; 77:5785-92. [PMID: 16159107 DOI: 10.1021/ac050906t] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-resolution magic-angle spinning (HR-MAS) NMR was developed in late 1990s, and it has evolved quickly for the study of a variety of biological matrixes. Recently, it has been used as an effective means to study the cell wall structures of intact bacteria. (1)H-(13)C heteronuclear single quantum coherence (HSQC) HR-MAS NMR can provide rapid analysis of the cell wall structure in live bacterial cells, thus allowing observation of drug effects, gene mutation, species differentiation, and environmental effects. However, this rapid analysis is dependent on having an established framework of HR-MAS NMR experiments and a detailed assignment of the whole-cell NMR spectra. This study examines parameters and describes strategies for the effective application of 2D and 3D HR-MAS NMR techniques to assign and study bacterial cell wall structures using Mycobacterium smegmatis as a model organism. Important parameters for successful whole-cell HR-MAS NMR studies, including pulse sequences, rotor synchronization, acquisition times, labeling strategies, temperature, number of cells, and cell viability, are described. A four-prong approach is presented for assignment of the complex whole-cell spectra, including the use of 3D HCCH-TOCSY and HCCH-COSY HR-MAS NMR.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | |
Collapse
|
22
|
Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR, Schmitt L, Carroll PR, Shinohara K, Vigneron DB, Kurhanewicz J. Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med 2006; 55:1257-64. [PMID: 16685733 DOI: 10.1002/mrm.20909] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method was developed to quantify prostate metabolite concentrations using (1)H high-resolution magic angle spinning (HR-MAS) spectroscopy. T(1) and T(2) relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1 degrees C, polyamines (PAs; T(1mean) = 100 +/- 13, T(2mean) = 30.8 +/- 7.4) and citrate (Cit; T(1mean) = 237 +/- 39, T(2mean) = 68.1 +/- 8.2) demonstrated the shortest relaxation times, while taurine (Tau; T(1mean) = 636 +/- 78, T(2mean) = 331 +/- 71) and choline (Cho; T(1mean) = 608 +/- 60, T(2mean) = 393 +/- 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC](mean) = 9.34 +/- 6.43, [tCho](mean) = 13.8 +/- 7.4, [Lac](mean) = 69.8 +/- 27.1, [Ala](mean) = 12.6 +/- 6.8) than in healthy glandular ([PC+GPC](mean) = 3.55 +/- 1.53, P < 0.01; [tCho](mean) = 7.06 +/- 2.36, P < 0.01; [Lac](mean) = 46.5 +/- 17.4, P < 0.01; [Ala](mean) = 8.63 +/- 4.91, P = 0.051) and healthy stromal tissues ([PC+GPC](mean) = 4.34 +/- 2.46, P < 0.01; [tCho](mean) = 7.04 +/- 3.10, P < 0.01; [Lac](mean) = 45.1 +/- 18.6, P < 0.01; [Ala](mean) = 6.80 +/- 2.95, P < 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit](mean) = 43.1 +/- 21.2, [PAs](mean) = 18.5 +/- 15.6) than in healthy stromal ([Cit](mean) = 16.1 +/- 5.6, P < 0.01; [PAs](mean) = 3.15 +/- 1.81, P < 0.01) and prostate cancer tissues ([Cit](mean) = 19.6 +/- 12.7, P < 0.01; [PAs](mean) = 5.28 +/- 5.44, P < 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho-containing metabolites was minimized by acquiring HR-MAS data at 1 degree C compared to 20 degrees C.
Collapse
Affiliation(s)
- Mark G Swanson
- Department of Radiology, University of California-San Francisco, 94107, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|