1
|
Yang Y, Lu M, Yan X. Frequency-independent dual-tuned cable traps for multi-nuclear MRI and MRS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107786. [PMID: 39413717 DOI: 10.1016/j.jmr.2024.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) of non-proton nuclei (X-nuclei) typically require additional proton imaging for anatomical reference and B0 shimming. Therefore, two RF systems exist, necessitating cable traps to block the unwanted common-mode current at both Larmor frequencies of 1H and X-nuclei. This study introduces a frequency-independent dual-tuned cable trap that combines a standard solenoid cable trap with a float solenoid trap to independently tune high and low frequencies without compromising performance. The methods involved theoretical analysis, electromagnetic simulations, and bench tests. Two design approaches were evaluated: a float cable trap for 1H, a non-float cable trap for X-nuclei, and vice versa. Results showed that the design with the float trap for X-nuclei and non-float for 1H had superior performance, with high common-mode current suppression ability at both frequencies. Bench tests confirmed these findings, demonstrating effectiveness across various static fields and X-nuclei. The proposed frequency-independent dual-tuned cable trap provides a compact and efficient solution for multinuclear MRI and MRS, enhancing safety, image quality, and flexibility.
Collapse
Affiliation(s)
- Yijin Yang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xinqiang Yan
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Zbýň Š, Ludwig KD, Watkins LE, Lagore RL, Nowacki A, Tóth F, Tompkins MA, Zhang L, Adriany G, Gold GE, Shea KG, Nagel AM, Carlson CS, Metzger GJ, Ellermann JM. Changes in tissue sodium concentration and sodium relaxation times during the maturation of human knee cartilage: Ex vivo 23 Na MRI study at 10.5 T. Magn Reson Med 2024; 91:1099-1114. [PMID: 37997011 PMCID: PMC10751033 DOI: 10.1002/mrm.29930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE To evaluate the influence of skeletal maturation on sodium (23 Na) MRI relaxation parameters and the accuracy of tissue sodium concentration (TSC) quantification in human knee cartilage. METHODS Twelve pediatric knee specimens were imaged with whole-body 10.5 T MRI using a density-adapted 3D radial projection sequence to evaluate 23 Na parameters: B1 + , T1 , biexponentialT 2 * $$ {\mathrm{T}}_2^{\ast } $$ , and TSC. Water, collagen, and sulfated glycosaminoglycan (sGAG) content were calculated from osteochondral biopsies. The TSC was corrected for B1 + , relaxation, and water content. The literature-based TSC (TSCLB ) used previously published values for corrections, whereas the specimen-specific TSC (TSCSP ) used measurements from individual specimens. 23 Na parameters were evaluated in eight cartilage compartments segmented on proton images. Associations between 23 Na parameters, TSCLB - TSCSP difference, biochemical content, and age were determined. RESULTS From birth to 12 years, cartilage water content decreased by 18%; collagen increased by 59%; and sGAG decreased by 36% (all R2 ≥ 0.557). The shortT 2 * $$ {\mathrm{T}}_2^{\ast } $$ (T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ) decreased by 72%, and the signal fraction relaxing withT 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ (fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ ) increased by 55% during the first 5 years but remained relatively stable after that. TSCSP was significantly correlated with sGAG content from biopsies (R2 = 0.739). Depending on age, TSCLB showed higher or lower values than TSCSP . The TSCLB - TSCSP difference was significantly correlated withT 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.850),fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.651), and water content (R2 = 0.738). CONCLUSION TSC and relaxation parameters measured with 23 Na MRI provide noninvasive information about changes in sGAG content and collagen matrix during cartilage maturation. Cartilage TSC quantification assuming fixed relaxation may be feasible in children older than 5 years.
Collapse
Affiliation(s)
- Štefan Zbýň
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- Department of Radiology, University of Minnesota, Minneapolis, MN
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH
| | - Kai D. Ludwig
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Lauren E. Watkins
- Department of Radiology, Department of Bioengineering, Stanford University, Palo Alto, CA
- Steadman Philippon Research Institute, Vail, CO
| | - Russell L. Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Amanda Nowacki
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- University of Texas, Austin, TX
| | - Ferenc Tóth
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN
| | - Marc A. Tompkins
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN
| | - Lin Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Garry E. Gold
- Department of Radiology, Department of Bioengineering, Stanford University, Palo Alto, CA
| | - Kevin G. Shea
- Lucile Packard Children’s Hospital, Stanford University School of Medicine, Palo Alto, CA
| | - Armin M. Nagel
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cathy S. Carlson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN
| | - Gregory J. Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Jutta M. Ellermann
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- Department of Radiology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
3
|
Handa P, Samkaria A, Sharma S, Arora Y, Mandal PK. Comprehensive Account of Sodium Imaging and Spectroscopy for Brain Research. ACS Chem Neurosci 2022; 13:859-875. [PMID: 35324144 DOI: 10.1021/acschemneuro.2c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sodium (23Na) is a vital component of neuronal cells and plays a key role in various signal transmission processes. Hence, information on sodium distribution in the brain using magnetic resonance imaging (MRI) provides useful information on neuronal health. 23Na MRI and MR spectroscopy (MRS) improve the diagnosis, prognosis, and clinical monitoring of neurological diseases but confront some inherent limitations that lead to low signal-to-noise ratio, longer scan time, and diminished partial volume effects. Recent advancements in multinuclear MR technology have helped in further exploration in this domain. We aim to provide a comprehensive description of 23Na MRI and MRS for brain research including the following aspects: (a) theoretical background for understanding 23Na MRI and MRS fundamentals; (b) technological advancements of 23Na MRI with respect to pulse sequences, RF coils, and sodium compartmentalization; (c) applications of 23Na MRI in the early diagnosis and prognosis of various neurological disorders; (d) structural-chronological evolution of sodium spectroscopy in terms of its numerous applications in human studies; (e) the data-processing tools utilized in the quantitation of sodium in the respective anatomical regions.
Collapse
Affiliation(s)
- Palak Handa
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Shallu Sharma
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Pravat K. Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3010, Australia
| |
Collapse
|
4
|
Alizadeh Sardroud H, Wanlin T, Chen X, Eames BF. Cartilage Tissue Engineering Approaches Need to Assess Fibrocartilage When Hydrogel Constructs Are Mechanically Loaded. Front Bioeng Biotechnol 2022; 9:787538. [PMID: 35096790 PMCID: PMC8790514 DOI: 10.3389/fbioe.2021.787538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Chondrocytes that are impregnated within hydrogel constructs sense applied mechanical force and can respond by expressing collagens, which are deposited into the extracellular matrix (ECM). The intention of most cartilage tissue engineering is to form hyaline cartilage, but if mechanical stimulation pushes the ratio of collagen type I (Col1) to collagen type II (Col2) in the ECM too high, then fibrocartilage can form instead. With a focus on Col1 and Col2 expression, the first part of this article reviews the latest studies on hyaline cartilage regeneration within hydrogel constructs that are subjected to compression forces (one of the major types of the forces within joints) in vitro. Since the mechanical loading conditions involving compression and other forces in joints are difficult to reproduce in vitro, implantation of hydrogel constructs in vivo is also reviewed, again with a focus on Col1 and Col2 production within the newly formed cartilage. Furthermore, mechanotransduction pathways that may be related to the expression of Col1 and Col2 within chondrocytes are reviewed and examined. Also, two recently-emerged, novel approaches of load-shielding and synchrotron radiation (SR)–based imaging techniques are discussed and highlighted for future applications to the regeneration of hyaline cartilage. Going forward, all cartilage tissue engineering experiments should assess thoroughly whether fibrocartilage or hyaline cartilage is formed.
Collapse
Affiliation(s)
- Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Hamed Alizadeh Sardroud,
| | - Tasker Wanlin
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - B. Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Sharafi A, Xia D, Chang G, Regatte RR. Biexponential T 1ρ relaxation mapping of human knee cartilage in vivo at 3 T. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3760. [PMID: 28632901 PMCID: PMC5597480 DOI: 10.1002/nbm.3760] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The purpose of this study was to demonstrate the feasibility of biexponential T1ρ relaxation mapping of human knee cartilage in vivo. A three-dimensional, customized, turbo-flash sequence was used to acquire T1ρ -weighted images from healthy volunteers employing a standard 3-T MRI clinical scanner. A series of T1ρ -weighted images was fitted using monoexponential and biexponential models with two- and four-parametric non-linear approaches, respectively. Non-parametric Kruskal-Wallis and Mann-Whitney U-statistical tests were used to evaluate the regional relaxation and gender differences, respectively, with a level of significance of P = 0.05. Biexponential relaxations were detected in the cartilage of all volunteers. The short and long relaxation components of T1ρ were estimated to be 6.9 and 51.0 ms, respectively. Similarly, the fractions of short and long T1ρ were 37.6% and 62.4%, respectively. The monoexponential relaxation of T1ρ was 32.6 ms. The experiments showed good repeatability with a coefficient of variation (CV) of less than 20%. A biexponential relaxation model showed a better fit than a monoexponential model to the T1ρ relaxation decay in knee cartilage. Biexponential T1ρ components could potentially be used to increase the specificity to detect early osteoarthritis by the measurement of different water compartments and their fractions.
Collapse
Affiliation(s)
- Azadeh Sharafi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ding Xia
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Gregory Chang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ravinder R Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
6
|
Adapala NS, Kim HKW. A genome-wide transcriptomic analysis of articular cartilage during normal maturation in pigs. Gene 2017; 627:508-518. [PMID: 28687335 DOI: 10.1016/j.gene.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/02/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The articular cartilage undergoes dramatic changes in structure and composition during post-natal maturation, but the associated transcriptional changes are not well characterized. Compared to a mature stage, the immature articular cartilage shows developmental features such as increased thickness, presence of blood vessels, and the presence of a deep layer of growth cartilage which undergoes endochondral ossification. These features decrease during normal development. Following maturation, the articular cartilage is known to undergo few minor modifications. Since mature articular cartilage has poor regenerative and repair capacity compared to the immature articular cartilage, a better understanding of the molecular changes during the normal postnatal articular cartilage development might reveal insights on the molecular adaptation. It may also provide new therapeutic strategies. The purpose of this study was to determine the differential expression of genes in the femoral head articular cartilage of 6-weeks old and 6-months old pigs using a genome-wide transcriptomic analysis. METHODS The articular cartilage of the femoral head of 6-weeks and 6-months old normal pigs was assessed for thickness and vascularity (number of vascular canals) using Safranin O/Fast Green staining of paraffin sections (n=4 pigs/age group). The measurements were determined using Image J software. RNA was isolated from the femoral head articular cartilage from 6-weeks and 6-months old pigs (n=8 pigs/age group). A microarray analysis was performed using an Affymetrix Porcine GeneChip Array. A gene enrichment analysis and a functional clustering analysis were performed by DAVID and STRING software, respectively. The differential expression of selected genes was confirmed by a quantitative RTPCR analysis. RESULTS The femoral head articular cartilage showed a significant decrease in thickness and number of vascular canals in 6-months old compared to 6-weeks old pigs. A microarray analysis revealed a differential gene expression of 576 genes, with 206 genes that were significantly upregulated and 370 genes that were significantly downregulated (>2-fold change, p<0.05) at 6-months compared to 6-weeks of age. Among the upregulated genes, DAVID analysis revealed that a significant number of genes represented the biological processes of responses to external stimuli, and wounding and inflammation at 6-months of age. These processes involved genes representing secretory and signaling proteins such as MMP-1, MMP-3, IL-8 and STAT3 suggesting increased inflammatory activity. In addition, an assessment of the downregulated genes indicated a decrease in the expression of genes representing the biological processes of developmental processes (e.g. BMPR1A, BMPR2, ACVR2, periostin, SFRP2, COL5A3) and regulation of blood vessel size (e.g. alpha adrenergic receptor 1B, alpha-SMA) at 6-months of age. A real-time qRTPCR analysis of selected upregulated genes, fibronectin, MMP-3, IL-8 and downregulated genes, BMPR2, PECAM, CCL2, TLR4 confirmed the differential gene expression in the microarray analysis. CONCLUSION During the process of articular cartilage maturation from 6-weeks to 6-months of age in normal pigs, genes associated with inflammatory responses to injury were upregulated and genes involved in the development and vascular responses were downregulated. These findings suggest that during articular cartilage maturation, the transcriptional changes might increase the susceptibility of cartilage to inflammatory damage and decrease the regenerative capacity.
Collapse
Affiliation(s)
- Naga Suresh Adapala
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA; Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390-8883, USA
| | - Harry K W Kim
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA; Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390-8883, USA.
| |
Collapse
|
7
|
Ooms KJ, Vega AJ, Polenova T, Cannella M, Marcolongo M. Double and zero quantum filtered (2)H NMR analysis of D2O in intervertebral disc tissue. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 258:6-11. [PMID: 26150377 DOI: 10.1016/j.jmr.2015.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
The analysis of double and zero quantum filtered (2)H NMR spectra obtained from D2O perfused in the nucleus pulposus of human intervertebral disc tissue samples is reported. Fitting the spectra with a three-site model allows for residual quadrupolar couplings and T2 relaxation times to be measured. The analysis reveals changes in both the couplings and relaxation times as the tissue begins to show signs of degradation. The full analysis demonstrates that information about tissue hydration, water collagen interactions, and sample heterogeneity can be obtained and used to better understand the biochemical differences between healthy and degraded tissue.
Collapse
Affiliation(s)
- Kristopher J Ooms
- Department of Chemistry, The King's University, Edmonton, Alberta, Canada.
| | - Alexander J Vega
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Tatyana Polenova
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Marco Cannella
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Michele Marcolongo
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Tadimalla S, Momot KI. Effect of partial H2O-D2O replacement on the anisotropy of transverse proton spin relaxation in bovine articular cartilage. PLoS One 2014; 9:e115288. [PMID: 25545955 PMCID: PMC4278899 DOI: 10.1371/journal.pone.0115288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022] Open
Abstract
Anisotropy of transverse proton spin relaxation in collagen-rich tissues like cartilage and tendon is a well-known phenomenon that manifests itself as the "magic-angle" effect in magnetic resonance images of these tissues. It is usually attributed to the non-zero averaging of intra-molecular dipolar interactions in water molecules bound to oriented collagen fibers. One way to manipulate the contributions of these interactions to spin relaxation is by partially replacing the water in the cartilage sample with deuterium oxide. It is known that dipolar interactions in deuterated solutions are weaker, resulting in a decrease in proton relaxation rates. In this work, we investigate the effects of deuteration on the longitudinal and the isotropic and anisotropic contributions to transverse relaxation of water protons in bovine articular cartilage. We demonstrate that the anisotropy of transverse proton spin relaxation in articular cartilage is independent of the degree of deuteration, bringing into question some of the assumptions currently held over the origins of relaxation anisotropy in oriented tissues.
Collapse
Affiliation(s)
- Sirisha Tadimalla
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Kelvin Grove, Queensland, Australia
| | - Konstantin I. Momot
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Kelvin Grove, Queensland, Australia
| |
Collapse
|
9
|
Amirabadi A, Vidarsson L, Miller E, Sussman MS, Patil K, Gahunia H, Peel SAF, Zhong A, Weiss R, Detzler G, Cheng HLM, Moineddin R, Doria AS. USPIO-related T1 and T2 mapping MRI of cartilage in a rabbit model of blood-induced arthritis: a pilot study. Haemophilia 2014; 21:e59-69. [DOI: 10.1111/hae.12601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2014] [Indexed: 11/27/2022]
Affiliation(s)
- A. Amirabadi
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - L. Vidarsson
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - E. Miller
- Department of Diagnostic Imaging; Children's Hospital for Eastern Ontario; Ottawa ON Canada
| | - M. S. Sussman
- Department of Medical Imaging; Toronto General Hospital; the University Health Network; Toronto ON Canada
| | - K. Patil
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - H. Gahunia
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - S. A. F. Peel
- Department of Oral and Maxillofacial Surgery; Faculty of Dentistry; University of Toronto; Toronto ON Canada
| | - A. Zhong
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - R. Weiss
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - G. Detzler
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - H. L. M. Cheng
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - R. Moineddin
- Department of Family and Community Medicine; University of Toronto; Toronto ON Canada
| | - A. S. Doria
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| |
Collapse
|
10
|
VanderSchee CR, Ooms KJ. Investigating Water Interactions with Collagen Using 2H Multiple Quantum Filtered NMR Spectroscopy To Provide Insights into the Source of Double Quantum Filtered Signal in Tissue. J Phys Chem B 2014; 118:3491-7. [DOI: 10.1021/jp409543p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Cassidy R. VanderSchee
- Department of Chemistry, The King’s University College, 9125
50th Street, Edmonton, Alberta, T6B 2H3, Canada
| | - Kristopher J. Ooms
- Department of Chemistry, The King’s University College, 9125
50th Street, Edmonton, Alberta, T6B 2H3, Canada
| |
Collapse
|
11
|
Bouhrara M, Reiter DA, Celik H, Bonny JM, Lukas V, Fishbein KW, Spencer RG. Incorporation of Rician noise in the analysis of biexponential transverse relaxation in cartilage using a multiple gradient echo sequence at 3 and 7 Tesla. Magn Reson Med 2014; 73:352-66. [PMID: 24677270 DOI: 10.1002/mrm.25111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE Previous work has evaluated the quality of different analytic methods for extracting relaxation times from magnitude imaging data exhibiting Rician noise. However, biexponential analysis of relaxation in tissue, including cartilage, and materials is of increasing interest. We, therefore, analyzed biexponential transverse relaxation decay in the presence of Rician noise and assessed the accuracy and precision of several approaches to determining component fractions and apparent transverse relaxation times. THEORY AND METHODS Comparisons of four different voxel-by-voxel fitting methods were performed using Monte Carlo simulations, and phantom and ex vivo bovine nasal cartilage (BNC) experiments. In each case, preclinical and clinical imaging field strengths of 7 Tesla (T) and 3T, respectively, and parameters, were investigated across a range of signal-to-noise ratios (SNR). Results were compared with Cramér-Rao lower bound calculations. RESULTS As expected, at high SNR, all methods performed well. At lower SNR, fits explicitly incorporating the analytic form of the Rician noise maintained performance. The much more efficient correction scheme of Gudbjartsson and Patz performed almost as well in many cases. Ex vivo experiments on phantoms and BNC were consistent with simulation results. CONCLUSION Explicit incorporation of Rician noise greatly improves accuracy and precision in the analysis of biexponential transverse decay data.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - David A Reiter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Hasan Celik
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jean-Marie Bonny
- Imagerie & Transferts, UR370 QuaPA INRA F-63122 Saint Genès Champanelle, France
| | - Vanessa Lukas
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Kenneth W Fishbein
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Wang N, Xia Y. Experimental issues in the measurement of multi-component relaxation times in articular cartilage by microscopic MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 235:15-25. [PMID: 23916991 PMCID: PMC3775938 DOI: 10.1016/j.jmr.2013.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 05/21/2023]
Abstract
A number of experimental issues in the measurement of multi-component T2 and T1ρ relaxations in native and enzymatically digested articular cartilage were investigated by microscopic MRI (μMRI). The issues included the bath solutions (physiological saline and phosphate buffered saline (PBS)), the imaging resolution (35-140 μm), the specimen orientations (0° and 55°), and the strength of spin-lock frequencies (0.5-2 kHz) in the T1ρ experiments. In addition to cartilage, the samples of agar gel and doped water solution were also used in the investigation. Two imaging sequences were used: CPMG-SE and MSME. All raw data were analyzed by the non-negative least square (NNLS) method. The MSME sequence was shown to result in the observation of multi-component T2, even in the gel and liquid samples, demonstrating the artificial uncleanness of this sequence in the multi-component measurements. The soaking of cartilage in PBS reduced the observable T2 components to one at both 0° and 55°, suggesting the effect of phosphate ions on proton exchange between different pools of water molecules. The cartilage orientation with respect to the external magnetic field and the spin-lock strengths in the T1ρ experiment both affected the quantification of the multi-component relaxation. The transitions between a mono-component and multi-components in cartilage under various experimental conditions call for the extra caution in interpreting the relaxation results.
Collapse
Affiliation(s)
| | - Yang Xia
- Corresponding Author and Address: Yang Xia, PhD, Department of Physics, Oakland University, Rochester, Michigan 48309, USA, Phone: (248) 370-3420, Fax: (248) 370-3408,
| |
Collapse
|
13
|
Kotecha M, Klatt D, Magin RL. Monitoring cartilage tissue engineering using magnetic resonance spectroscopy, imaging, and elastography. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:470-84. [PMID: 23574498 DOI: 10.1089/ten.teb.2012.0755] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A key technical challenge in cartilage tissue engineering is the development of a noninvasive method for monitoring the composition, structure, and function of the tissue at different growth stages. Due to its noninvasive, three-dimensional imaging capabilities and the breadth of available contrast mechanisms, magnetic resonance imaging (MRI) techniques can be expected to play a leading role in assessing engineered cartilage. In this review, we describe the new MR-based tools (spectroscopy, imaging, and elastography) that can provide quantitative biomarkers for cartilage tissue development both in vitro and in vivo. Magnetic resonance spectroscopy can identify the changing molecular structure and alternations in the conformation of major macromolecules (collagen and proteoglycans) using parameters such as chemical shift, relaxation rates, and magnetic spin couplings. MRI provides high-resolution images whose contrast reflects developing tissue microstructure and porosity through changes in local relaxation times and the apparent diffusion coefficient. Magnetic resonance elastography uses low-frequency mechanical vibrations in conjunction with MRI to measure soft tissue mechanical properties (shear modulus and viscosity). When combined, these three techniques provide a noninvasive, multiscale window for characterizing cartilage tissue growth at all stages of tissue development, from the initial cell seeding of scaffolds to the development of the extracellular matrix during construct incubation, and finally, to the postimplantation assessment of tissue integration in animals and patients.
Collapse
Affiliation(s)
- Mrignayani Kotecha
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois
| | | | | |
Collapse
|
14
|
Kotecha M, Ravindran S, Schmid TM, Vaidyanathan A, George A, Magin RL. Application of sodium triple-quantum coherence NMR spectroscopy for the study of growth dynamics in cartilage tissue engineering. NMR IN BIOMEDICINE 2013; 26:709-17. [PMID: 23378198 PMCID: PMC3634872 DOI: 10.1002/nbm.2916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/23/2012] [Accepted: 12/09/2012] [Indexed: 06/01/2023]
Abstract
We studied the tissue growth dynamics of tissue-engineered cartilage at an early growth stage after cell seeding for four weeks using sodium triple-quantum coherence NMR spectroscopy. The following tissue-engineering constructs were studied: 1) bovine chondrocytes cultured in alginate beads; 2) bovine chondrocytes cultured as pellets (scaffold-free chondrocyte pellets); and 3) human marrow stromal cells (HMSCs) seeded in collagen/chitosan based biomimetic scaffolds. We found that the sodium triple-quantum coherence spectroscopy could differentiate between different tissue-engineered constructs and native tissues based on the fast and slow components of relaxation rate as well as on the average quadrupolar coupling. Both fast (Tf ) and slow (Ts ) relaxation times were found to be longer in chondrocyte pellets and biomimetic scaffolds compared to chondrocytes suspended in alginate beads and human articular cartilage tissues. In all cases, it was found that relaxation rates and motion of sodium ions measured from correlation times were dependent on the amount of macromolecules, high cell density and anisotropy of the cartilage tissue-engineered constructs. Average quadrupolar couplings were found to be lower in the engineered tissue compared to native tissue, presumably due to the lack of order in collagen accumulated in the engineered tissue. These results support the use of sodium triple-quantum coherence spectroscopy as a tool to investigate anisotropy and growth dynamics of cartilage tissue-engineered constructs in a simple and reliable way.
Collapse
Affiliation(s)
- Mrignayani Kotecha
- Department of Bioengineering, University of Illinois at Chicago, IL 60607, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Lin IT, Yang HC, Chen JH. Enlargement of the field of view and maintenance of a high signal-to-noise ratio using a two-element high-Tc superconducting array in a 3T MRI. PLoS One 2012; 7:e42509. [PMID: 22880009 PMCID: PMC3411759 DOI: 10.1371/journal.pone.0042509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 07/09/2012] [Indexed: 11/18/2022] Open
Abstract
This study examines the enlargement of the field of view (FOV) and the maintenance of a high signal-to-noise ratio (SNR) through the use of two high-temperature superconducting (HTS) resonators in a 3T MRI. Two Bi2Sr2Ca2Cu3Ox (Bi-2223) surface resonators, each of 4-cm diameter, were used in a 3T MRI. Professionally made copper resonators operate at 300 K, but each Bi-2223 resonator, operated at 77 K and demonstrated a 3.75 fold increase in SNR gain. For the same scanning time, the SNR of the images of a rat’s brain and back, obtained using two small Bi-2223 surface resonators, was higher than that obtained using a single 8-cm surface resonator.
Collapse
Affiliation(s)
- In-Tsang Lin
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Hong-Chang Yang
- Department of Physics, National Taiwan University, Taipei, Taiwan
- * E-mail: (H-CY); (J-HC)
| | - Jyh-Horng Chen
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
- * E-mail: (H-CY); (J-HC)
| |
Collapse
|
16
|
Wang N, Xia Y. Dependencies of multi-component T2 and T1ρ relaxation on the anisotropy of collagen fibrils in bovine nasal cartilage. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 212:124-32. [PMID: 21788148 PMCID: PMC3163824 DOI: 10.1016/j.jmr.2011.06.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/20/2011] [Accepted: 06/23/2011] [Indexed: 05/02/2023]
Abstract
Both NMR spectroscopy and MRI were used to investigate the dependencies of multi-component T2 and T1ρ relaxation on the anisotropy of bovine nasal cartilage (BNC). The non-negative least square (NNLS) method and the multi-exponential fitting method were used to analyze all experimental data. When the collagen fibrils in nasal cartilage were oriented at the magic angle (55°) to the magnetic field B0, both T2 and T1ρ were single component, regardless of the spin-lock field strength or the echo spacing time in the pulse sequences. When the collagen fibrils in nasal cartilage were oriented at 0° to B0, both T2 and T1ρ at a spin-lock field of 500 Hz had two components. When the spin-lock field was increased to 1000 Hz or higher, T1ρ relaxation in nasal cartilage became a single component, even when the specimen orientation was 0°. These results demonstrate that the specimen orientation must be considered for any multi-component analysis, even for nasal cartilage that is commonly considered homogenously structured. Since the rapidly and slowly relaxing components can be attributed to different portions of the water population in tissue, the ability to resolve different relaxation components could be used to quantitatively examine individual molecular components in connective tissues.
Collapse
Affiliation(s)
| | - Yang Xia
- Corresponding Author and Address Yang Xia, PhD Department of Physics, Oakland University Rochester, Michigan 48309, USA Phone: (248) 370-3420 Fax: (248) 370-3408
| |
Collapse
|
17
|
Xu J, Zhu P, Morris MD, Ramamoorthy A. Solid-state NMR spectroscopy provides atomic-level insights into the dehydration of cartilage. J Phys Chem B 2011; 115:9948-54. [PMID: 21786810 PMCID: PMC3158280 DOI: 10.1021/jp205663z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An atomic-level insight into the functioning of articular cartilage would be useful to develop prevention strategies and therapies for joint diseases such as osteoarthritis. However, the composition and structure of cartilage and their relationship to its unique mechanical properties are quite complex and pose tremendous challenges to most biophysical techniques. In this study, we present an investigation of the structure and dynamics of polymeric molecules of articular cartilage using time-resolved solid-state NMR spectroscopy during dehydration. Full-thickness cartilage explants were used in magic-angle spinning experiments to monitor the structural changes of rigid and mobile carbons. Our results reveal that the dehydration reduced the mobility of collagen amino acid residues and carbon sugar ring structures in glycosaminoglycans but had no effect on the trans-Xaa-Pro conformation. Equally interestingly, our results demonstrate that the dehydration effects are reversible, and the molecular structure and mobility are restored upon rehydration.
Collapse
Affiliation(s)
- Jiadi Xu
- Department of Biophysics University of Michigan, Ann Arbor, MI 48109-1055
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Peizhi Zhu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Michael D. Morris
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Ayyalusamy Ramamoorthy
- Department of Biophysics University of Michigan, Ann Arbor, MI 48109-1055
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| |
Collapse
|
18
|
Chiodo D, Crooks CV, Wolfe DA, McIsaac C, Hughes R, Jaffe PG. Longitudinal Prediction and Concurrent Functioning of Adolescent Girls Demonstrating Various Profiles of Dating Violence and Victimization. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2011; 13:350-9. [DOI: 10.1007/s11121-011-0236-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Ultra-high field diffusion tensor imaging of articular cartilage correlated with histology and scanning electron microscopy. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 24:247-58. [DOI: 10.1007/s10334-011-0259-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/26/2011] [Accepted: 05/05/2011] [Indexed: 12/26/2022]
|
20
|
Reiter DA, Roque RA, Lin PC, Irrechukwu O, Doty S, Longo DL, Pleshko N, Spencer RG. Mapping proteoglycan-bound water in cartilage: Improved specificity of matrix assessment using multiexponential transverse relaxation analysis. Magn Reson Med 2011; 65:377-84. [PMID: 21264931 PMCID: PMC3350808 DOI: 10.1002/mrm.22673] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 08/19/2010] [Accepted: 09/14/2010] [Indexed: 12/20/2022]
Abstract
Association of MR parameters with cartilage matrix components remains an area of ongoing investigation. Multiexponential analysis of nonlocalized transverse relaxation data has previously been used to quantify water compartments associated with matrix macromolecules in cartilage. We extend this to mapping the proteoglycan (PG)-bound water fraction in cartilage, using mature and young bovine nasal cartilage model systems, toward the goal of matrix component-specific imaging. PG-bound water fraction from mature and young bovine nasal cartilage was 0.31 ± 0.04 and 0.22 ± 0.06, respectively, in agreement with biochemically derived PG content and PG-to-water weight ratios. Fourier transform infrared imaging spectroscopic-derived PG maps normalized by water content (IR-PG(ww) ) showed spatial correspondence with PG-bound water fraction maps. Extensive simulation analysis demonstrated that the accuracy and precision of our determination of PG-bound water fraction was within 2%, which is well-within the observed tissue differences. Our results demonstrate the feasibility of performing imaging-based multiexponential analysis of transverse relaxation data to map PG in cartilage.
Collapse
Affiliation(s)
- David A Reiter
- Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Keinan-Adamsky K, Shinar H, Shabat S, Brin YS, Nyska M, Navon G. 23Na and 2H magnetic resonance studies of osteoarthritic and osteoporotic articular cartilage. Magn Reson Med 2011; 64:653-61. [PMID: 20806373 DOI: 10.1002/mrm.22479] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this study, the short component of the (23)Na T(2) (T(2f)) and the (23)Na and (2)H quadrupolar interactions (nu(Q)) were measured in bone-cartilage samples of osteoarthritic (OA) and osteoporotic (OP) patients. (23)Na nu(Q) was found to increase in osteoarthritic articular cartilage relative to controls. Similar results were found in bovine cartilage following proteoglycan (PG) depletion, a condition that prevails in osteoarthritis. (23)Na nu(Q) and 1/T(2f) for articular cartilage obtained from osteoporotic patients were significantly larger than for control and osteoarthritic cartilage. Decalcification of both human and bovine articular cartilage resulted in an increase of (23)Na nu(Q) and 1/T(2f), showing the same trend as the osteoporotic samples. Differences in the ratio of the intensity of the large (2)H splitting to that of the small one in the calcified zone were also observed. In osteoporosis, this ratio was twice as large as that obtained for both control and osteoarthritic samples. The (2)H and (23)Na results can be interpreted as due to sodium ions and water molecules filling the void created by the calcium depletion and to calcium ions being located in close association with the collagen fibers. To the best of our knowledge, this is the first study reporting differences of NMR parameters in cartilage of osteoporotic patients.
Collapse
|
22
|
Saar G, Zilberman Y, Shinar H, Keinan-Adamsky K, Pelled G, Gazit D, Navon G. Monitoring of the effect of intervertebral disc nucleus pulposus ablation by MRI. NMR IN BIOMEDICINE 2010; 23:554-562. [PMID: 20175140 DOI: 10.1002/nbm.1493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In order to investigate intervertebral disc (IVD) degeneration and repair, a quantitative non-invasive tool is needed. Various MRI methods including qCPMG, which yields dipolar echo relaxation time (T(DE)), magnetization transfer contrast (MTC), and (1)H and (2)H double quantum filtered (DQF) MRI were used in the present work to monitor changes in rat IVD after ablation of the nucleus pulposus (NP), serving as a model of severe IVD degeneration. In the intact IVD, a clear distinction between the annulus fibrosus (AF) and the NP is obtained on T(2) and T(DE) weighted images as well as on MTC maps, reflecting the high concentration of ordered collagen fibers in the AF. After ablation of the NP, the distinction between the compartments is lost. T(2) and T(DE) relaxation times are short throughout the disc and MTC is high. (1)H and (2)H DQF signal, which in intact discs is obtained only for the AF, is now observable throughout the tissue. These results indicate that after ablation, there is an ingression of collagen fibers from the AF into the area that was previously occupied by the NP, as was confirmed by histology.
Collapse
Affiliation(s)
- Galit Saar
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
23
|
Zheng S, Xia Y. On the measurement of multi-component T2 relaxation in cartilage by MR spectroscopy and imaging. Magn Reson Imaging 2010; 28:537-45. [PMID: 20061115 DOI: 10.1016/j.mri.2009.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/14/2009] [Accepted: 12/06/2009] [Indexed: 11/24/2022]
Abstract
The multicomponent T(2) relaxation in bovine nasal cartilage (BNC) was investigated by nuclear magnetic resonance spectroscopy using the Carr-Purcell-Meiboom-Gill (CPMG) sequence and microscopic magnetic resonance imaging (microMRI) method using a CPMG-SE imaging sequence. All experimental data were analyzed by the non-negative least square (NNLS) procedure. Only one T(2) component was found in BNC by both experimental methods (about 113 and 170 ms before and after being enzymatically digested by trypsin). Several experimental and specimen-related factors were investigated in this study, and it was found that some of them could produce artificial multi-component T(2), including the use of the standard MSME imaging sequence at certain imaging gradients.
Collapse
Affiliation(s)
- ShaoKuan Zheng
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | | |
Collapse
|
24
|
Chan D, Neu C, Hull M. In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement-encoded MRI. Osteoarthritis Cartilage 2009; 17:1461-8. [PMID: 19447213 PMCID: PMC2763927 DOI: 10.1016/j.joca.2009.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 04/17/2009] [Accepted: 04/26/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Cartilage displacement and strain patterns were documented noninvasively in intact tibiofemoral joints in situ by magnetic resonance imaging (MRI). This study determined the number of compressive loading cycles required to precondition intact joints prior to imaging, the spatial distribution of displacements and strains in cartilage using displacement-encoded MRI, and the depth-dependency of these measures across specimens. DESIGN Juvenile porcine tibiofemoral joints were cyclically compressed at one and two times body weight at 0.1 Hz to achieve a quasi-steady state load-displacement response. A 7.0 T MRI scanner was used for displacement-encoded imaging with stimulated echoes and a fast spin echo acquisition (DENSE-FSE) in eight intact joints. Two-dimensional displacements and strains were determined throughout the thickness of the tibial and femoral cartilage and then normalized over the tissue thickness. RESULTS Two-dimensional displacements and strains were heterogeneous through the depth of femoral and tibial cartilage under cyclic compression. Strains in the loading direction were compressive and were maximal in the middle zone of femoral and tibial cartilage, and tensile strains were observed in the direction transverse to loading. CONCLUSIONS This study determined the depth-dependent displacements and strains in intact juvenile porcine tibiofemoral joints using displacement-encoded imaging. Displacement and strain distributions reflect the heterogeneous biochemistry of cartilage and the biomechanical response of the tissue to compression in the loading environment of an intact joint. This unique information about the biomechanics of cartilage has potential for comparisons of healthy and degenerated tissue and in the design of engineered replacement tissues.
Collapse
Affiliation(s)
- D.D. Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - C.P. Neu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - M.L. Hull
- Biomedical Engineering Graduate Group, University of California at Davis, Davis, CA 95616,Department of Mechanical and Aeronautical Engineering, University of California at Davis, Davis, CA 95616
| |
Collapse
|
25
|
Price LN, Maholmes V. Understanding the Nature and Consequences of Children’s Exposure to Violence: Research Perspectives. Clin Child Fam Psychol Rev 2009; 12:65-70. [DOI: 10.1007/s10567-009-0057-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Zheng S, Xia Y. Multi-components of T2 relaxation in ex vivo cartilage and tendon. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 198:188-96. [PMID: 19269868 PMCID: PMC2680930 DOI: 10.1016/j.jmr.2009.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 05/11/2023]
Abstract
The multi-components of T2 relaxation in cartilage and tendon were investigated by microscopic MRI (microMRI) at 13 and 26 microm transverse resolutions. Two imaging protocols were used to quantify T2 relaxation in the specimens, a 5-point sampling and a 60-point sampling. Both multi-exponential and non-negative-least-square (NNLS) fitting methods were used to analyze the microMRI signal. When the imaging voxel size was 6.76 x 10(-4)mm3 and within the limit of practical signal-to-noise ratio (SNR) in microscopic imaging experiments, we found that (1) canine tendon has multiple T2 components; (2) bovine nasal cartilage has a single T2 component; and (3) canine articular cartilage has a single T2 component. The T2 profiles from both 5-point and 60-point methods were found to be consistent in articular cartilage. In addition, the depletion of the glycosaminoglycan component in cartilage by the trypsin digestion method was found to result in a 9.81-20.52% increase in T2 relaxation in articular cartilage, depending upon the angle at which the tissue specimen was oriented in the magnetic field.
Collapse
Affiliation(s)
| | - Yang Xia
- Corresponding Address: Yang Xia, Ph. D., Department of Physics, Oakland University Rochester, Michigan 48309, USA, Phone: (248) 370-3420, Fax: (248) 370-3408,
| |
Collapse
|
27
|
Vaga S, Raimondi MT, Perona F, Fornari M, Caiani EG. Division scheme optimization for the molecular evaluation of the intervertebral disc by gadolinium-enhanced MRI. J Magn Reson Imaging 2009; 29:1443-9. [DOI: 10.1002/jmri.21774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Xu H, Othman SF, Magin RL. Monitoring tissue engineering using magnetic resonance imaging. J Biosci Bioeng 2009; 106:515-27. [PMID: 19134545 DOI: 10.1263/jbb.106.515] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 08/12/2008] [Indexed: 11/17/2022]
Abstract
Assessment of tissue regeneration is essential to optimize the stages of tissue engineering (cell proliferation, tissue development and implantation). Optical and X-ray imaging have been used in tissue engineering to provide useful information, but each has limitations: for example, poor depth penetration and radiation damage. Magnetic resonance imaging (MRI) largely overcomes these restrictions, exhibits high resolution (approximately 100 microm) and can be applied both in vitro and in vivo. Recently, MRI has been used in tissue engineering to generate spatial maps of tissue relaxation times (T(1), T(2)), water diffusion coefficients, and the stiffness (shear moduli) of developing engineered tissues. In addition, through the use of paramagnetic and superparamagnetic contrast agents, MRI can quantify cell death, assess inflammation, and visualize cell trafficking and gene expression. After tissue implantation MRI can be used to observe the integration of a tissue implant with the surrounding tissues, and to check for early signs of immune rejection. In this review, we describe and evaluate the growing role of MRI in the assessment of tissue engineered constructs. First, we briefly describe the underlying principles of MRI and the expected changes in relaxation times (T(1), T(2)) and the water diffusion coefficient that are the basis for MR contrast in developing tissues. Next, we describe how MRI can be applied to evaluate the tissue engineering of mesenchymal tissues (bone, cartilage, and fat). Finally, we outline how MRI can be used to monitor tissue structure, composition, and function to improve the entire tissue engineering process.
Collapse
Affiliation(s)
- Huihui Xu
- Department of Applied Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803, USA
| | | | | |
Collapse
|
29
|
Zheng S, Xia Y. Effect of phosphate electrolyte buffer on the dynamics of water in tendon and cartilage. NMR IN BIOMEDICINE 2009; 22:158-164. [PMID: 18720450 PMCID: PMC6925598 DOI: 10.1002/nbm.1294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A number of NMR spectroscopic and microscopic MRI (microMRI) techniques were used to study proton dynamics in canine tendon and articular cartilage immersed in normal saline solution (NaCl solution) and high-concentration phosphate-buffered saline (PBS) solution. In a proton CPMG experiment on tendons, the T(2) relaxation of the tissue was found to be anisotropic and had two populations. When immersed in saline, the T(2) values were short and their relative populations were anisotropic. When immersed in PBS, the T(2) values increased and their relative populations became isotropic. These phenomena, also verified by proton double-quantum-filtered (DQF) NMR spectroscopy, were interpreted as the catalyzing effect of phosphate ions on proton exchange between water molecules. In the experiment on articular cartilage, the immersion of cartilage-bone blocks in PBS resulted in a significant reduction in the laminar appearance of cartilage on MRI (the magic angle effect). The quantitative T(2) anisotropy by microMRI at 13 microm pixel resolution and DQF NMR spectroscopy confirmed the substantial effect of PBS on the water dynamics in cartilage tissue blocks. This preliminary study has two important implications. For in vitro cartilage research, this work confirms the importance of the salt solution in which the specimen is stored - not all salts have the same effect on the measurable quantities in NMR and MRI. For in vivo cartilage diagnosis, especially using whole-body MRI scanners, this work suggests the possibility of using a suitable electrolyte as a novel contrast agent to assess the ultrastructural changes in cartilage due to tissue degradation.
Collapse
Affiliation(s)
- ShaoKuan Zheng
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
30
|
Ooms KJ, Cannella M, Vega AJ, Marcolongo M, Polenova T. 23Na TQF NMR imaging for the study of spinal disc tissue. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 195:112-115. [PMID: 18774321 PMCID: PMC2796190 DOI: 10.1016/j.jmr.2008.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 07/25/2008] [Accepted: 07/28/2008] [Indexed: 05/26/2023]
Abstract
A method for acquiring triple quantum filtered (TQF) (23)Na NMR images is proposed that takes advantage of the differences in transverse relaxation rates of sodium to achieve positive intensity, PI, NMR signal. This PITQF imaging sequence has been used to obtain spatially resolved one-dimensional images as a function of the TQF creation time, tau, for two human spinal disc samples. From the images the different parts of the tissue, nucleus pulposus and annulus fibrosus, can be clearly distinguished based on their signal intensity and creation time profiles. These results establish the feasibility of (23)Na TQF imaging and demonstrate that this method should be applicable for studying human disc tissues as well as spinal disc degeneration.
Collapse
Affiliation(s)
- Kristopher J Ooms
- Department of Chemistry and Biochemistry, University of Delaware, 036 Brown Laboratories, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
31
|
Watanabe A, Boesch C, Obata T, Anderson SE. Effect of multislice acquisition on T1 and T2 measurements of articular cartilage at 3T. J Magn Reson Imaging 2007; 26:109-17. [PMID: 17659569 DOI: 10.1002/jmri.20962] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of magnetization transfer on multislice T1 and T2 measurements of articular cartilage. MATERIALS AND METHODS A set of phantoms with different concentrations of collagen and contrast agent (Gd-DTPA2-) were used for the in vitro study. A total of 20 healthy knees were used for the in vivo study. T1 and T2 measurements were performed using fast-spin-echo inversion-recovery (FSE-IR) sequence and multi-spin-echo (MSE) sequence, respectively, in both in vitro and in vivo studies. We investigated the difference in T1 and T2 values between that measured by single-slice acquisition and that measured by multislice acquisition. RESULTS Regarding T1 measurement, a large drop of T1 in all slices and also a large interslice variation in T1 were observed when multislice acquisition was used. Regarding T2 measurement, a substantial drop of T2 in all slices was observed; however, there was no apparent interslice variation when multislice acquisition was used. CONCLUSION This study demonstrated that the adaptation of multislice acquisition technique for T1 measurement using FSE-IR methodology is difficult and its use for clinical evaluation is problematic. In contrast, multislice acquisition for T2 measurement using MSE was clinically applicable if inaccuracies caused by multislice acquisition were taken into account.
Collapse
Affiliation(s)
- Atsuya Watanabe
- Department of Clinical Research, Unit for MR Spectroscopy and Methodology, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
32
|
Othman SF, Li J, Abdullah O, Moinnes JJ, Magin RL, Muehleman C. High-resolution/high-contrast MRI of human articular cartilage lesions. Acta Orthop 2007; 78:536-46. [PMID: 17966009 DOI: 10.1080/17453670710014194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Magnetic resonance microscopy (MRM) is an important experimental tool in the identification of early cartilage lesions. METHODS Normal and degenerated cartilage samples were imaged at 11.74 T using a standard spin echo sequence. Quantitative MR measurements for T1, T2, and ADC were obtained and mapping for T2 and ADC was performed. The bi-exponential model for T2 relaxation was also explored. Histology was carried out for comparison with MR images. RESULTS MR images of cartilage samples displaying early stages of degeneration were positively correlated to their histological appearance in 23-microm high-resolution images and also with much shorter imaging times at 47-microm resolution. T2 maps enable delineation of the actual cartilage zones, distinguishing the superficial zone in particular. The bi-exponential model can reflect cartilage components at different stages of degeneration. INTERPRETATION At 11.74 T, with 23-microm resolution or with 47-microm resolution and shorter imaging times, MRM provides images that allow visualization of early stages of cartilage degeneration, including superficial fibrillation. This has not been shown previously. The images also allow quantitative measurements (T1, T2, and ADC) in each cartilage region, which can be indicative of different stages of cartilage degeneration.
Collapse
Affiliation(s)
- Shadi F Othman
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
33
|
Ling W, Regatte RR, Schweitzer ME, Jerschow A. Behavior of ordered sodium in enzymatically depleted cartilage tissue. Magn Reson Med 2007; 56:1151-5. [PMID: 17029232 DOI: 10.1002/mrm.21062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The onset of cartilage tissue disorders can be characterized by a loss of proteoglycans (PGs) and diagnosed by contrast-enhanced proton ((1)H) MRI techniques, as well as sodium MRI. The behavior of sodium located in anisotropic environments, is examined as a function of cartilage degeneration. PGs are proteolytically depleted from the cartilage samples, which gives rise to a decrease of the ordered sodium content. More surprisingly, however, the residual quadrupolar couplings are shown to increase with increasing depletion levels. Since the residual quadrupolar couplings are intimately related to local order and anisotropic motion, measuring their distribution in cartilage may provide insight into the structural changes that occur within the tissue upon degradation. In this study relatively mild orientational dependence of the couplings was found. Little or no free sodium was observed in the cartilage specimens under study.
Collapse
Affiliation(s)
- Wen Ling
- Chemistry Department, New York University, New York, New York, USA
| | | | | | | |
Collapse
|
34
|
Watanabe A, Boesch C, Siebenrock K, Obata T, Anderson SE. T2 mapping of hip articular cartilage in healthy volunteers at 3T: A study of topographic variation. J Magn Reson Imaging 2007; 26:165-71. [PMID: 17659572 DOI: 10.1002/jmri.21014] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To perform baseline T2 mapping of the hips of healthy volunteers, focusing on topographic variation, because no detailed study has involved hips. T2 mapping is a quantitative magnetic resonance imaging (MRI) technique that evaluates cartilage matrix components. MATERIALS AND METHODS Hips of 12 healthy adults (six men and six women; mean age = 29.5 +/- 4.9 years) were studied with a 3.0-Tesla MRI system. T2 measurement in the oblique-coronal plane used a multi-spin-echo (MSE) sequence. Femoral cartilage was divided into 12 radial sections; acetabular cartilage was divided into six radial sections, and each section was divided into two layers representing the superficial and deep halves of the cartilage. T2 of these sections and layers were measured. RESULTS Femoral cartilage T2 was the shortest (-20 degrees to 20 degrees and -10 degrees to 10 degrees, superficial and deep layers), with an increase near the magic angle (54.7 degrees ). Acetabular cartilage T2 in both layers was shorter in the periphery than the other parts, especially at 20 degrees to 30 degrees. There were no significant differences in T2 between right and left hips or between men and women. CONCLUSION Topographic variation exists in hip cartilage T2 in young, healthy adults. These findings should be taken into account when T2 mapping is applied to patients with degenerative cartilage.
Collapse
Affiliation(s)
- Atsuya Watanabe
- Department of Clinical Research, Unit for MR Spectroscopy and Methodology, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Shinar H, Navon G. Multinuclear NMR and microscopic MRI studies of the articular cartilage nanostructure. NMR IN BIOMEDICINE 2006; 19:877-93. [PMID: 17075957 DOI: 10.1002/nbm.1068] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Studies of the structure of articular cartilage by a number of NMR spectroscopic and imaging techniques are reviewed. Advantage is taken of the fact that the NMR investigations can be done non-invasively on the intact tissue and do not require sectioning, slicing and decalcification as in the case of electron microscopy. The different contributions to 1H T2 relaxation are described and it is pointed out that ignoring the biexponential behavior of the transverse relaxation can lead to serious errors in the proton density measurements and the T2 characterization of the articular cartilage. A way to slow the transverse relaxation and to minimize its angular dependence by the use of dipolar echo is described. 2H double quantum filtered spectroscopic MRI is a powerful technique to follow the orientation and density of the collagen fibers in articular cartilage. Using this technique, it was found that attachment of the cartilage to the bone has a stabilizing effect on the collagen matrix and that the hydroxyapatite in the calcified zone resides near the collagen fibers but does not contribute to their order. In response to mechanical pressure, it was shown that the collagen fibers flatten near the surface and become crimped near the bone. A number of NMR techniques have been described for the measurement of 23Na residual quadrupolar interaction. It was found that this can serve as a very sensitive measure of the depletion of proteoglycans. Finally, a combination of the above techniques was used to study a maturation of articular cartilage in pigs. The increased order and density of the collagen fibers from newborn to adult pigs revealed itself as a shortening of T2 and significant increase of the residual quadrupolar interaction of both 2H and 23Na nuclei.
Collapse
Affiliation(s)
- Hadassah Shinar
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | | |
Collapse
|