1
|
Eckstein F, Walter-Rittel TC, Chaudhari AS, Brisson NM, Maleitzke T, Duda GN, Wisser A, Wirth W, Winkler T. The design of a sample rapid magnetic resonance imaging (MRI) acquisition protocol supporting assessment of multiple articular tissues and pathologies in knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100505. [PMID: 39183946 PMCID: PMC11342198 DOI: 10.1016/j.ocarto.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/21/2024] [Indexed: 08/27/2024] Open
Abstract
Objective This expert opinion paper proposes a design for a state-of-the-art magnetic resonance image (MRI) acquisition protocol for knee osteoarthritis clinical trials in early and advanced disease. Semi-quantitative and quantitative imaging endpoints are supported, partly amendable to automated analysis. Several (peri-) articular tissues and pathologies are covered, including synovitis. Method A PubMed literature search was conducted, with focus on the past 5 years. Further, osteoarthritis imaging experts provided input. Specific MRI sequences, orientations, spatial resolutions and parameter settings were identified to align with study goals. We strived for implementation on standard clinical scanner hardware, with a net acquisition time ≤30 min. Results Short- and long-term longitudinal MRIs should be obtained at ≥1.5T, if possible without hardware changes during the study. We suggest a series of gradient- and spin-echo-sequences, supporting MOAKS, quantitative analysis of cartilage morphology and T2, and non-contrast-enhanced depiction of synovitis. These sequences should be properly aligned and positioned using localizer images. One of the sequences may be repeated in each participant (re-test), optimally at baseline and follow-up, to estimate within-study precision. All images should be checked for quality and protocol-adherence as soon as possible after acquisition. Alternative approaches are suggested that expand on the structural endpoints presented. Conclusions We aim to bridge the gap between technical MRI acquisition guides and the wealth of imaging literature, proposing a balance between image acquisition efficiency (time), safety, and technical/methodological diversity. This approach may entertain scientific innovation on tissue structure and composition assessment in clinical trials on disease modification of knee osteoarthritis.
Collapse
Affiliation(s)
- Felix Eckstein
- Research Program for Musculoskeletal Imaging, Center for Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Thula Cannon Walter-Rittel
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | | | - Nicholas M. Brisson
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Movement Diagnostics (BeMoveD), Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tazio Maleitzke
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Trauma Orthopaedic Research Copenhagen Hvidovre (TORCH), Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Georg N. Duda
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Movement Diagnostics (BeMoveD), Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Anna Wisser
- Research Program for Musculoskeletal Imaging, Center for Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Wolfgang Wirth
- Research Program for Musculoskeletal Imaging, Center for Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Tobias Winkler
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
2
|
Wirth W, Ladel C, Maschek S, Wisser A, Eckstein F, Roemer F. Quantitative measurement of cartilage morphology in osteoarthritis: current knowledge and future directions. Skeletal Radiol 2023; 52:2107-2122. [PMID: 36380243 PMCID: PMC10509082 DOI: 10.1007/s00256-022-04228-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Quantitative measures of cartilage morphology ("cartilage morphometry") extracted from high resolution 3D magnetic resonance imaging (MRI) sequences have been shown to be sensitive to osteoarthritis (OA)-related change and also to treatment interventions. Cartilage morphometry is therefore nowadays widely used as outcome measure for observational studies and randomized interventional clinical trials. The objective of this narrative review is to summarize the current status of cartilage morphometry in OA research, to provide insights into aspects relevant for the design of future studies and clinical trials, and to give an outlook on future developments. It covers the aspects related to the acquisition of MRIs suitable for cartilage morphometry, the analysis techniques needed for deriving quantitative measures from the MRIs, the quality assurance required for providing reliable cartilage measures, and the appropriate participant recruitment criteria for the enrichment of study cohorts with knees likely to show structural progression. Finally, it provides an overview over recent clinical trials that relied on cartilage morphometry as a structural outcome measure for evaluating the efficacy of disease-modifying OA drugs (DMOAD).
Collapse
Affiliation(s)
- Wolfgang Wirth
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020 Salzburg, Austria
- Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | | | - Susanne Maschek
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020 Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Anna Wisser
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020 Salzburg, Austria
- Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Felix Eckstein
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020 Salzburg, Austria
- Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Frank Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA USA
- Department of Radiology, Universitätsklinikum Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
3
|
Jungmann PM, Gersing AS, Baumann F, Holwein C, Braun S, Neumann J, Zarnowski J, Hofmann FC, Imhoff AB, Rummeny EJ, Link TM. Cartilage repair surgery prevents progression of knee degeneration. Knee Surg Sports Traumatol Arthrosc 2019; 27:3001-3013. [PMID: 30542744 DOI: 10.1007/s00167-018-5321-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/04/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate, whether cartilage repair surgery for focal osteochondral defects at the knee results in less degenerative changes over 6 years in a MR imaging follow-up than morphologically initially identical defects in non-operated control subjects from the osteoarthritis initiative (OAI). METHODS A total of 32 individuals received baseline and follow-up MRI. In n = 16 patients with cartilage repair [osteochondral autograft transfer system (OATS), n = 12; spongiosa-augmented matrix-associated autologous chondrocyte implantation (MACI), n = 4] MRI was performed preoperatively and after 5.7 ± 2.3 year follow-up. Baseline MRIs of non-operated subjects from the OAI were screened for initially identical cartilage defects (n = 16). Morphological knee abnormalities were assessed using WORMS, AMADEUS and MOCART scores. A sagittal 2D MSME sequence was implemented for quantitative cartilage T2 relaxation time measurements in all (0, 2, 4, 6 and 8-years) follow-ups from the OAI and in the postoperative MRI protocol. RESULTS For both groups, focal osteochondral defects were located at the femoral condyle in 8/16 cases (5 medial, 3 lateral) and at the patella in 8/16 cases. At baseline, the mean cartilage defect size ± SD was 1.4 ± 1.3 cm2 for the control group and 1.3 ± 1.2 cm2 for the cartilage repair group (n.s.). WORMS scores were not significantly different between the cartilage repair group and the control group at baseline [mean difference ± SEM (95%CI); 0.5 ± 2.5 (- 4.7, 5.7), n.s.]. During identical follow-up times, the progression of total WORMS scores [19.9 ± 2.3 (15.0, 24.9), P < 0.001] and of cartilage defects scores in the affected (P < 0.001) and in the opposing (P = 0.029) compartment was significantly more severe in non-operated individuals (P < 0.05). In non-operated subjects, T2 values increased continuously from baseline to the 8-year follow-up (P = 0.001). CONCLUSIONS Patients with cartilage repair showed less progression of degenerative MRI changes at 6-year follow-up than a control cohort from the OAI with initially identical osteochondral defects. Patients with focal cartilage defects may profit from cartilage repair surgery since it may prevent progression of early osteoarthritis at the knee joint. LEVEL OF EVIDENCE Prognostic study, Level II.
Collapse
Affiliation(s)
- Pia M Jungmann
- Department of Neuroradiology, University Hospital of Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
- Department of Radiology, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.
| | - Alexandra S Gersing
- Department of Radiology, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Frederic Baumann
- Clinical and Interventional Angiology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Christian Holwein
- Department of Sportsorthopedic Surgery, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
- BG Unfallklinik Murnau, Prof.-Küntscher-Strasse 8, 82418, Murnau, Germany
| | - Sepp Braun
- Department of Sportsorthopedic Surgery, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
- Gelenkpunkt, Sports and Joint Surgery Innsbruck, Olympiastrasse 39, 6020, Innsbruck, Austria
| | - Jan Neumann
- Musculoskeletal and Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107, USA
| | - Julia Zarnowski
- Musculoskeletal and Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107, USA
| | - Felix C Hofmann
- Musculoskeletal and Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107, USA
| | - Andreas B Imhoff
- Department of Sportsorthopedic Surgery, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Ernst J Rummeny
- Department of Radiology, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Thomas M Link
- Musculoskeletal and Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107, USA
| |
Collapse
|
4
|
Kumar NM, Fritz B, Stern SE, Warntjes JBM, Lisa Chuah YM, Fritz J. Synthetic MRI of the Knee: Phantom Validation and Comparison with Conventional MRI. Radiology 2018; 289:465-477. [PMID: 30152739 DOI: 10.1148/radiol.2018173007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose To test the hypothesis that synthetic MRI of the knee generates accurate and repeatable quantitative maps and produces morphologic MR images with similar quality and detection rates of structural abnormalities than does conventional MRI. Materials and Methods Data were collected prospectively between January 2017 and April 2018 and were retrospectively analyzed. An International Society for Magnetic Resonance in Medicine-National Institute of Standards and Technology phantom was used to determine the accuracy of T1, T2, and proton density (PD) quantification. Statistical models were applied for correction. Fifty-four participants (24 men, 30 women; mean age, 40 years; range, 18-62 years) underwent synthetic and conventional 3-T MRI twice on the same day. Fifteen of 54 participants (28%) repeated the protocol within 9 days. The intra- and interday agreements of quantitative cartilage measurements were assessed. Contrast-to-noise (CNR) ratios, image quality, and structural abnormalities were assessed on corresponding synthetic and conventional images. Statistical analyses included the Wilcoxon test, χ2 test, and Cohen Kappa. P values less than or equal to .01 were considered to indicate a statistically significant difference. Results Synthetic MRI quantification of T1, T2, and PD values had an overall model-corrected error margin of 0.8%. The synthetic MRI interday repeatability of articular cartilage quantification had native and model-corrected error margins of 3.3% and 3.5%, respectively. The cartilage-to-fluid CNR and menisci-to-fluid CNR was higher on synthetic than conventional MR images (P ≤ .001, respectively). Synthetic MRI improved short-tau inversion recovery fat suppression (P ˂ .01). Intermethod agreements of structural abnormalities were good (kappa, 0.621-0.739). Conclusion Synthetic MRI of the knee is accurate for T1, T2, and proton density quantification, and simultaneously generated morphologic MR images have detection rates of structural abnormalities similar to those of conventional MR images, with similar acquisition time. © RSNA, 2018.
Collapse
Affiliation(s)
- Neil M Kumar
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21287 (N.M.K., J.F.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Faculty of Medicine, University of Zurich, Zurich, Switzerland (B.F.); Bond Business School, Bond University, Gold Coast, Australia (S.E.S.); Center for Medical Imaging Science and Visualization, Linköping University, Linköping, Sweden (J.B.M.W.); Division of Clinical Physiology, Department of Medicine and Health, University Hospital, Linköping, Sweden (J.B.M.W.); SyntheticMR AB, Linköping, Sweden (J.B.M.W.); and Siemens Healthcare GmbH, Erlangen, Germany (Y.M.L.C.)
| | - Benjamin Fritz
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21287 (N.M.K., J.F.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Faculty of Medicine, University of Zurich, Zurich, Switzerland (B.F.); Bond Business School, Bond University, Gold Coast, Australia (S.E.S.); Center for Medical Imaging Science and Visualization, Linköping University, Linköping, Sweden (J.B.M.W.); Division of Clinical Physiology, Department of Medicine and Health, University Hospital, Linköping, Sweden (J.B.M.W.); SyntheticMR AB, Linköping, Sweden (J.B.M.W.); and Siemens Healthcare GmbH, Erlangen, Germany (Y.M.L.C.)
| | - Steven E Stern
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21287 (N.M.K., J.F.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Faculty of Medicine, University of Zurich, Zurich, Switzerland (B.F.); Bond Business School, Bond University, Gold Coast, Australia (S.E.S.); Center for Medical Imaging Science and Visualization, Linköping University, Linköping, Sweden (J.B.M.W.); Division of Clinical Physiology, Department of Medicine and Health, University Hospital, Linköping, Sweden (J.B.M.W.); SyntheticMR AB, Linköping, Sweden (J.B.M.W.); and Siemens Healthcare GmbH, Erlangen, Germany (Y.M.L.C.)
| | - J B Marcel Warntjes
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21287 (N.M.K., J.F.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Faculty of Medicine, University of Zurich, Zurich, Switzerland (B.F.); Bond Business School, Bond University, Gold Coast, Australia (S.E.S.); Center for Medical Imaging Science and Visualization, Linköping University, Linköping, Sweden (J.B.M.W.); Division of Clinical Physiology, Department of Medicine and Health, University Hospital, Linköping, Sweden (J.B.M.W.); SyntheticMR AB, Linköping, Sweden (J.B.M.W.); and Siemens Healthcare GmbH, Erlangen, Germany (Y.M.L.C.)
| | - Yen Mei Lisa Chuah
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21287 (N.M.K., J.F.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Faculty of Medicine, University of Zurich, Zurich, Switzerland (B.F.); Bond Business School, Bond University, Gold Coast, Australia (S.E.S.); Center for Medical Imaging Science and Visualization, Linköping University, Linköping, Sweden (J.B.M.W.); Division of Clinical Physiology, Department of Medicine and Health, University Hospital, Linköping, Sweden (J.B.M.W.); SyntheticMR AB, Linköping, Sweden (J.B.M.W.); and Siemens Healthcare GmbH, Erlangen, Germany (Y.M.L.C.)
| | - Jan Fritz
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21287 (N.M.K., J.F.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Faculty of Medicine, University of Zurich, Zurich, Switzerland (B.F.); Bond Business School, Bond University, Gold Coast, Australia (S.E.S.); Center for Medical Imaging Science and Visualization, Linköping University, Linköping, Sweden (J.B.M.W.); Division of Clinical Physiology, Department of Medicine and Health, University Hospital, Linköping, Sweden (J.B.M.W.); SyntheticMR AB, Linköping, Sweden (J.B.M.W.); and Siemens Healthcare GmbH, Erlangen, Germany (Y.M.L.C.)
| |
Collapse
|
5
|
Newton MD, Osborne J, Gawronski K, Baker KC, Maerz T. Articular cartilage surface roughness as an imaging-based morphological indicator of osteoarthritis: A preliminary investigation of osteoarthritis initiative subjects. J Orthop Res 2017; 35:2755-2764. [PMID: 28460415 DOI: 10.1002/jor.23588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/24/2017] [Indexed: 02/04/2023]
Abstract
Current imaging-based morphometric indicators of osteoarthritis (OA) using whole-compartment mean cartilage thickness (MCT) and volume changes can be insensitive to mild degenerative changes of articular cartilage (AC) due to areas of adjacent thickening and thinning. The purpose of this preliminary study was to evaluate cartilage thickness-based surface roughness as a morphometric indicator of OA. 3D magnetic resonance imaging (MRI) datasets were collected from osteoarthritis initiative (OAI) subjects with Kellgren-Lawrence (KL) OA grades of 0, 2, and 4 (n = 10/group). Femoral and tibial AC volumes were converted to two-dimensional thickness maps, and MCT, arithmetic surface roughness (Sa ), and anatomically normalized Sa (normSa ) were calculated. Thickness maps enabled visualization of degenerative changes with increasing KL grade, including adjacent thinning and thickening on the femoral condyles. No significant differences were observed in MCT between KL grades. Sa was significantly higher in KL4 compared to KL0 and KL2 in the whole femur (KL0: 0.55 ± 0.10 mm, KL2: 0.53 ± 0.09 mm, KL4: 0.79 ± 0.18 mm), medial femoral condyle (KL0: 0.42 ± 0.07 mm, KL2: 0.48 ± 0.07 mm, KL4: 0.76 ± 0.22 mm), and medial tibial plateau (KL0: 0.42 ± 0.07 mm, KL2: 0.43 ± 0.09 mm, KL4: 0.68 ± 0.27 mm). normSa was significantly higher in KL4 compared to KL0 and KL2 in the whole femur (KL0: 0.22 ± 0.02, KL2: 0.22 ± 0.02, KL4: 0.30 ± 0.03), medial condyle (KL0: 0.17 ± 0.02, KL2: 0.20 ± 0.03, KL4: 0.29 ± 0.06), whole tibia (KL0: 0.34 ± 0.04, KL2: 0.33 ± 0.05, KL4: 0.48 ± 0.11) and medial plateau (KL0: 0.23 ± 0.03, KL2: 0.24 ± 0.04, KL4: 0.40 ± 0.10), and significantly higher in KL2 compared to KL0 in the medial femoral condyle. Surface roughness metrics were sensitive to degenerative morphologic changes, and may be useful in OA characterization and early diagnosis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2755-2764, 2017.
Collapse
Affiliation(s)
- Michael D Newton
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan
| | - Jeffrey Osborne
- Department of Orthopaedic Surgery, Beaumont Health, Royal Oak, Michigan
| | - Karissa Gawronski
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan
| | - Kevin C Baker
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan.,Department of Orthopaedic Surgery, Oakland University-William Beaumont School of Medicine, Rochester Hills, Michigan
| | - Tristan Maerz
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan.,Department of Orthopaedic Surgery, Oakland University-William Beaumont School of Medicine, Rochester Hills, Michigan.,Department of Orthopaedic Surgery, University of Michigan, 24 Frank Lloyd Wright Drive, Ann Arbor, Michigan, 48106
| |
Collapse
|
6
|
Williams A, Winalski CS, Chu CR. Early articular cartilage MRI T2 changes after anterior cruciate ligament reconstruction correlate with later changes in T2 and cartilage thickness. J Orthop Res 2017; 35:699-706. [PMID: 27381512 PMCID: PMC5823014 DOI: 10.1002/jor.23358] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/02/2016] [Indexed: 02/04/2023]
Abstract
UNLABELLED Anterior cruciate ligament (ACL) injury is a known risk factor for future development of osteoarthritis (OA). This human clinical study seeks to determine if early changes to cartilage MRI T2 maps between baseline and 6 months following ACL reconstruction (ACLR) are associated with changes to cartilage T2 and cartilage thickness between baseline and 2 years after ACLR. Changes to T2 texture metrics and T2 mean values in medial knee cartilage of 17 human subjects 6 months after ACLR were compared to 2-year changes in T2 and in cartilage thickness of the same areas. T2 texture and mean assessments were also compared to that of 11 uninjured controls. In ACLR subjects, six-month changes in mean T2 correlated to 2-year changes in mean T2 (R = 0.80, p = 0.0001), and 6-month changes to T2 texture metrics, but not T2 mean, correlated with 2-year changes in medial femoral cartilage thickness in 9 of the 20 texture features assessed (R = 0.48-0.72, p ≤ 0.05). Both mean T2 and texture differed (p < 0.05) between ALCR subjects and uninjured controls. CLINICAL SIGNIFICANCE These results show that short-term longitudinal evaluation of T2 map and textural changes may provide early warning of cartilage at risk for progressive degeneration after ACL injury and reconstruction. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:699-706, 2017.
Collapse
Affiliation(s)
- Ashley Williams
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Carl S. Winalski
- Department of Biomedical Engineering and Imaging Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Constance R. Chu
- Department of Orthopaedic Surgery, Stanford University, Stanford, California,Veterans Administration Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
7
|
McKinney JR, Sussman MS, Moineddin R, Amirabadi A, Rayner T, Doria AS. Accuracy of magnetic resonance imaging for measuring maturing cartilage: A phantom study. Clinics (Sao Paulo) 2016; 71:404-11. [PMID: 27464298 PMCID: PMC4946528 DOI: 10.6061/clinics/2016(07)09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/15/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To evaluate the accuracy of magnetic resonance imaging measurements of cartilage tissue-mimicking phantoms and to determine a combination of magnetic resonance imaging parameters to optimize accuracy while minimizing scan time. METHOD Edge dimensions from 4 rectangular agar phantoms ranging from 10.5 to 14.5 mm in length and 1.25 to 5.5 mm in width were independently measured by two readers using a steel ruler. Coronal T1 spin echo (T1 SE), fast spoiled gradient-recalled echo (FSPGR) and multiplanar gradient-recalled echo (GRE MPGR) sequences were used to obtain phantom images on a 1.5-T scanner. RESULTS Inter- and intra-reader reliability were high for both direct measurements and for magnetic resonance imaging measurements of phantoms. Statistically significant differences were noted between the mean direct measurements and the mean magnetic resonance imaging measurements for phantom 1 when using a GRE MPGR sequence (512x512 pixels, 1.5-mm slice thickness, 5:49 min scan time), while borderline differences were noted for T1 SE sequences with the following parameters: 320x320 pixels, 1.5-mm slice thickness, 6:11 min scan time; 320x320 pixels, 4-mm slice thickness, 6:11 min scan time; and 512x512 pixels, 1.5-mm slice thickness, 9:48 min scan time. Borderline differences were also noted when using a FSPGR sequence with 512x512 pixels, a 1.5-mm slice thickness and a 3:36 min scan time. CONCLUSIONS FSPGR sequences, regardless of the magnetic resonance imaging parameter combination used, provided accurate measurements. The GRE MPGR sequence using 512x512 pixels, a 1.5-mm slice thickness and a 5:49 min scan time and, to a lesser degree, all tested T1 SE sequences produced suboptimal accuracy when measuring the widest phantom.
Collapse
Affiliation(s)
- Jennifer R McKinney
- University of Toronto, The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto/ON, Canada
| | - Marshall S Sussman
- The University Health Network, Toronto General Hospital, Department of Medical Imaging, Toronto/ON, Canada
| | - Rahim Moineddin
- University of Toronto, Department of Family and Community Medicine, Toronto/ON, Canada
| | - Afsaneh Amirabadi
- University of Toronto, The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto/ON, Canada
| | - Tammy Rayner
- University of Toronto, The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto/ON, Canada
| | - Andrea S Doria
- University of Toronto, The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto/ON, Canada
- The University Health Network, Toronto General Hospital, Department of Medical Imaging, Toronto/ON, Canada
- E-mail:
| |
Collapse
|
8
|
Chang AH, Moisio KC, Chmiel JS, Eckstein F, Guermazi A, Prasad PV, Zhang Y, Almagor O, Belisle L, Hayes K, Sharma L. External knee adduction and flexion moments during gait and medial tibiofemoral disease progression in knee osteoarthritis. Osteoarthritis Cartilage 2015; 23:1099-106. [PMID: 25677110 PMCID: PMC4470726 DOI: 10.1016/j.joca.2015.02.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/31/2014] [Accepted: 02/01/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Test the hypothesis that greater baseline peak external knee adduction moment (KAM), KAM impulse, and peak external knee flexion moment (KFM) during the stance phase of gait are associated with baseline-to-2-year medial tibiofemoral cartilage damage and bone marrow lesion progression, and cartilage thickness loss. METHODS Participants all had knee OA in at least one knee. Baseline peak KAM, KAM impulse, and peak KFM (normalized to body weight and height) were captured and computed using a motion analysis system and six force plates. Participants underwent MRI of both knees at baseline and 2 years later. To assess the association between baseline moments and baseline-to-2-year semiquantitative cartilage damage and bone marrow lesion progression and quantitative cartilage thickness loss, we used logistic and linear regressions with generalized estimating equations (GEE), adjusting for gait speed, age, gender, disease severity, knee pain severity, and medication use. RESULTS The sample consisted of 391 knees (204 persons): mean age 64.2 years (SD 10.0); BMI 28.4 kg/m(2) (5.7); 156 (76.5%) women. Greater baseline peak KAM and KAM impulse were each associated with worsening of medial bone marrow lesions, but not cartilage damage. Higher baseline KAM impulse was associated with 2-year medial cartilage thickness loss assessed both as % loss and as a threshold of loss, whereas peak KAM was related only to % loss. There was no relationship between baseline peak KFM and any medial disease progression outcome measures. CONCLUSION Findings support targeting KAM parameters in an effort to delay medial OA disease progression.
Collapse
Affiliation(s)
- A H Chang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - K C Moisio
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - J S Chmiel
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - F Eckstein
- Institute of Anatomy, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria.
| | - A Guermazi
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA.
| | - P V Prasad
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA.
| | - Y Zhang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - O Almagor
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - L Belisle
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - K Hayes
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - L Sharma
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Hunter DJ, Altman RD, Cicuttini F, Crema MD, Duryea J, Eckstein F, Guermazi A, Kijowski R, Link TM, Martel-Pelletier J, Miller CG, Mosher TJ, Ochoa-Albíztegui RE, Pelletier JP, Peterfy C, Raynauld JP, Roemer FW, Totterman SM, Gold GE. OARSI Clinical Trials Recommendations: Knee imaging in clinical trials in osteoarthritis. Osteoarthritis Cartilage 2015; 23:698-715. [PMID: 25952343 DOI: 10.1016/j.joca.2015.03.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 02/02/2023]
Abstract
Significant advances have occurred in our understanding of the pathogenesis of knee osteoarthritis (OA) and some recent trials have demonstrated the potential for modification of the disease course. The purpose of this expert opinion, consensus driven exercise is to provide detail on how one might use and apply knee imaging in knee OA trials. It includes information on acquisition methods/techniques (including guidance on positioning for radiography, sequence/protocol recommendations/hardware for magnetic resonance imaging (MRI)); commonly encountered problems (including positioning, hardware and coil failures, sequences artifacts); quality assurance (QA)/control procedures; measurement methods; measurement performance (reliability, responsiveness, validity); recommendations for trials; and research recommendations.
Collapse
Affiliation(s)
- D J Hunter
- Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, NSW, Australia; Rheumatology Department, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia.
| | - R D Altman
- Department of Medicine, Division of Rheumatology and Immunology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - F Cicuttini
- School of Public health and Preventive Medicine, Monash University, Alfred Hospital, Melbourne 3004, Australia
| | - M D Crema
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA; Department of Radiology, Hospital do Coração (HCor) and Teleimagem, São Paulo, SP, Brazil
| | - J Duryea
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Brazil
| | - F Eckstein
- Institute of Anatomy, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; Chondrometrics GmbH, Ainring, Germany
| | - A Guermazi
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA
| | - R Kijowski
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - T M Link
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, USA
| | - J Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | | | - T J Mosher
- Department of Radiology, Penn State University, Hershey, PA, USA; Department of Orthopaedic Surgery, Penn State University, Hershey, PA, USA
| | - R E Ochoa-Albíztegui
- Department of Radiology, The American British Cowdray Medical Center, Mexico City, Mexico
| | - J-P Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - C Peterfy
- Spire Sciences, Inc., Boca Raton, Florida, USA
| | - J-P Raynauld
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - F W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA; Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - G E Gold
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
OARSI Clinical Trials Recommendations: Hip imaging in clinical trials in osteoarthritis. Osteoarthritis Cartilage 2015; 23:716-31. [PMID: 25952344 PMCID: PMC4430132 DOI: 10.1016/j.joca.2015.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/01/2015] [Accepted: 03/09/2015] [Indexed: 02/02/2023]
Abstract
Imaging of hip in osteoarthritis (OA) has seen considerable progress in the past decade, with the introduction of new techniques that may be more sensitive to structural disease changes. The purpose of this expert opinion, consensus driven recommendation is to provide detail on how to apply hip imaging in disease modifying clinical trials. It includes information on acquisition methods/techniques (including guidance on positioning for radiography, sequence/protocol recommendations/hardware for magnetic resonance imaging (MRI)); commonly encountered problems (including positioning, hardware and coil failures, artifacts associated with various MRI sequences); quality assurance/control procedures; measurement methods; measurement performance (reliability, responsiveness, and validity); recommendations for trials; and research recommendations.
Collapse
|
11
|
Bloecker K, Wirth W, Guermazi A, Hitzl W, Hunter DJ, Eckstein F. Longitudinal change in quantitative meniscus measurements in knee osteoarthritis--data from the Osteoarthritis Initiative. Eur Radiol 2015; 25:2960-8. [PMID: 25801196 DOI: 10.1007/s00330-015-3710-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/18/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We aimed to apply 3D MRI-based measurement technology to studying 2-year change in quantitative measurements of meniscus size and position. METHODS Forty-seven knees from the Osteoarthritis Initiative with medial radiographic joint space narrowing had baseline and 2-year follow-up MRIs. Quantitative measures were obtained from manual segmentation of the menisci and tibia using coronal DESSwe images. The standardized response mean (SRM = mean/SD change) was used as measure of sensitivity to longitudinal change. RESULTS Medial tibial plateau coverage decreased from 34.8% to 29.9% (SRM -0.82; p < 0.001). Change in medial meniscus extrusion in a central image (SRM 0.18) and in the central five slices (SRM 0.22) did not reach significance, but change in extrusion across the entire meniscus (SRM 0.32; p = 0.03) and in the relative area of meniscus extrusion (SRM 0.56; p < 0.001) did. There was a reduction in medial meniscus volume (10%; p < 0.001), width (7%; p < 0.001), and height (2%; p = 0.08); meniscus substance loss was strongest in the posterior (SRM -0.51; p = 0.001) and weakest in the anterior horn (SRM -0.15; p = 0.31). CONCLUSION This pilot study reports, for the first time, longitudinal change in quantitative 3D meniscus measurements in knee osteoarthritis. It provides evidence of improved sensitivity to change of 3D measurements compared with single slice analysis. KEY POINTS • First longitudinal MRI-based measurements of change of meniscus position and size. • Quantitative longitudinal evaluation of meniscus change in knee osteoarthritis. • Improved sensitivity to change of 3D measurements compared with single slice analysis.
Collapse
Affiliation(s)
- Katja Bloecker
- Institute of Anatomy, Paracelsus Medical University Salzburg and Nuremberg; Salzburg, Strubergasse 21, A5020, Salzburg, Austria,
| | | | | | | | | | | |
Collapse
|
12
|
Imaging of cartilage and bone: promises and pitfalls in clinical trials of osteoarthritis. Osteoarthritis Cartilage 2014; 22:1516-32. [PMID: 25278061 PMCID: PMC4351816 DOI: 10.1016/j.joca.2014.06.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/22/2014] [Accepted: 06/22/2014] [Indexed: 02/02/2023]
Abstract
Imaging in clinical trials is used to evaluate subject eligibility, and/or efficacy of intervention, supporting decision making in drug development by ascertaining treatment effects on joint structure. This review focusses on imaging of bone and cartilage in clinical trials of (knee) osteoarthritis. We narratively review the full-text literature on imaging of bone and cartilage, adding primary experience in the implementation of imaging methods in clinical trials. Aims and constraints of applying imaging in clinical trials are outlined. The specific uses of semi-quantitative and quantitative imaging biomarkers of bone and cartilage in osteoarthritis trials are summarized, focusing on radiography and magnetic resonance imaging (MRI). Studies having compared both imaging methodologies directly and those having established a relationship between imaging biomarkers and clinical outcomes are highlighted. To make this review of practical use, recommendations are provided as to which imaging protocols are ideal for capturing specific aspects of bone and cartilage tissue, and pitfalls in their usage are highlighted. Further, the longitudinal sensitivity to change, of different imaging methods is reported for various patient strata. From these power calculations can be accomplished, provided the strength of the treatment effect is known. In conclusion, current imaging methodologies provide powerful tools for scoring and measuring morphological and compositional aspects of most articular tissues, capturing longitudinal change with reasonable to excellent sensitivity. When employed properly, imaging has tremendous potential for ascertaining treatment effects on various joint structures, potentially over shorter time scales than required for demonstrating effects on clinical outcomes.
Collapse
|
13
|
Eckstein F, Kwoh CK, Link TM. Imaging research results from the osteoarthritis initiative (OAI): a review and lessons learned 10 years after start of enrolment. Ann Rheum Dis 2014; 73:1289-300. [PMID: 24728332 DOI: 10.1136/annrheumdis-2014-205310] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Osteoarthritis Initiative (OAI) is a multicentre, prospective, observational, cohort study of knee osteoarthritis (OA) that began recruitment in 2004. The OAI provides public access to clinical and image data, enabling researchers to examine risk factors/predictors and the natural history of knee OA incidence and progression, and the qualification of imaging and other biomarkers. In this narrative review, we report imaging findings and lessons learned 10 years after enrolment has started. A literature search for full text articles published from the OAI was performed up to 31 December 2013 using Pubmed and the OAI web page. We summarise the rationale, design and imaging protocol of the OAI, and the history of OAI publications. We review studies from early partial, and later full OAI public data releases. The latter are structured by imaging method and tissue, reviewing radiography and then MRI findings on cartilage morphology, cartilage lesions and composition (T2), bone, meniscus, muscle and adipose tissue. Finally, analyses directly comparing findings from MRI and radiography are summarised. Ten years after the first participants were enrolled and first papers published, the OAI has become an invaluable resource to the OA research community. It has fuelled novel methodological approaches of analysing images, and has provided a wealth of information on OA pathophysiology. Continued collection and public release of long-term observations will help imaging measures to gain scientific and regulatory acceptance as 'prognostic' or 'efficacy of intervention' biomarkers, potentially enabling shorter and more efficient clinical trials that can test structure-modifying therapeutic interventions (NCT00080171).
Collapse
Affiliation(s)
- Felix Eckstein
- Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria Chondrometrics GmbH, Ainring, Germany
| | - C Kent Kwoh
- Division of Rheumatology and University of Arizona Arthritis Center, University of Arizona, Tucson, Arizona, USA
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, Musculoskeletal and Quantitative Imaging Research, UCSF, San Francisco, California, USA
| | | |
Collapse
|
14
|
Chang G, Honig S, Brown R, Deniz CM, Egol KA, Babb JS, Regatte RR, Rajapakse CS. Finite element analysis applied to 3-T MR imaging of proximal femur microarchitecture: lower bone strength in patients with fragility fractures compared with control subjects. Radiology 2014; 272:464-74. [PMID: 24689884 DOI: 10.1148/radiol.14131926] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE To determine the feasibility of using finite element analysis applied to 3-T magnetic resonance (MR) images of proximal femur microarchitecture for detection of lower bone strength in subjects with fragility fractures compared with control subjects without fractures. MATERIALS AND METHODS This prospective study was institutional review board approved and HIPAA compliant. Written informed consent was obtained. Postmenopausal women with (n = 22) and without (n = 22) fragility fractures were matched for age and body mass index. All subjects underwent standard dual-energy x-ray absorptiometry. Images of proximal femur microarchitecture were obtained by using a high-spatial-resolution three-dimensional fast low-angle shot sequence at 3 T. Finite element analysis was applied to compute elastic modulus as a measure of strength in the femoral head and neck, Ward triangle, greater trochanter, and intertrochanteric region. The Mann-Whitney test was used to compare bone mineral density T scores and elastic moduli between the groups. The relationship (R(2)) between elastic moduli and bone mineral density T scores was assessed. RESULTS Patients with fractures showed lower elastic modulus than did control subjects in all proximal femur regions (femoral head, 8.51-8.73 GPa vs 9.32-9.67 GPa; P = .04; femoral neck, 3.11-3.72 GPa vs 4.39-4.82 GPa; P = .04; Ward triangle, 1.85-2.21 GPa vs 3.98-4.13 GPa; P = .04; intertrochanteric region, 1.62-2.18 GPa vs 3.86-4.47 GPa; P = .006-.007; greater trochanter, 0.65-1.21 GPa vs 1.96-2.62 GPa; P = .01-.02), but no differences in bone mineral density T scores. There were weak relationships between elastic moduli and bone mineral density T scores in patients with fractures (R(2) = 0.25-0.31, P = .02-.04), but not in control subjects. CONCLUSION Finite element analysis applied to high-spatial-resolution 3-T MR images of proximal femur microarchitecture can allow detection of lower elastic modulus, a marker of bone strength, in subjects with fragility fractures compared with control subjects. MR assessment of proximal femur strength may provide information about bone quality that is not provided by dual-energy x-ray absorptiometry.
Collapse
Affiliation(s)
- Gregory Chang
- From the Department of Radiology, Center for Musculoskeletal Care (G.C.), Osteoporosis Center, Hospital for Joint Diseases (S.H.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.A.E.), and Department of Radiology, Center for Biomedical Imaging (G.C., R.B., C.M.D., J.S.B., R.R.R.), NYU Langone Medical Center, 550 First Avenue, New York, NY 10016; and Department of Radiology, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA (C.S.R.)
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Eckstein F, Boeth H, Diederichs G, Wirth W, Hudelmaier M, Cotofana S, Hofmann-Amtenbrink M, Duda G. Longitudinal change in femorotibial cartilage thickness and subchondral bone plate area in male and female adolescent vs. mature athletes. Ann Anat 2013; 196:150-7. [PMID: 24439995 DOI: 10.1016/j.aanat.2013.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 11/28/2022]
Abstract
Little is known about changes in human cartilage thickness and subchondral bone plate area (tAB) during growth. The objective of this study was to explore longitudinal change in femorotibial cartilage thickness and tAB in adolescent athletes, and to compare these data with those of mature former athletes. Twenty young (baseline age 16.0 ± 0.6 years) and 20 mature (46.3 ± 4.7 years) volleyball athletes were studied (10 men and 10 women in each group). Magnetic resonance images were acquired at baseline and at year 2-follow-up, and longitudinal changes in cartilage thickness and tAB were determined quantitatively after segmentation. The yearly increase in total femorotibial cartilage thickness was 0.8% (95% confidence interval [CI]: -0.5; 2.1%) in young men and 1.4% (95% CI: 0.7; 2.2%) in young women; the gain in tAB was 0.4% (95% CI: -0.1; 0.8%) and 0.7% (95% CI: 0.2; 1.2%), respectively (no significant difference between sexes). The cartilage thickness increase was greatest in the medial femur, and was not significantly associated with the variability in tAB growth (r=-0.19). Mature athletes showed smaller gains in tAB, and lost >1% of femorotibial cartilage per annum, with the greatest loss observed in the lateral tibia. In conclusion, we find an increase in cartilage thickness (and some in tAB) in young athletes toward the end of adolescence. This increase appeared somewhat greater in women than men, but the differences between both sexes did not reach statistical significance. Mature (former) athletes displayed high rates of (lateral) femorotibial cartilage loss, potentially due to a high prevalence of knee injuries.
Collapse
Affiliation(s)
- Felix Eckstein
- Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria.
| | - Heide Boeth
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Center for Sports Science and Sports Medicine Berlin, Germany
| | - Gerd Diederichs
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Wolfgang Wirth
- Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Martin Hudelmaier
- Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | | | | | - Georg Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Center for Sports Science and Sports Medicine Berlin, Germany
| |
Collapse
|
16
|
Pachowsky ML, Trattnig S, Apprich S, Mauerer A, Zbyn S, Welsch GH. Impact of different coils on biochemical T2 and T2* relaxation time mapping of articular patella cartilage. Skeletal Radiol 2013; 42:1565-72. [PMID: 23974465 DOI: 10.1007/s00256-013-1699-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/15/2013] [Accepted: 07/22/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of our study was to assess T2 and T2* relaxation time values of patella cartilage in healthy volunteers using three different coils at 3.0 Tesla MRI and their influence on the quantitative values. METHODS Fifteen volunteers were examined on the same 3-Tesla MR unit using three different coils: (i) a dedicated eight-channel knee phased-array coil; (ii) an eight-channel multi-purpose coil, and (iii) a one-channel 1H surface coil. T2 and T2* relaxation time measurements were prepared by a multi-echo spinecho respectively a gradient-echo sequence. A semi-automatic region-of-interest analysis was performed for patella cartilage. To allow stratification, a subregional analysis was carried out (deep-superficial cartilage layer). Statistical analysis-of-variance was performed. RESULTS The mean quantitative T2 values showed statistically significant differences in all comparison combinations. The differences between the mean quantitative T2* values were slightly less pronounced than the T2 evaluation and only the comparison between (i) and (ii) showed a significant difference. The results of T2 and T2* values showed, independent of the used coil, higher values in the superficial zone compared to the deep zone (p < 0.05). Looking at the signal alterations, all coils showed clearly higher values (and thus more signal alterations as a sign of noise) in the deep layer. The validation of the reliability showed a high intra-class correlation coefficient and hence a very high plausibility (ICC was between 0.870 and 0.905 for T2 mapping and between 0.879 and 0.888 for T2* mapping). CONCLUSIONS The present results demonstrate that biochemical T2 and T2* mapping is significantly dependent on the utilized coil.
Collapse
Affiliation(s)
- Milena L Pachowsky
- MR Center, Department of Radiology, Medical University of Vienna, Lazarettgasse 14, Vienna, Austria,
| | | | | | | | | | | |
Collapse
|
17
|
Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin-spin (T2) relaxation time measurements. Osteoarthritis Cartilage 2013; 21:710-20. [PMID: 23376528 PMCID: PMC3624070 DOI: 10.1016/j.joca.2013.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 12/08/2012] [Accepted: 01/12/2013] [Indexed: 02/02/2023]
Abstract
INTRODUCTION T2 (spin-spin) relaxation time is frequently used for compositional assessment of articular cartilage. However little is known about the influence of magnetic resonance (MR) system components on these measurements. The reproducibility and range of cartilage T2 values were evaluated using different extremity radiofrequency (RF) coils with potential differences in flip angle uniformity and signal-to-noise ratio (SNR). METHOD Ten knees underwent 3 T MR exams using RF coils with different SNR: quadrature transmit/receive (QTR); quadrature transmit/eight-channel phased-array receive (QT8PAR). Each knee was scanned twice per coil (four exams total). T2 values were calculated for the central medial and lateral femoral (cMF, cLF) and medial and lateral tibial (MT, LT) cartilage. RESULTS The flip angle varied across a central 40 mm diameter region-of-interest of each coil by <1.5%. However SNR was significantly higher using QT8PAR than QTR (P < 0.001). T2 values for cMF (50.7 msec/45.9 msec) and MT (48.2 msec/41.6 msec) were significantly longer with QT8PAR than QTR (P < 0.05). T2 reproducibility was improved using QT8PAR for cMF and cLF (4.8%/5.8% and 4.1%/6.5%; P < 0.001), similar for LT (3.8%/3.6%; P = 1.0), and worse for MT (3.7%/3.3%; P < 0.001). T2 varied spatially, with cLF having the longest (52.0 msec) and the LT having the shortest (40.6 msec) values. All deep cartilage had significantly longer, and less variable, T2 values using QT8PAR (higher SNR; P < 0.03). CONCLUSIONS SNR varied spatially (significant) depending upon coil, but refocusing flip angle only slightly. With higher SNR, significantly longer T2 values were measured for deep (all plates) and global (MT, cMF) cartilage. T2 values varied by depth and plate, in agreement with prior studies.
Collapse
|
18
|
Eckstein F, Mc Culloch CE, Lynch JA, Nevitt M, Kwoh CK, Maschek S, Hudelmaier M, Sharma L, Wirth W. How do short-term rates of femorotibial cartilage change compare to long-term changes? Four year follow-up data from the osteoarthritis initiative. Osteoarthritis Cartilage 2012; 20:1250-7. [PMID: 22800771 PMCID: PMC3471368 DOI: 10.1016/j.joca.2012.06.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 05/15/2012] [Accepted: 06/25/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare unbiased estimates of short- vs long-term cartilage loss in osteoarthritic knees. METHOD 441 knees [216 Kellgren Lawrence (KL) grade 2, 225 KL grade 3] from participants of the Osteoarthritis Initiative were studied over a 4-year period. Femorotibial cartilage thickness was determined using 3 T double echo steady state magnetic resonance imaging, the readers being blinded to time points. Because common measurement time points bias correlations, short-term change (year-1 to year-2: Y1 → Y2) was compared with long-term change (baseline to year-4: BL → Y4), and initial (BL → Y1) with subsequent (Y2 → Y4) observation periods. RESULTS The mean femorotibial cartilage thickness change (standardized response mean) was -1.2%/-0.8% (-0.42/-0.28) over 1 (BL → Y1/Y1 → Y2), -2.1%/-2.5% (-0.56/-0.55) over 2 (BL → Y2/Y2 → Y4), -3.3% (-0.63) over 3 (Y1 → Y4), and -4.5% (-0.78) over 4 years. Spearman correlations were 0.33 for Y1 → Y2 vs BL → Y4, and 0.17 for BL → Y1 vs Y2 → Y4 change. Percent agreement between knees showing progression during Y1 → Y2 vs BL → Y4 was 59%, and 64% for BL → Y1 vs Y2 → Y4. The area under the receiver operating characteristic curve was 0.66 for using Y1 → Y2 to predict BL → Y4, and 0.59 for using BL → Y1 to predict Y2 → Y4 change. CONCLUSION Weak to moderate correlations and agreement were observed between individual short- vs long-term cartilage loss, and between initial and subsequent observation periods. Hence, longer observation periods are recommended to achieve robust results on cartilage loss in individual knees. At cohort and subcohort level (e.g., KLG3 vs KLG2 knees), the mean cartilage loss increased almost linearly with the length of the observation period and was constant throughout the study.
Collapse
Affiliation(s)
- Felix Eckstein
- Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria,Chondrometrics GmbH, Ainring, Germany
| | | | - John A. Lynch
- University of California San Francisco, San Francisco, CA
| | - Michael Nevitt
- University of California San Francisco, San Francisco, CA
| | - C. Kent Kwoh
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh and VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Susanne Maschek
- Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria,Chondrometrics GmbH, Ainring, Germany
| | - Martin Hudelmaier
- Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria,Chondrometrics GmbH, Ainring, Germany
| | - Leena Sharma
- Division of Rheumatology, Feinberg School of Medicine at Northwestern University
| | - Wolfgang Wirth
- Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria,Chondrometrics GmbH, Ainring, Germany
| | | |
Collapse
|
19
|
Schneider E, Nevitt M, McCulloch C, Cicuttini FM, Duryea J, Eckstein F, Tamez-Pena J. Equivalence and precision of knee cartilage morphometry between different segmentation teams, cartilage regions, and MR acquisitions. Osteoarthritis Cartilage 2012; 20:869-79. [PMID: 22521758 PMCID: PMC3391588 DOI: 10.1016/j.joca.2012.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/19/2012] [Accepted: 04/04/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare precision and evaluate equivalence of femorotibial cartilage volume (VC) and mean cartilage thickness over total area of bone (ThCtAB.Me) from independent segmentation teams using identical Magnetic Resonance (MR) images from three series: sagittal 3D Dual Echo in the Steady State (DESS), coronal multi-planar reformat (DESS-MPR) of DESS and coronal 3D Fast Low Angle SHot (FLASH). DESIGN Nineteen subjects underwent test-retest MR imaging at 3 T. Four teams segmented the cartilage using prospectively defined plate regions and rules. Mixed models analysis of the pooled data were used to evaluate the effect of acquisition, team and plate on precision and Pearson correlations and mixed models were used to evaluate equivalence. RESULTS Segmentation team differences dominated measurement variability in most cartilage regions for all image series. Precision of VC and ThCtAB.Me differed significantly by team and cartilage plate, but not between FLASH and DESS. Mean values of VC and ThCtAB.Me differed by team (P < 0.05) for DESS, FLASH and DESS-MPR. FLASH VC was 4-6% larger than DESS in the medial tibia and lateral central femur, and FLASH ThCtAB.Me was 5-6% larger in the medial tibia, but 4-8% smaller in the medial central femur. Correlations between DESS and FLASH for VC and ThCtAB.Me were high (r = 0.90-0.97), except for DESS vs FLASH medial central femur ThCtAB.Me (r = 0.81-0.83). CONCLUSIONS Cartilage morphology metrics from different image contrasts had similar precision, were generally equivalent, and may be combined for cross-sectional analyses if potential systematic offsets are accounted for. Data from different teams should not be pooled unless equivalence is demonstrated for cartilage metrics of interest.
Collapse
Affiliation(s)
- E Schneider
- Imaging Institute, Cleveland Clinic, Cleveland, OH USA and SciTrials LLC, Rocky River, OH, USA ()
| | - M Nevitt
- Prevention Sciences Group, Department of Epidemiology, University of California, San Francisco, CA, USA (; )
| | - C McCulloch
- Prevention Sciences Group, Department of Epidemiology, University of California, San Francisco, CA, USA (; )
| | - FM Cicuttini
- School of Epidemiology and Preventative Medicine, Monash University and Alfred Hospital, Melbourne, Victoria, Australia ()
| | - J Duryea
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA ()
| | - F Eckstein
- Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria and Chondrometrics GmbH, Ainring, Germany ()
| | - J Tamez-Pena
- VirtualScopics, LLC, Rochester, NY, USA; current address: ITESM, Escuela de Medicina, Morones Prieto No. 3000 Pte, Monterrey, N.L. México C.P. 64710 () and QMetrics Technology, LLC, Rochester, NY
| |
Collapse
|
20
|
Comparison between different implementations of the 3D FLASH sequence for knee cartilage quantification. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 25:305-12. [PMID: 22167383 DOI: 10.1007/s10334-011-0296-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 11/10/2011] [Accepted: 11/29/2011] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To compare several sequence implementations of the 3D FLASH sequence in the context of quantitative cartilage imaging. MATERIALS AND METHODS Test-retest coronal fast low angle shot (FLASH) sequences with water excitation were acquired in knees of 12 healthy participants, using two 1.5 T scanners from the same manufacturer. On one of the scanners, the FLASH was additionally compared with a FLASH VIBE, 75% with 100% slice resolution, a non-selective with a conventional spatial pulse, and "asymmetric echo allowed" with "not allowed". RESULTS Implementations of the FLASH showed systematic differences of up to 3.3%, but these were not statistically significant. Precision errors were similar between protocols, but tended to be smallest for the FLASH VIBE with 100% slice resolution (0.6-6.7%). In the medial tibia cartilage volume and thickness differed significantly (P < 0.01; 6.2 and 5.9%) between the two scanners. CONCLUSION Using a validated FLASH sequence, one can reduce slice resolution to 75% and allow asymmetric echo without sacrificing precision, in order to reduce the total acquisition time. However, in longitudinal studies, the scanner and the specific sequence implementation should be kept constant between baseline and follow-up, in order to avoid systematic off-sets in the measurements.
Collapse
|
21
|
Chang G, Wiggins GC, Xia D, Lattanzi R, Madelin G, Raya JG, Finnerty M, Fujita H, Recht MP, Regatte RR. Comparison of a 28-channel receive array coil and quadrature volume coil for morphologic imaging and T2 mapping of knee cartilage at 7T. J Magn Reson Imaging 2011; 35:441-8. [PMID: 22095723 DOI: 10.1002/jmri.23506] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/21/2011] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To compare a new birdcage-transmit, 28-channel receive array (28-Ch) coil and a quadrature volume coil for 7T morphologic MRI and T2 mapping of knee cartilage. MATERIALS AND METHODS The right knees of 10 healthy subjects were imaged on a 7T whole body magnetic resonance (MR) scanner using both coils. 3D fast low-angle shot (3D-FLASH) and multiecho spin-echo (MESE) sequences were implemented. Cartilage signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), thickness, and T2 values were assessed. RESULTS SNR/CNR was 17%-400% greater for the 28-Ch compared to the quadrature coil (P ≤ 0.005). Bland-Altman plots show mean differences between measurements of tibial/femoral cartilage thickness and T2 values obtained with each coil to be small (-0.002 ± 0.009 cm / 0.003 ± 0.011 cm) and large (-6.8 ± 6.7 msec/-8.2 ± 9.7 msec), respectively. For the 28-Ch coil, when parallel imaging with acceleration factors (AF) 2, 3, and 4 was performed SNR retained was: 62%-69%, 51%-55%, and 39%-45%. CONCLUSION A 28-Ch knee coil provides increased SNR/CNR for 7T cartilage morphologic imaging and T2 mapping. Coils should be switched with caution during clinical studies because T2 values may differ. The greater SNR of the 28-Ch coil could be used to perform parallel imaging with AF2 and obtain similar SNR as the quadrature coil.
Collapse
Affiliation(s)
- Gregory Chang
- Quantitative Multinuclear Musculoskeletal Imaging Group, Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, New York 10016, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bloecker K, Englund M, Wirth W, Hudelmaier M, Burgkart R, Frobell RB, Eckstein F. Revision 1 size and position of the healthy meniscus, and its correlation with sex, height, weight, and bone area- a cross-sectional study. BMC Musculoskelet Disord 2011; 12:248. [PMID: 22035074 PMCID: PMC3215228 DOI: 10.1186/1471-2474-12-248] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 10/28/2011] [Indexed: 12/01/2022] Open
Abstract
Background Meniscus extrusion or hypertrophy may occur in knee osteoarthritis (OA). However, currently no data are available on the position and size of the meniscus in asymptomatic men and women with normal meniscus integrity. Methods Three-dimensional coronal DESSwe MRIs were used to segment and quantitatively measure the size and position of the medial and lateral menisci, and their correlation with sex, height, weight, and tibial plateau area. 102 knees (40 male and 62 female) were drawn from the Osteoarthritis Initiative "non-exposed" reference cohort, including subjects without symptoms, radiographic signs, or risk factors for knee OA. Knees with MRI signs of meniscus lesions were excluded. Results The tibial plateau area was significantly larger (p < 0.001) in male knees than in female ones (+23% medially; +28% laterally), as was total meniscus surface area (p < 0.001, +20% medially; +26% laterally). Ipsi-compartimental tibial plateau area was more strongly correlated with total meniscus surface area in men (r = .72 medially; r = .62 laterally) and women (r = .67; r = .75) than contra-compartimental or total tibial plateau area, body height or weight. The ratio of meniscus versus tibial plateau area was similar between men and women (p = 0.22 medially; p = 0.72 laterally). Tibial coverage by the meniscus was similar between men and women (50% medially; 58% laterally), but "physiological" medial meniscal extrusion was greater in women (1.83 ± 1.06mm) than in men (1.24mm ± 1.18mm; p = 0.011). Conclusions These data suggest that meniscus surface area strongly scales with (ipsilateral) tibial plateau area across both sexes, and that tibial coverage by the meniscus is similar between men and women.
Collapse
Affiliation(s)
- Katja Bloecker
- Institute of Anatomy & Musculoskeletal Research, Paracelsus Medical University Salzburg, Austria.
| | | | | | | | | | | | | |
Collapse
|
23
|
Roemer FW, Crema MD, Trattnig S, Guermazi A. Advances in imaging of osteoarthritis and cartilage. Radiology 2011; 260:332-54. [PMID: 21778451 DOI: 10.1148/radiol.11101359] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is the most frequent form of arthritis, with major implications for individual and public health care without effective treatment available. The field of joint imaging, and particularly magnetic resonance (MR) imaging, has evolved rapidly owing to technical advances and the application of these to the field of clinical research. Cartilage imaging certainly is at the forefront of these developments. In this review, the different aspects of OA imaging and cartilage assessment, with an emphasis on recent advances, will be presented. The current role of radiography, including advances in the technology for joint space width assessment, will be discussed. The development of various MR imaging techniques capable of facilitating assessment of cartilage morphology and the methods for evaluating the biochemical composition of cartilage will be presented. Advances in quantitative morphologic cartilage assessment and semiquantitative whole-organ assessment will be reviewed. Although MR imaging is the most important modality in imaging of OA and cartilage, others such as ultrasonography play a complementary role that will be discussed briefly.
Collapse
Affiliation(s)
- Frank W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, 820 Harrison Ave, FGH Building, 3rd Floor, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
24
|
Bloecker K, Wirth W, Hudelmaier M, Burgkart R, Frobell R, Eckstein F. Morphometric differences between the medial and lateral meniscus in healthy men - a three-dimensional analysis using magnetic resonance imaging. Cells Tissues Organs 2011; 195:353-64. [PMID: 21709397 PMCID: PMC3696373 DOI: 10.1159/000327012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2011] [Indexed: 11/19/2022] Open
Abstract
The objective of this work was to characterize tibial plateau coverage and morphometric differences of the medial (MM) and lateral meniscus (LM) in a male reference cohort using three-dimensional imaging. Coronal multiplanar reconstructions of a sagittal double-echo steady state with water excitation magnetic resonance sequence (slice thickness: 1.5 mm, and in-plane resolution: 0.37 × 0.70 mm) were analyzed in 47 male participants without symptoms, signs or risk factors of knee osteoarthritis of the reference cohort of the Osteoarthritis Initiative. The medial and lateral tibial (LT) plateau cartilage area and the tibial, femoral and external surfaces of the MM and LM were manually segmented throughout the entire knee. This process was assisted by parallel inspection of a coronal intermediately weighted turbo spin echo sequence. Measures of tibial coverage, meniscus size, and meniscus position were computed three-dimensionally for the total menisci, the body, and the anterior and the posterior horn. The LM was found to cover a significantly greater (p < 0.001) proportion of the LT plateau (59 ± 6.8%) than the MM of the medial plateau (50 ± 5.5%). Whereas the volume of both menisci was similar (2.444 vs. 2.438 ml; p = 0.92), the LM displayed larger tibial and femoral surface areas (p < 0.05) and a smaller maximal (7.2 ± 1.0 vs. 7.7 ± 1.1 mm; p < 0.01) and mean thickness (2.7 ± 0.3 vs. 2.8 ± 0.3 mm; p < 0.001) than the medial one. Also, the LM displayed less (physiological) extrusion than the medial one. These data may guide strategies for meniscal tissue engineering and transplantation aiming to restore normal joint conditions.
Collapse
Affiliation(s)
- K Bloecker
- Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria.
| | | | | | | | | | | |
Collapse
|
25
|
Wirth W, Larroque S, Davies RY, Nevitt M, Gimona A, Baribaud F, Lee JH, Benichou O, Wyman BT, Hudelmaier M, Maschek S, Eckstein F. Comparison of 1-year vs 2-year change in regional cartilage thickness in osteoarthritis results from 346 participants from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2011; 19:74-83. [PMID: 21044690 PMCID: PMC3046392 DOI: 10.1016/j.joca.2010.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 10/13/2010] [Accepted: 10/26/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare femorotibial cartilage thickness changes over a 2- vs a 1-year observation period in knees with radiographic knee osteoarthritis (OA). METHODS One knee of 346 Osteoarthritis Initiative (OAI) participants was studied at three time points [baseline (BL), year-1 (Y1), year-2 (Y2) follow-up]: 239 using coronal fast low angle shot (FLASH) and 107 using sagittal double echo at steady state (DESS) MR imaging. Changes in cartilage thickness were assessed in femorotibial cartilage plates and subregions, after manual segmentation with blinding to time-point. RESULTS The standardized response mean (SRM) of total joint cartilage thickness over 2 years was modestly higher than over 1 year (FLASH: -0.44 vs -0.32/-0.28 [first/second year]; DESS: -0.42 vs -0.39/-0.18). For the subregion showing the largest change per knee (OV1), the 2-year SRM was similar or lower (FLASH: -1.20 vs -1.22/-1.61; DESS: -1.38 vs -1.64/-1.51) than the 1-year SRM. The changes in total joint cartilage thickness were not significantly different in the first and second year (FLASH: -0.8% vs -0.7%; DESS: -1.3% vs -0.8%) and were negatively correlated. Analysis of smallest detectable changes (SDCs) revealed that only few participants displayed significant progression in both consecutive periods. The location of the subregion contributing to OV1 in each knee was highly inconsistent between the first and second year observation period. CONCLUSIONS The SRM of region-based cartilage thickness change in OA is modestly larger following a 2-year vs a 1-year observation period, while it is relatively similar when an OV-approach is chosen. Structural progression displays strong temporal and spatial heterogeneity at an individual knee level that should be considered when planning clinical trials.
Collapse
Affiliation(s)
- W Wirth
- Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Quantitative cartilage imaging in knee osteoarthritis. ARTHRITIS 2010; 2011:475684. [PMID: 22046518 PMCID: PMC3200067 DOI: 10.1155/2011/475684] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 10/25/2010] [Indexed: 02/01/2023]
Abstract
Quantitative measures of cartilage morphology (i.e., thickness) represent potentially powerful surrogate endpoints in osteoarthritis (OA). These can be used to identify risk factors of structural disease progression and can facilitate the clinical efficacy testing of structure modifying drugs in OA. This paper focuses on quantitative imaging of articular cartilage morphology in the knee, and will specifically deal with different cartilage morphology outcome variables and regions of interest, the relative performance and relationship between cartilage morphology measures, reference values for MRI-based knee cartilage morphometry, imaging protocols for measurement of cartilage morphology (including those used in the Osteoarthritis Initiative), sensitivity to change observed in knee OA, spatial patterns of cartilage loss as derived by subregional analysis, comparison of MRI changes with radiographic changes, risk factors of MRI-based cartilage loss in knee OA, the correlation of MRI-based cartilage loss with clinical outcomes, treatment response in knee OA, and future directions of the field.
Collapse
|
27
|
Inglis D, Wong AKO, Eckstein F, Adachi JD, Beattie KA. Multiplanar reconstruction recovers morphological cartilage assessment reproducibility from maloriented coronal MRI scans. Magn Reson Med 2010; 65:790-5. [PMID: 20939062 DOI: 10.1002/mrm.22659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/05/2010] [Accepted: 09/01/2010] [Indexed: 11/10/2022]
Abstract
The study's purpose was to assess the effect of multiplanar reconstruction on precision of weight-bearing medial and lateral femoral cartilage (cMF, cLF) morphometry in maloriented coronal MR images. Twenty knees were scanned four times with a 1.0 Tesla extremity imager using a fat-suppressed T1-weighted three-dimensional spoiled gradient recalled echo sequence; twice with "best as" double bull's-eye orientation of the femoral condyles, and once each with 5° internal and external rotation. Multiplanar reconstruction was applied to maloriented scans to recover double bull's-eye orientation. Medial and lateral femoral cartilages were segmented and precision of bone area, cartilage volume and thickness (ThCtAB) evaluated for all scans. Test-retest precision (RMSCV%) of the double bull's-eye scans was 1.1% for total bone area and 4.1% for cartilage volume. Differences in precision between double bull's-eye and maloriented images were assessed. Higher precision errors were observed in malorientated images for all outcomes (1.7-4.8% for internally rotation scans; 1.7-4.8% for external rotation scans). Precision generally improved with multiplanar reconstruction correction (1.7-5.6% for internally rotated scans; 1.2-3.5% for external rotation scans). Precision of femoral cartilage morphometry is generally reduced when maloriented images are acquired. Multiplanar reconstruction can correct malorientated scans and recover precision losses. Measurements are affected in a rotationally and compartmentally dependent manner.
Collapse
Affiliation(s)
- Dean Inglis
- Department of Civil Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
28
|
Reference values and Z-scores for subregional femorotibial cartilage thickness--results from a large population-based sample (Framingham) and comparison with the non-exposed Osteoarthritis Initiative reference cohort. Osteoarthritis Cartilage 2010; 18:1275-83. [PMID: 20691798 PMCID: PMC2982217 DOI: 10.1016/j.joca.2010.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 07/14/2010] [Accepted: 07/27/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To establish sex-specific (subregional) reference values of cartilage thickness and potential maximal Z-scores in the femorotibial joint. METHODS The mean cartilage thickness (ThCtAB.Me) in femorotibial compartments, plates and subregions was determined on coronal magnetic resonance imaging (MRI) from a population-based sample (Framingham) and from a healthy reference sample of the Osteoarthritis Initiative (OAI). RESULTS 686 Framingham participants (309 men, 377 women, age 62 ± 8 years) had no radiographic femorotibial osteoarthritis (OA) ("normals") and 376 (156 men, 220 women) additionally had no MRI features of cartilage lesions ("supernormals"). The Framingham "normals" had thinner cartilage in the medial (3.59 mm) than in the lateral femorotibial compartment (3.86 mm). Medially, the femur displayed thicker cartilage (1.86 mm) than the tibia (1.73 mm), and laterally the tibia thicker cartilage (2.09 mm) than the femur (1.77 mm). The thickest cartilage was observed in central, and the thinnest in external femorotibial subregions. Potential maximal Z-scores ranged from 5.6 to 9.8 throughout the subregions; men displayed thicker cartilage but similar potential maximal Z-scores as women. Mean values and potential maximal Z-scores in Framingham "supernormals" and non-exposed OAI reference participants (112 participants without symptoms or risk factors of knee OA) were similar to Framingham "normals". CONCLUSIONS We provide reference values and potential maximal Z-scores of cartilage thickness in middle aged to elderly non-diseased populations without radiographic OA. Results were similar for "supernormal" participants without MRI features of cartilage lesions, and in a cohort without OA symptoms or risk factors. A cartilage thickness loss of around 27% is required for attaining a Z-score of -2.
Collapse
|
29
|
Wirth W, Benichou O, Kwoh CK, Guermazi A, Hunter D, Putz R, Eckstein F. Spatial patterns of cartilage loss in the medial femoral condyle in osteoarthritic knees: data from the Osteoarthritis Initiative. Magn Reson Med 2010; 63:574-81. [PMID: 20146227 DOI: 10.1002/mrm.22194] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The objective of this study was to develop a technique for analyzing spatial patterns of cartilage loss in the medial femoral condyle (MF), and to study MF cartilage loss in participants of the Osteoarthritis Initiative. Using a 0.7 mm sagittal double echo at steady state (DESS) sequence, 160 osteoarthritic knees from 80 participants with varying degrees of medial joint space narrowing were imaged at baseline and 1-year follow-up. MF cartilage was segmented and cartilage loss determined. Rate of change varied significantly (P = 0.0067) along the anterior-posterior extension of the MF, with the greatest changes (-45 microm, -2.7%) observed 30-60 degrees posterior to the trochlear notch. The rate was greater in the central MF after excluding peripheral aspects of the MF from analysis. Sensitivity to change was greatest at 45-75 degrees (standardized response mean = -0.32) but was minimally affected by medial-lateral trimming. In conclusion, the greatest sensitivity to change was achieved when analyzing the posterior aspect of the central, weight-bearing MF.
Collapse
|
30
|
Eckstein F, Wirth W, Hunter DJ, Guermazi A, Kwoh CK, Nelson DR, Benichou O. Magnitude and regional distribution of cartilage loss associated with grades of joint space narrowing in radiographic osteoarthritis--data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage 2010; 18:760-8. [PMID: 20171298 PMCID: PMC2975907 DOI: 10.1016/j.joca.2009.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/07/2009] [Accepted: 12/21/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Clinically, radiographic joint space narrowing (JSN) is regarded a surrogate of cartilage loss in osteoarthritis (OA). Using magnetic resonance imaging (MRI), we explored the magnitude and regional distribution of differences in cartilage thickness and subchondral bone area associated with specific Osteoarthritis Research Society International (OARSI) JSN grades. METHOD Seventy-three participants with unilateral medial JSN were selected from the first half (2678 cases) of the OA Initiative cohort (45, 21, and 7 with OARSI JSN grades 1, 2, and 3, respectively, no medial JSN in the contra-lateral knee). Bilateral sagittal baseline DESSwe MRIs were segmented by experienced operators. Intra-person between-knee differences in cartilage thickness and subchondral bone areas were determined in medial femorotibial subregions. RESULTS Knees with medial OARSI JSN grades 1, 2, and 3 displayed a 190 microm (5.2%), 630 microm (18%), and 1560 microm (44%) smaller cartilage thickness in weight-bearing medial femorotibial compartments compared to knees without JSN, respectively. The weight-bearing femoral condyle displayed relatively greater differences than the posterior femoral condyle or the medial tibia (MT). The central subregion within the weight-bearing medial femur (cMF) of the femoral condyle (30-75 degrees ), and the external and central subregions within the tibia displayed relatively greater JSN-associated differences compared to other medial femorotibial subregions. Knees with higher JSN grades also displayed larger than contra-lateral femorotibial subchondral bone areas. CONCLUSIONS This study provides quantitative estimates of JSN-related cartilage loss, with the central part of the weight-bearing femoral condyle being most strongly affected. Knees with higher JSN grades displayed larger subchondral bone areas, suggesting that an increase in subchondral bone area occurs in advanced OA.
Collapse
Affiliation(s)
- F Eckstein
- Institute of Anatomy, PMU Salzburg, Austria.
| | | | | | | | | | | | | |
Collapse
|
31
|
Sensitivity to change of cartilage morphometry using coronal FLASH, sagittal DESS, and coronal MPR DESS protocols--comparative data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage 2010; 18:547-54. [PMID: 20060948 PMCID: PMC2846231 DOI: 10.1016/j.joca.2009.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/13/2009] [Accepted: 12/01/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The Osteoarthritis Initiative (OAI) is targeted at identifying sensitive biomarkers and risk factors of symptomatic knee osteoarthritis (OA) onset and progression. Quantitative cartilage imaging in the OAI relies on validated fast low angle shot (FLASH) sequences that suffer from relatively long acquisition times, and on a near-isotropic double echo steady-state (DESS) sequence. We therefore directly compared the sensitivity to cartilage thickness changes and the correlation of these protocols longitudinally. METHODS Baseline (BL) and 12 month follow-up data of 80 knees were acquired using 1.5 mm coronal FLASH and 0.7 mm sagittal DESS (sagDESS) sequences. In these and in 1.5 mm coronal multi-planar reconstructions (MPR) of the DESS the medial femorotibial cartilage was segmented with blinding to acquisition order. In the weight-bearing femoral condyle, a 60% (distance between the trochlear notch and the posterior femur) and a 75% region of interest (ROI) were studied. RESULTS The standardized response mean (SRM = mean change/standard deviation of change) in central medial femorotibial (cMFTC) cartilage thickness was -0.34 for coronal FLASH, -0.37 for coronal MPR DESS, -0.36 for sagDESS with the 60% ROI, and -0.38 for the 75% ROI. Using every second 0.7 mm sagittal slice (DESS) yielded similar SRMs in cMFTC for the 60% and 75% ROI from odd (-0.35/-0.36) and even slice numbers (-0.36/-0.39), respectively. BL cartilage thickness displayed high correlations (r > or = 0.94) between the three protocols; the correlations of longitudinal changes were > or = 0.79 (Pearson) and > or = 0.45 (Spearman). CONCLUSIONS Cartilage morphometry with FLASH and DESS displays similar longitudinal sensitivity to change. Analysis of every second slice of the 0.7 mm DESS provides adequate sensitivity to change.
Collapse
|
32
|
Guglielmi G, Biccari N, Mangano F, Toffanin R. 3 T magnetic resonance imaging of the musculoskeletal system. Radiol Med 2010; 115:571-84. [DOI: 10.1007/s11547-010-0521-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/06/2008] [Indexed: 11/25/2022]
|
33
|
Roemer FW, Eckstein F, Guermazi A. Magnetic resonance imaging-based semiquantitative and quantitative assessment in osteoarthritis. Rheum Dis Clin North Am 2010; 35:521-55. [PMID: 19931802 DOI: 10.1016/j.rdc.2009.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whole organ magnetic resonance imaging (MRI)-based semiquantitative (SQ) assessment of knee osteoarthritis (OA), based on reliable scoring methods and expert reading, has become a powerful research tool in OA. SQ morphologic scoring has been applied to large observational cross-sectional and longitudinal epidemiologic studies as well as interventional clinical trials. SQ whole organ scoring analyzes all joint structures that are potentially relevant as surrogate outcome measures of OA and potential disease modification, including cartilage, subchondral bone, osteophytes, intra- and periarticular ligaments, menisci, synovial lining, cysts, and bursae. Resources needed for SQ scoring rely on the MRI protocol, image quality, experience of the expert readers, method of documentation, and the individual scoring system that will be applied. The first part of this article discusses the different available OA whole organ scoring systems, focusing on MRI of the knee, and also reviews alternative approaches. Rheumatologists are made aware of artifacts and differential diagnoses when applying any of the SQ scoring systems. The second part focuses on quantitative approaches in OA, particularly measurement of (subregional) cartilage loss. This approach allows one to determine minute changes that occur relatively homogeneously across cartilage structures and that are not apparent to the naked eye. To this end, the cartilage surfaces need to be segmented by trained users using specialized software. Measurements of knee cartilage loss based on water-excitation spoiled gradient recalled echo acquisition in the steady state, fast low-angle shot, or double-echo steady-state imaging sequences reported a 1% to 2% decrease in cartilage thickness annually, and a high degree of spatial heterogeneity of cartilage thickness changes in femorotibial subregions between subjects. Risk factors identified by quantitative measurement technology included a high body mass index, meniscal extrusion and meniscal tears, knee malalignment, advanced radiographic OA grade, bone marrow alterations, and focal cartilage lesions.
Collapse
Affiliation(s)
- Frank W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, FGH Building, 3rd floor, 820 Harrison Avenue, Boston, MA 02118, USA.
| | | | | |
Collapse
|
34
|
MRI of the knee at 3T: first clinical results with an isotropic PDfs-weighted 3D-TSE-sequence. Invest Radiol 2009; 44:585-97. [PMID: 19668001 DOI: 10.1097/rli.0b013e3181b4c1a1] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To clinically evaluate MRI of the knee using a highly resolved isotropic fat-saturated (fs) proton-density weighted 3D-TSE-sequence (SPACE) at 3T. MATERIALS AND METHODS Imaging was performed on a 3T-scanner (Magnetom TRIO). For technical evaluation, sagittally orientated SPACE-datasets (repetition-time [TR], 1200 milliseconds/[TE], 30 milliseconds/voxel-size, 0.5 mm3/acquisition time, 10:35 minutes) were acquired from the dominant knee of 10 healthy volunteers. In the 3 major anatomic planes, 0.5, 1, and 2 mm thick reconstructions were performed. Signal-to-noise (SNR), SNR-efficiency, contrast-to-noise (CNR) ratios, and anatomic detail visualization were compared with a state-of-the-art 2D-TSE-sequence in 3 imaging planes (TR, 3200 milliseconds/TE, 30 milliseconds/acquisition time, 12:34 minutes). Sixty patients with cartilage and meniscus pathologies were examined with these techniques. Patient SPACE-datasets were assessed in 1-mm thick reconstructions. Arthroscopical correlation was available for 18 patients. Lesion detection and diagnostic confidence were assessed by 2 radiologists independently. Statistical analysis was performed using 95% confidence intervals, Wilcoxon signed rank tests, and Weighted-kappa. RESULTS SNR-efficiency of SPACE was 4 to 5 times higher than for 2D-TSE-sequences. SNR and CNR of 1-mm thick SPACE-reconstructions were comparable to 2D-TSE-sequences and provided superior visualization of small structures such as meniscal roots.Correlation with arthroscopy did not show significant differences between 2D- and 3D-sequences. One reader detected significantly more cartilage abnormalities with the 2D-TSE-sequence (131 vs. 151, P = 0.04), probably because of an unfamiliar fluid/cartilage contrast. Diagnostic confidence was significantly higher for meniscus abnormalities for SPACE for 1 reader. Intersequence-correlation was excellent (kappa = 0.82-0.92). Interreader-correlation was good to excellent (kappa = 0.71-0.80), intrareader-correlation was excellent (kappa = 0.90-0.92) for both sequences. CONCLUSIONS Time-efficient 3D-TSE-imaging of the knee at 3T is feasible with adequate SNR and CNR and excellent anatomic detail visualization. Detection and visualization of meniscus and cartilage pathologies is comparable to standard 2D-TSE-sequences. 3D-TSE-sequences with consecutive multiplanar reconstruction may become a valuable component of future knee-MRI protocols.
Collapse
|
35
|
Eckstein F, Benichou O, Wirth W, Nelson DR, Maschek S, Hudelmaier M, Kwoh CK, Guermazi A, Hunter D. Magnetic resonance imaging-based cartilage loss in painful contralateral knees with and without radiographic joint space narrowing: Data from the Osteoarthritis Initiative. ACTA ACUST UNITED AC 2009; 61:1218-25. [PMID: 19714595 DOI: 10.1002/art.24791] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine by magnetic resonance imaging (MRI), whether knees with advanced radiographic disease (medial joint space narrowing [mJSN]) encounter greater longitudinal cartilage loss than contralateral knees with earlier disease (no or less mJSN). METHODS Participants were selected from 2,678 cases in the Osteoarthritis Initiative, based on exhibition of bilateral pain, body mass index >25 (kg/m(2)), mJSN in 1 knee, no or less mJSN in the contralateral knee, and no lateral JSN in both knees. Eighty participants (mean +/- SD age 60.6 +/- 9.1 years) fulfilled these criteria. Medial tibial and femoral cartilage morphology was analyzed from the baseline and the 1-year followup MRI (sagittal double echo at steady state by 3.0T) of both knees by experienced readers blinded to the time point and mJSN status. RESULTS Knees with more radiographic mJSN displayed greater medial cartilage loss (-80 mum) assessed by MRI than contralateral knees with less mJSN (-57 mum). The difference reached statistical significance in participants with an mJSN grade of 2 or 3 (P = 0.005-0.08), but not in participants with an mJSN grade of 1 (P = 0.28-0.98). In knees with more mJSN, cartilage loss increased with higher grades of mJSN (P = 0.003 in the medial femur). Knees with an mJSN grade of 2 or 3 displayed greater cartilage loss in the weight-bearing medial femur than in the posterior femur or in the medial tibia (P = 0.048). CONCLUSION Knees with advanced mJSN displayed greater cartilage loss than contralateral knees with less mJSN. These data suggest that radiography can be used to stratify fast structural progressors, and that MRI cartilage thickness loss is more pronounced at advanced radiographic disease stage.
Collapse
Affiliation(s)
- Felix Eckstein
- Paracelsus Medical University, Salzburg, Austria, and Chondrometrics, Ainring, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Quantitative MR Imaging of Cartilage and Trabecular Bone in Osteoarthritis. Radiol Clin North Am 2009; 47:655-73. [DOI: 10.1016/j.rcl.2009.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Andreisek G, White LM, Sussman MS, Kunz M, Hurtig M, Weller I, Essue J, Marks P, Eckstein F. Quantitative MR imaging evaluation of the cartilage thickness and subchondral bone area in patients with ACL-reconstructions 7 years after surgery. Osteoarthritis Cartilage 2009; 17:871-8. [PMID: 19230721 DOI: 10.1016/j.joca.2008.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/19/2008] [Accepted: 05/31/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the cartilage thickness (ThC) and subchondral bone area (tAB) of the operated and contra-lateral non-operated (healthy) knees in patients with anterior cruciate ligament (ACL)-reconstruction 7 years after surgery using a quantitative and regional cartilage MR imaging (qMRI) technique. METHODS Charts of 410 patients with ACL-reconstructions were retrospectively reviewed. Fifty-two patients (male/female, 28/24; mean age, 33.3 years) were included. Patients underwent KT-1000 testing and qMRI of both knees using coronal fat-saturated 3D spoiled gradient-recalled echo (SPGR) sequences (TR/TE, 44/4 ms) at 1.5 T. Quantitative analyses of ThC and tAB in the femoro-tibial cartilage plates were performed using a subregional approach. In addition, qualitative and quantitative assessment of femoral condyle shapes was performed. t tests with Bonferroni corrections were used for statistical analysis of side-to-side differences between the operated and non-operated knees. RESULTS KT-1000 testing was abnormal in 3/52 patients (6%). Lateral femoral tAB was significantly lower (-9.2%), and medial tibial tAB was significantly larger (+2%) in the operated vs non-operated knee (P<0.001). Regional and subregional ThC side-to-side differences were less than 0.1mm and, except for the external lateral femoral subregion, they were not statistically significant. Flattened and broader shapes of medial femoral condyles (P<0.001) were found in operated knees. No significant association of presence of cartilage or meniscus lesions at surgery with ThC 7 years post-operatively was found (P=0.06-0.98). CONCLUSION There is evidence for changes in the tAB and femoral shape 7 years post-ACL-reconstruction, but no side-to-side differences in subregional ThC were found between the operated and contra-lateral non-operated knees.
Collapse
Affiliation(s)
- G Andreisek
- Division of Musculoskeletal Imaging, Department of Medical Imaging, Mount Sinai Hospital and the University Health Network, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Eckstein F, Wirth W, Hudelmaier MI, Maschek S, Hitzl W, Wyman BT, Nevitt M, Hellio Le Graverand MP, Hunter D. Relationship of compartment-specific structural knee status at baseline with change in cartilage morphology: a prospective observational study using data from the osteoarthritis initiative. Arthritis Res Ther 2009; 11:R90. [PMID: 19534783 PMCID: PMC2714146 DOI: 10.1186/ar2732] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/05/2009] [Accepted: 06/17/2009] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The aim was to investigate the relationship of cartilage loss (change in medial femorotibial cartilage thickness measured with magnetic resonance imaging (MRI)) with compartment-specific baseline radiographic findings and MRI cartilage morphometry features, and to identify which baseline features can be used for stratification of fast progressors. METHODS An age and gender stratified subsample of the osteoarthritis (OA) initiative progression subcohort (79 women; 77 men; age 60.9 +/- 9.9 years; body mass index (BMI) 30.3 +/- 4.7) with symptomatic, radiographic OA in at least one knee was studied. Baseline fixed flexion radiographs were read centrally and adjudicated, and cartilage morphometry was performed at baseline and at one year follow-up from coronal FLASH 3 Tesla MR images of the right knee. RESULTS Osteophyte status at baseline was not associated with medial cartilage loss. Knees with medial joint space narrowing tended to show higher rates of change than those without, but the relationship was not statistically significant. Knees with medial femoral subchondral bone sclerosis (radiography), medial denuded subchondral bone areas (MRI), and low cartilage thickness (MRI) at baseline displayed significantly higher cartilage loss than those without, both with and without adjusting for age, sex, and BMI. Participants with denuded subchondral bone showed a standardized response mean of up to -0.64 versus -0.33 for the entire subcohort. CONCLUSIONS The results indicate that radiographic and MRI cartilage morphometry features suggestive of advanced disease appear to be associated with greater cartilage loss. These features may be suited for selecting patients with a higher likelihood of fast progression in studies that attempt to demonstrate the cartilage-preserving effect of disease-modifying osteoarthritis drugs.
Collapse
Affiliation(s)
- Felix Eckstein
- Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, A5020 Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Magnetic resonance image segmentation using semi-automated software for quantification of knee articular cartilage---initial evaluation of a technique for paired scans. Skeletal Radiol 2009; 38:505-11. [PMID: 19252907 PMCID: PMC3018074 DOI: 10.1007/s00256-009-0658-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 01/20/2009] [Accepted: 01/23/2009] [Indexed: 02/02/2023]
Abstract
PURPOSE Software-based image analysis is important for studies of cartilage changes in knee osteoarthritis (OA). This study describes an evaluation of a semi-automated cartilage segmentation software tool capable of quantifying paired images for potential use in longitudinal studies of knee OA. We describe the methodology behind the analysis and demonstrate its use by determination of test-retest analysis precision of duplicate knee magnetic resonance imaging (MRI) data sets. METHODS Test-retest knee MR images of 12 subjects with a range of knee health were evaluated from the Osteoarthritis Initiative (OAI) pilot MR study. Each subject was removed from the magnet between the two scans. The 3D DESS (sagittal, 0.456 mm x 0.365 mm, 0.7 mm slice thickness, TR 16.5 ms, TE 4.7 ms) images were obtained on a 3-T Siemens Trio MR system with a USA Instruments quadrature transmit-receive extremity coil. Segmentation of one 3D-image series was first performed and then the corresponding retest series was segmented by viewing both image series concurrently in two adjacent windows. After manual registration of the series, the first segmentation cartilage outline served as an initial estimate for the second segmentation. We evaluated morphometric measures of the bone and cartilage surface area (tAB and AC), cartilage volume (VC), and mean thickness (ThC.me) for medial/lateral tibia (MT/LT), total femur (F) and patella (P). Test-retest reproducibility was assessed using the root-mean square coefficient of variation (RMS CV%). RESULTS For the paired analyses, RMS CV % ranged from 0.9% to 1.2% for VC, from 0.3% to 0.7% for AC, from 0.6% to 2.7% for tAB and 0.8% to 1.5% for ThC.me. CONCLUSION Paired image analysis improved the measurement precision of cartilage segmentation. Our results are in agreement with other publications supporting the use of paired analysis for longitudinal studies of knee OA.
Collapse
|
40
|
Eckstein F, Wyman BT, Buck RJ, Wirth W, Maschek S, Hudelmaier M, Hellio Le Graverand MP. Longitudinal quantitative MR imaging of cartilage morphology in the presence of gadopentetate dimeglumine (Gd-DTPA). Magn Reson Med 2009; 61:975-80. [DOI: 10.1002/mrm.21929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Wirth W, Le Graverand MPH, Wyman BT, Maschek S, Hudelmaier M, Hitzl W, Nevitt M, Eckstein F. Regional analysis of femorotibial cartilage loss in a subsample from the Osteoarthritis Initiative progression subcohort. Osteoarthritis Cartilage 2009; 17:291-7. [PMID: 18789729 PMCID: PMC2778007 DOI: 10.1016/j.joca.2008.07.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 07/22/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The Osteoarthritis Initiative (OAI) is aimed at validating (imaging) biomarkers for monitoring progression of knee OA. Here we analyze regional femorotibial (FT) cartilage thickness changes over 1 year using 3 Tesla MRI. Specifically, we tested whether changes in central subregions exceed those in the total cartilage plates. METHODS The right knees of a subsample of the OAI progression subcohort (n=156, age 60.9+/-9.9 years) were studied. Fifty-four participants had definite radiographic osteoarthritis (OA) (KLG 2 or 3) and a BMI>30. Mean and minimal cartilage thickness were determined in subregions of the medial/lateral tibia (MT/LT), and of the medial/lateral weight-bearing femoral condyle (cMF/cLF), after paired (baseline, follow up) segmentation of coronal FLASHwe images with blinding to the order of acquisition. RESULTS The central aspect of cMF displayed a 5.8%/2.8% change in mean thickness in the group of 54/156 participants, respectively, with a standardized response mean (SRM) of -0.47/-0.31, whereas cartilage loss in the total cMF was 4.1%/1.9% (SRM -0.49/-0.30). In the central MT, the rate of change was -1.6%/-0.9% and the SRM -0.29/-0.20, whereas for the entire MT the rate was -1.0%/-0.5% and the SRM -0.21/-0.12. Minimal thickness displayed greater rates of change, but lower SRMs than mean thickness. CONCLUSIONS This study shows that the rate of cartilage loss is greater in central subregions than in entire FT cartilage plates. The sensitivity to change in central subregions was higher than for the total cartilage plate in the MT and was similar to the total plate in the medial weight-bearing femur.
Collapse
Affiliation(s)
- Wolfgang Wirth
- Chondrometrics GmbH, Ainring, Germany,Institute of Anatomy, LMU Munich, Germany
| | | | | | | | - Martin Hudelmaier
- Chondrometrics GmbH, Ainring, Germany,Institute of Anatomy & Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Hitzl
- Research Office, Paracelsus Medical University, Salzburg, Austria
| | - Michael Nevitt
- University of California and OAI Coordinating Center, San Francisco, CA
| | - Felix Eckstein
- Chondrometrics GmbH, Ainring, Germany,Institute of Anatomy & Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria
| | | |
Collapse
|
42
|
Eckstein F, Hudelmaier M, Cahue S, Marshall M, Sharma L. Medial-to-lateral ratio of tibiofemoral subchondral bone area is adapted to alignment and mechanical load. Calcif Tissue Int 2009; 84:186-94. [PMID: 19148562 PMCID: PMC2929533 DOI: 10.1007/s00223-008-9208-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 11/06/2008] [Indexed: 11/24/2022]
Abstract
Malalignment is known to affect the medial-to-lateral load distribution in the tibiofemoral joint. In this longitudinal study, we test the hypothesis that subchondral bone surface areas functionally adapt to the load distribution in malaligned knees. Alignment (hip-knee-ankle angle) was measured from full limb films in 174 participants with knee osteoarthritis. Coronal magnetic resonance images were acquired at baseline and 26.6 +/- 5.4 months later. The subchondral bone surface area of the weight-bearing tibiofemoral cartilages was segmented, with readers blinded to the order of acquisition. The size of the subchondral bone surface areas was computed after triangulation by proprietary software. The hip-knee-ankle angle showed a significant correlation with the tibial (r (2) = 0.25, P < 0.0001) and femoral (r (2) = 0.07, P < 0.001) ratio of medial-to-lateral subchondral bone surface area. In the tibia, the ratio was significantly different between varus (1.28:1), neutral (1.18:1), and valgus (1.13:1) knees (analysis of variance [ANOVA]; P < 0.00001). Similar observations were made in the weight-bearing femur (0.94:1 in neutral, 0.97.1 in varus, 0.91:1 in valgus knees; ANOVA P = 0.018). The annualized longitudinal increase in subchondral bone surface area was significant (P < 0.05) in the medial tibia (+0.13%), medial femur (+0.26%), and lateral tibia (+0.19%). In the medial femur, the change between baseline and follow-up was significantly different (ANOVA; P = 0.020) between neutral, varus, and valgus knees, with the increase in surface area being significantly greater (P = 0.019) in varus than in neutral knees. Tibiofemoral subchondral bone surface areas are shown to be functionally adapted to the medial-to-lateral load distribution. The longitudinal findings indicate that this adaptational process may continue to take place at advanced age.
Collapse
Affiliation(s)
- Felix Eckstein
- Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria.
| | | | | | | | | |
Collapse
|
43
|
Guermazi A, Eckstein F, Hellio Le Graverand-Gastineau MP, Conaghan PG, Burstein D, Keen H, Roemer FW. Osteoarthritis: current role of imaging. Med Clin North Am 2009; 93:101-26, xi. [PMID: 19059024 DOI: 10.1016/j.mcna.2008.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Osteoarthritis (OA) is the most prevalent joint disease; it is increasingly common in the aging population of Western society and has a major health economic impact. Despite surgery and symptom-oriented approaches there is no efficient treatment. Conventional radiography has played a role in the past in confirming diagnosis and demonstrating late bony changes and joint space narrowing. MRI has become the method of choice in large research endeavors and may become important for individualized treatment planning. This article focuses on radiography and MRI, with insight into other modalities, such as ultrasound, scintigraphy, and CT. Their role in OA diagnosis, follow-up, and research is discussed.
Collapse
Affiliation(s)
- Ali Guermazi
- Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, Third Floor, Boston, MA 02118, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 2008; 16:1433-41. [PMID: 18786841 PMCID: PMC3048821 DOI: 10.1016/j.joca.2008.06.016] [Citation(s) in RCA: 482] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 06/26/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To report on the process and criteria for selecting acquisition protocols to include in the osteoarthritis initiative (OAI) magnetic resonance imaging (MRI) study protocol for the knee. METHODS Candidate knee MR acquisition protocols identified from the literature were first optimized at 3Tesla (T). Twelve knees from 10 subjects were scanned one time with each of 16 acquisitions considered most likely to achieve the study goals and having the best optimization results. The resultant images and multi-planar reformats were evaluated for artifacts and structural discrimination of articular cartilage at the cartilage-fluid, cartilage-fat, cartilage-capsule, cartilage-meniscus and cartilage-cartilage interfaces. RESULTS The five acquisitions comprising the final OAI MRI protocol were assembled based on the study goals for the imaging protocol, the image evaluation results and the need to image both knees within a 75 min time slot, including positioning. For quantitative cartilage morphometry, fat-suppressed, 3D dual-echo in steady state (DESS) acquisitions appear to provide the best universal cartilage discrimination. CONCLUSIONS The OAI knee MRI protocol provides imaging data on multiple articular structures and features relevant to knee OA that will support a broad range of existing and anticipated measurement methods while balancing requirements for high image quality and consistency against the practical considerations of a large multi-center cohort study. Strengths of the final knee MRI protocol include cartilage quantification capabilities in three planes due to multi-planar reconstruction of a thin slice, high spatial resolution 3D DESS acquisition and the multiple, non-fat-suppressed image contrasts measured during the T2 relaxation time mapping acquisition.
Collapse
|
45
|
Eckstein F, Wirth W, Hudelmaier M, Stein V, Lengfelder V, Cahue S, Marshall M, Prasad P, Sharma L. Patterns of femorotibial cartilage loss in knees with neutral, varus, and valgus alignment. ACTA ACUST UNITED AC 2008; 59:1563-70. [DOI: 10.1002/art.24208] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Regatte RR, Schweitzer ME. Novel contrast mechanisms at 3 Tesla and 7 Tesla. Semin Musculoskelet Radiol 2008; 12:266-80. [PMID: 18850506 DOI: 10.1055/s-0028-1083109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Osteoarthritis (OA) is the most common musculoskeletal degenerative disease, affecting millions of people. Although OA has been considered primarily a cartilage disorder associated with focal cartilage degeneration, it is accompanied by well-known changes in subchondral and trabecular bone, including sclerosis and osteophyte formation. The exact cause of OA initiation and progression remains under debate, but OA typically first affects weightbearing joints such as the knee. Magnetic resonance imaging (MRI) has been recognized as a potential tool for quantitative assessment of cartilage abnormalities due to its excellent soft tissue contrast. Over the last two decades, several new MR biochemical imaging methods have been developed to characterize the disease process and possibly predict the progression of knee OA. These new MR biochemical methods play an important role not only for diagnosis of disease at an early stage, but also for their potential use in monitoring outcome of various drug therapies (success or failure). Recent advances in multicoil radiofrequency technology and high field systems (3 T and above) significantly improve the sensitivity and specificity of imaging studies for the diagnosis of musculoskeletal disorders. The current state-of-the-art MR imaging methods are briefly reviewed for the quantitative biochemical and functional imaging assessment of musculoskeletal systems.
Collapse
Affiliation(s)
- Ravinder R Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10003, USA.
| | | |
Collapse
|
47
|
Bowers ME, Trinh N, Tung GA, Crisco JJ, Kimia BB, Fleming BC. Quantitative MR imaging using "LiveWire" to measure tibiofemoral articular cartilage thickness. Osteoarthritis Cartilage 2008; 16:1167-73. [PMID: 18407529 PMCID: PMC2570785 DOI: 10.1016/j.joca.2008.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 03/01/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess the reliability and accuracy of manual and semi-automated segmentation methods for quantifying knee cartilage thickness. This study employed both manual and LiveWire-based semi-automated segmentation methods, ex vivo and in vivo, to measure tibiofemoral (TF) cartilage thickness. METHODS The articular cartilage of a cadaver knee and a healthy volunteer's knee were segmented manually and with LiveWire from multiple 3T MR images. The cadaver specimen's cartilage thickness was also evaluated with a 3D laser scanner, which was assumed to be the gold standard. Thickness measurements were made within specific cartilage regions. The reliability of each segmentation method was assessed both ex vivo and in vivo, and accuracy was assessed ex vivo by comparing segmentation results to those obtained with laser scanning. RESULTS The cadaver specimen thickness measurements showed mean coefficients of variation (CVs) of 4.16%, 3.02%, and 1.59%, when evaluated with manual segmentation, LiveWire segmentation, and laser scanning, respectively. The cadaver specimen showed mean absolute errors versus laser scanning of 4.07% and 7.46% for manual and LiveWire segmentation, respectively. In vivo thickness measurements showed mean CVs of 2.71% and 3.65% when segmented manually and with LiveWire, respectively. CONCLUSIONS Manual segmentation, LiveWire segmentation, and laser scanning are repeatable methods for quantifying knee cartilage thickness; however, the measurements are technique-dependent. Ex vivo, the manual segmentation error was distributed around the laser scanning mean, while LiveWire consistently underestimated laser scanning by 8.9%. Although LiveWire offers repeatability and decreased segmentation time, manual segmentation more closely approximates true cartilage thickness, particularly in cartilage contact regions.
Collapse
Affiliation(s)
- Megan E. Bowers
- Bioengineering Laboratory, Division of Orthopaedic Research, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI,Division of Engineering, Brown University, Providence, RI
| | - Nhon Trinh
- Division of Engineering, Brown University, Providence, RI
| | - Glenn A. Tung
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI
| | - Joseph J. Crisco
- Bioengineering Laboratory, Division of Orthopaedic Research, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI,Division of Engineering, Brown University, Providence, RI
| | | | - Braden C. Fleming
- Bioengineering Laboratory, Division of Orthopaedic Research, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI,Division of Engineering, Brown University, Providence, RI
| |
Collapse
|
48
|
Minimum joint space width and tibial cartilage morphology in the knees of healthy individuals: a cross-sectional study. BMC Musculoskelet Disord 2008; 9:119. [PMID: 18778479 PMCID: PMC2542509 DOI: 10.1186/1471-2474-9-119] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 09/08/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The clinical use of minimum joint space width (mJSW) and cartilage volume and thickness has been limited to the longitudinal measurement of disease progression (i.e. change over time) rather than the diagnosis of OA in which values are compared to a standard. This is primarily due to lack of establishment of normative values of joint space width and cartilage morphometry as has been done with bone density values in diagnosing osteoporosis. Thus, the purpose of this pilot study is to estimate reference values of medial joint space width and cartilage morphometry in healthy individuals of all ages using standard radiography and peripheral magnetic resonance imaging. DESIGN For this cross-sectional study, healthy volunteers underwent a fixed-flexion knee X-ray and a peripheral MR (pMR) scan of the same knee using a 1T machine (ONI OrthOne, Wilmington, MA). Radiographs were digitized and analyzed for medial mJSW using an automated algorithm. Only knees scoring <or=1 on the Kellgren-Lawrence scale (no radiographic evidence of knee OA) were included in the analyses. All 3D SPGRE fat-sat sagittal pMR scans were analyzed for medial tibial cartilage morphometry using a proprietary software program (Chondrometrics GmbH). RESULTS Of 119 healthy participants, 73 were female and 47 were male; mean (SD) age 38.2 (13.2) years, mean BMI 25.0 (4.4) kg/m2. Minimum JSW values were calculated for each sex and decade of life. Analyses revealed mJSW did not significantly decrease with increasing decade (p > 0.05) in either sex. Females had a mean (SD) medial mJSW of 4.8 (0.7) mm compared to males with corresponding larger value of 5.7 (0.8) mm. Cartilage morphometry results showed similar trends with mean (SD) tibial cartilage volume and thickness in females of 1.50 (0.19) microL/mm2 and 1.45 (0.19) mm, respectively, and 1.77 (0.24) microL/mm2 and 1.71 (0.24) mm, respectively, in males. CONCLUSION These data suggest that medial mJSW values do not decrease with aging in healthy individuals but remain fairly constant throughout the lifespan with "healthy" values of 4.8 mm for females and 5.7 mm for males. Similar trends were seen for cartilage morphology. Results suggest there may be no need to differentiate a t-score and a z-score in OA diagnosis because cartilage thickness and JSW remain constant throughout life in the absence of OA.
Collapse
|
49
|
Guermazi A, Burstein D, Conaghan P, Eckstein F, Hellio Le Graverand-Gastineau MP, Keen H, Roemer FW. Imaging in Osteoarthritis. Rheum Dis Clin North Am 2008; 34:645-87. [DOI: 10.1016/j.rdc.2008.04.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Eckstein F, Maschek S, Wirth W, Hudelmaier M, Hitzl W, Wyman B, Nevitt M, Le Graverand MPH. One year change of knee cartilage morphology in the first release of participants from the Osteoarthritis Initiative progression subcohort: association with sex, body mass index, symptoms and radiographic osteoarthritis status. Ann Rheum Dis 2008; 68:674-9. [PMID: 18519425 DOI: 10.1136/ard.2008.089904] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The Osteoarthritis Initiative (OAI) is a multicentre study targeted at identifying biomarkers for evaluating the progression and risk factors of symptomatic knee OA. Here cartilage loss using 3 Tesla (3 T) MRI is analysed over 1 year in a subset of the OAI, together with its association with various risk factors. METHODS An age- and gender-stratified subsample of the OAI progression subcohort (79 women and 77 men, mean (SD) age 60.9 (9.9) years, body mass index (BMI) 30.3 (4.7)) with both frequent symptoms and radiographic OA in at least one knee was studied. Coronal FLASHwe (fast low angle shot with water excitation) MRIs of the right knee were acquired at 3 T. Seven readers segmented tibial and femoral cartilages blinded to order of acquisition. Segmentations were quality controlled by one expert. RESULTS The reduction in mean cartilage thickness (ThC) was greater (p = 0.004) in the medial than in the lateral compartment, greater (p = 0.001) in the medial femur (-1.9%) than in the medial tibia (-0.5%) and greater (p = 0.011) in the lateral tibia (-0.7%) than in the lateral femur (0.1%). Multifactorial analysis of variance did not reveal significant differences in the rate of change in ThC by sex, BMI, symptoms and radiographic knee OA status. Knees with Kellgren-Lawrence grade 2 or 3 and with a BMI >30 tended to display greater changes. CONCLUSIONS In this sample of the OAI progression subcohort, the greatest, but overall very modest, rate of cartilage loss was observed in the weight-bearing medial femoral condyle. Knees with radiographic OA in obese participants showed trends towards higher rates of change than those of other participants, but these trends did not reach statistical significance.
Collapse
Affiliation(s)
- F Eckstein
- Institute of Anatomy and Musculoskeletal Research, PMU, Salzburg, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|