1
|
Coste A, Boumezbeur F, Vignaud A, Madelin G, Reetz K, Le Bihan D, Rabrait-Lerman C, Romanzetti S. Tissue sodium concentration and sodium T 1 mapping of the human brain at 3 T using a Variable Flip Angle method. Magn Reson Imaging 2019; 58:116-124. [PMID: 30695720 DOI: 10.1016/j.mri.2019.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 01/18/2023]
Abstract
PURPOSE The state-of-the-art method to quantify sodium concentrations in vivo consists in a fully relaxed 3D spin-density (SD) weighted acquisition. Nevertheless, most sodium MRI clinical studies use short-TR SD acquisitions to reduce acquisition durations. We present a clinically viable implementation of the Variable Flip Angle (VFA) method for robust and clinically viable quantification of total sodium concentration (TSC) and longitudinal relaxation rates in vivo in human brain at 3 T. METHODS Two non-Cartesian steady-state spoiled ultrashort echo time (UTE) scans, performed at optimized flip angles, repetition time and pulse length determined under specific absorption rate constraints, are used to simultaneously compute T1 and total sodium concentration (TSC) maps using the VFA method. Images are reconstructed using the non-uniform Fast Fourier Transform algorithm and TSC maps are corrected for possible inhomogeneity of coil transmission and reception profiles. Fractioned acquisitions are used to correct for potential patient motion. TSC quantifications obtained using the VFA method are validated at first in comparison with a fully-relaxed SD acquisition in a calibration phantom. The robustness of similar VFA acquisitions are compared to the short-TR SD approach in vivo on seven healthy volunteers. RESULTS The VFA method resulted in consistent TSC and T1 estimates across our cohort of healthy subjects, with mean TSC of 38.1 ± 5.0 mmol/L and T1 of 39.2 ± 4.4 ms. These results are in agreement with previously reported values in literature TSC estimations and with the predictions of a 2-compartment model. However, the short-TR SD acquisition systematically underestimated the sodium concentration with a mean TSC of 31 ± 4.5 mmol/L. CONCLUSION The VFA method can be applied successfully to image sodium at 3 T in about 20 min and provides robust and intrinsically T1-corrected TSC maps.
Collapse
Affiliation(s)
- Arthur Coste
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fawzi Boumezbeur
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Alexandre Vignaud
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Guillaume Madelin
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, USA
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Denis Le Bihan
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | | | | |
Collapse
|
2
|
Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:1-50. [PMID: 30527132 DOI: 10.1016/j.pnmrs.2018.06.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging and spectroscopic techniques are widely used in humans both for clinical diagnostic applications and in basic research areas such as cognitive neuroimaging. In recent years, new human MR systems have become available operating at static magnetic fields of 7 T or higher (≥300 MHz proton frequency). Imaging human-sized objects at such high frequencies presents several challenges including non-uniform radiofrequency fields, enhanced susceptibility artifacts, and higher radiofrequency energy deposition in the tissue. On the other side of the scale are gains in signal-to-noise or contrast-to-noise ratio that allow finer structures to be visualized and smaller physiological effects to be detected. This review presents an overview of some of the latest methodological developments in human ultra-high field MRI/MRS as well as associated clinical and scientific applications. Emphasis is given to techniques that particularly benefit from the changing physical characteristics at high magnetic fields, including susceptibility-weighted imaging and phase-contrast techniques, imaging with X-nuclei, MR spectroscopy, CEST imaging, as well as functional MRI. In addition, more general methodological developments such as parallel transmission and motion correction will be discussed that are required to leverage the full potential of higher magnetic fields, and an overview of relevant physiological considerations of human high magnetic field exposure is provided.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Sina Straub
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Moritz Zaiss
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
3
|
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168:250-268. [PMID: 27890804 PMCID: PMC5443706 DOI: 10.1016/j.neuroimage.2016.11.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s. These constraints were removed by the introduction of 3T and now ultrahigh (≥7T) magnetic field scanners with superior gradients and electronics for proton MR imaging. New projection pulse sequence designs have greatly improved sodium acquisition efficiency. The increased field strength has provided the expected increased sensitivity to achieve resolutions acceptable for metabolic interpretation even in small target tissues. Consistency of quantification of the sodium MR image to provide metabolic parametric maps has been demonstrated by several different pulse sequences and calibration procedures. The vital roles of sodium ion in membrane transport and the extracellular matrix will be reviewed to indicate the broad opportunities that now exist for clinical sodium MR imaging. The final challenge is for the technology to be supplied on clinical ≥3T scanners.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor Street, Chicago, IL 60612, United States.
| |
Collapse
|
4
|
Lommen JM, Flassbeck S, Behl NG, Niesporek S, Bachert P, Ladd ME, Nagel AM. Probing the microscopic environment of 23
Na ions in brain tissue by MRI: On the accuracy of different sampling schemes for the determination of rapid, biexponential T2* decay at low signal-to-noise ratio. Magn Reson Med 2018; 80:571-584. [DOI: 10.1002/mrm.27059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/21/2017] [Accepted: 12/05/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Jonathan M. Lommen
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Sebastian Flassbeck
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Nicolas G.R. Behl
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Sebastian Niesporek
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy; Heidelberg Germany
| | - Mark E. Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy; Heidelberg Germany
- University of Heidelberg, Faculty of Medicine; Heidelberg Germany
| | - Armin M. Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
- Institute of Radiology; University Hospital Erlangen; Erlangen Germany
| |
Collapse
|
5
|
Stobbe RW, Beaulieu C. Calculating potential error in sodium MRI with respect to the analysis of small objects. Magn Reson Med 2017; 79:2968-2977. [DOI: 10.1002/mrm.26962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Robert W. Stobbe
- Department of Biomedical Engineering, 1098 Research Transition Facility; University of Alberta; Edmonton Alberta Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, 1098 Research Transition Facility; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
6
|
Romanzetti S, Mirkes CC, Fiege DP, Celik A, Felder J, Shah NJ. Mapping tissue sodium concentration in the human brain: a comparison of MR sequences at 9.4Tesla. Neuroimage 2014; 96:44-53. [PMID: 24721332 DOI: 10.1016/j.neuroimage.2014.03.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 03/26/2014] [Accepted: 03/30/2014] [Indexed: 01/28/2023] Open
Abstract
Sodium is the second most abundant MR-active nucleus in the human body and is of fundamental importance for the function of cells. Previous studies have shown that many pathophysiological conditions induce an increase of the average tissue sodium concentration. To date, several MR sequences have been used to measure sodium. The aim of this study was to evaluate the performance and suitability of five different MR sequences for quantitative sodium imaging on a whole-body 9.4Tesla MR scanner. Numerical simulations, phantom experiments and in vivo imaging on healthy subjects were carried out. The results demonstrate that, of these five sequences, the Twisted Projection Imaging sequence is optimal for quantitative sodium imaging, as it combines a number of features which are particularly relevant in order to obtain high quality quantitative images of sodium. These include: ultra-short echo times, efficient k-space sampling, and robustness against off-resonance effects. Mapping of sodium in the human brain is a technique not yet fully explored in neuroscience. Ultra-high field sodium MRI may provide new insights into the pathogenesis of neurological disorders, and may help to develop new and disease-specific biomarkers for the early diagnosis and therapeutic intervention before irreversible brain damage has taken place.
Collapse
Affiliation(s)
- Sandro Romanzetti
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany.
| | - Christian C Mirkes
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany; Department for Biomedical Magnetic Resonance, University of Tübingen, Tuebingen, Germany; High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Daniel P Fiege
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Avdo Celik
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany; Institute of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Translational Medicine, Germany
| |
Collapse
|
7
|
Kraff O, Fischer A, Nagel AM, Mönninghoff C, Ladd ME. MRI at 7 Tesla and above: demonstrated and potential capabilities. J Magn Reson Imaging 2014; 41:13-33. [PMID: 24478137 DOI: 10.1002/jmri.24573] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/03/2014] [Indexed: 12/29/2022] Open
Abstract
With more than 40 installed MR systems worldwide operating at 7 Tesla or higher, ultra-high-field (UHF) imaging has been established as a platform for clinically oriented research in recent years. Along with technical developments that, in part, have also been successfully transferred to lower field strengths, MR imaging and spectroscopy at UHF have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. In terms of applications, this overview article focuses on already achieved advantages for in vivo imaging, i.e., in imaging the brain and joints of the musculoskeletal system, but also considers developments in body imaging, which is particularly challenging. Furthermore, new applications for clinical diagnostics such as X-nuclei imaging and spectroscopy, which only really become feasible at ultra-high magnetic fields, will be presented.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | | | | | | | | |
Collapse
|
8
|
Feldman RE, Stobbe R, Watts A, Beaulieu C. Sodium imaging of the human knee using soft inversion recovery fluid attenuation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 234:197-206. [PMID: 23896067 DOI: 10.1016/j.jmr.2013.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/27/2013] [Accepted: 06/30/2013] [Indexed: 06/02/2023]
Abstract
Sodium signal strength in MRI is low when compared with (1)H. Thus, image voxel volumes must be relatively large in order to produce a sufficient signal-to-noise ratio (SNR). The measurement of sodium in cartilage is hindered by conflation with signal from the adjacent fluid spaces. Inversion recovery can be used to null signal from fluid, but reduces SNR. The purpose of this work was to optimize inversion recovery sodium MRI to enhance cartilage SNR while nulling fluid. Sodium relaxation was first measured for knee cartilage (T1=21±1 ms, T(2 fast)(∗)=0.8±0.2 ms, T(2 slow)(∗)=19.7±0.5 ms) and fluid (T1=48±3 ms, T2(∗)=47±4 ms) in nine healthy subjects at 4.7 T. The rapid relaxation of cartilage in relation to fluid permits the use of a lengthened inversion pulse to preferentially invert the fluid components. Simulations of inversion pulse length were performed to yield a cartilage SNR enhancing combination of parameters that nulled fluid. The simulations were validated in a phantom and then in vivo. B0 inhomogeneity was measured and the effect of off-resonance during the soft inversion pulse was assessed with simulation. Soft inversion recovery yielded twice the SNR and much improved sodium images of cartilage in human knee with little confounding signal from fluid.
Collapse
|
9
|
Exploring and enhancing relaxation-based sodium MRI contrast. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 27:21-33. [PMID: 23820724 DOI: 10.1007/s10334-013-0390-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
OBJECT Sodium MRI is typically concerned with measuring tissue sodium concentration. This requires the minimization of relaxation weighting. However, (23)Na relaxation may itself be interesting to explore, given an underlying mechanism (i.e. the electric-quadrupole-moment-electric-field-gradient interaction) that differs from (1)H. A new sodium sequence was developed to enhance (23)Na relaxation contrast without decreasing signal-to-noise ratio. MATERIALS AND METHODS The new sequence, labeled Projection Acquisition in the steady-state with Coherent MAgNetization (PACMAN), uses gradient refocusing of transverse magnetization following readout, a short repetition time, and a long radiofrequency excitation pulse. It was developed using simulation, verified in model environments (saline and agar), and evaluated in the brain of three healthy adult volunteers. RESULTS Projection Acquisition in the steady-state with Coherent MAgNetization generates a large positive contrast-to-noise ratio (CNR) between saline and agar, matching simulation-based design. In addition to enhanced CNR between cerebral spinal fluid and brain tissue in vivo, PACMAN develops substantial contrast between gray and white matter. Further simulation shows that PACMAN has a ln(T 2f/T 1) contrast dependence (where T 2f is the fast component of (23)Na T 2), as well as residual quadrupole interaction dependence. CONCLUSION The relaxation dependence of PACMAN sodium MRI may provide contrast related to macromolecular tissue structure.
Collapse
|
10
|
Tsang A, Stobbe RW, Beaulieu C. Evaluation of B0-inhomogeneity correction for triple-quantum-filtered sodium MRI of the human brain at 4.7 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 230:134-144. [PMID: 23475057 DOI: 10.1016/j.jmr.2013.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/19/2012] [Accepted: 01/28/2013] [Indexed: 06/01/2023]
Abstract
Off-resonance can result in signal loss on triple-quantum-filtered (TQF) sodium images. Three correction methods have been proposed to mitigate this problem, but their effectiveness and necessity has not yet been evaluated for human brain. This evaluation is warranted given the doubling or quadrupling of scan length without the expected signal-to-noise ratio (SNR) benefit. First, simulations and agar gel experiments showed that the off-resonance effects on signal loss were asymmetric about on-resonance. Second, the two scan length doubling correction methods were tested for two sets of TQF acquisition parameters in 10 healthy volunteers at 4.7 Tesla. Using only manual shimming on the sodium signal and a 3-pulse TQF sequence with an optimal preparation time value of 6 ms, the majority of brain tissue voxels (87-94% depending on sequence parameters) experienced B0 inhomogeneity amounting to less than 10% signal losses. Relative signal intensities of 0.96 ± 0.04 and 0.98 ± 0.02 were measured in these voxels relative to on-resonant voxels for SNR-optimized and standard TQF parameters. The remaining brain voxels in regions with known susceptibility problems suffered more substantial signal losses, which were partially recovered with the correction methods. At field strengths below 4.7T, at similar ranges of offset frequencies at higher fields and in typical volunteers, B0 correction appears unnecessary for TQF analysis in most of the brain. In many cases where regions with known susceptibility issues are not of concern, a doubling of scan time may be better spent to either improve SNR or spatial resolution in the TQF sodium images.
Collapse
Affiliation(s)
- Adrian Tsang
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
11
|
|
12
|
Boada FE, Qian Y, Nemoto E, Jovin T, Jungreis C, Jones SC, Weimer J, Lee V. Sodium MRI and the assessment of irreversible tissue damage during hyper-acute stroke. Transl Stroke Res 2012; 3:236-45. [PMID: 24323779 DOI: 10.1007/s12975-012-0168-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 03/29/2012] [Indexed: 12/24/2022]
Abstract
Sodium MRI (sMRI) has undergone a tremendous amount of technical development during the last two decades that makes it a suitable tool for the study of human pathology in the acute setting within the constraints of a clinical environment. The salient role of the sodium ion during impaired ATP production during the course of brain ischemia makes sMRI an ideal tool for the study of ischemic tissue viability during stroke. In this paper, the current limitations of conventional MRI for the determination of tissue viability during evolving brain ischemia are discussed. This discussion is followed by a summary of the known findings about the dynamics of tissue sodium changes during brain ischemia. A mechanistic model for the explanation of these findings is presented together with the technical requirements for its investigation using clinical MRI scanners. An illustration of the salient features of the technique is also presented using a nonhuman primate model of reversible middle cerebral artery occlusion.
Collapse
Affiliation(s)
- Fernando E Boada
- MR Research Center, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA,
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Qian Y, Zhao T, Zheng H, Weimer J, Boada FE. High-resolution sodium imaging of human brain at 7 T. Magn Reson Med 2011; 68:227-33. [PMID: 22144258 DOI: 10.1002/mrm.23225] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 01/17/2023]
Abstract
The feasibility of high-resolution sodium magnetic resonance imaging on human brain at 7 T was demonstrated in this study. A three-dimensional anisotropic resolution data acquisition was used to address the challenge of low signal-to-noise ratio associated with high resolution. Ultrashort echo-time sequence was used for the anisotropic data acquisition. Phantoms and healthy human brains were studied on a whole-body 7-T magnetic resonance imaging scanner. Sodium images were obtained at two high nominal in-plane resolutions (1.72 and 0.86 mm) at a slice thickness of 4 mm. Signal-to-noise ratio in the brain image (cerebrospinal fluid) was measured as 14.4 and 6.8 at the two high resolutions, respectively. The actual in-plane resolution was measured as 2.9 and 1.6 mm, 69-86% larger than their nominal values. The quantification of sodium concentration on the phantom and brain images enabled better accuracy at the high nominal resolutions than at the low nominal resolution of 3.44 mm (measured resolution 5.5 mm) due to the improvement of in-plane resolution.
Collapse
Affiliation(s)
- Yongxian Qian
- MR Research Center, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
14
|
Tsang A, Stobbe RW, Beaulieu C. Triple-quantum-filtered sodium imaging of the human brain at 4.7 T. Magn Reson Med 2011; 67:1633-43. [PMID: 21956282 DOI: 10.1002/mrm.23147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/10/2022]
Abstract
The limited signal-to-noise ratio of triple-quantum-filtered MRI of sodium is a major hurdle for its application clinically. Although it has been shown that short 90° radiofrequency pulses in combination with sufficiently long repetition time for full T(1) recovery (labelled "standard" parameters) produce the maximum signal through the triple-quantum-filter, and in this work, simulation and images of agar phantoms and human brain demonstrate that the use of longer radiofrequency pulses and reduced repetition time (optimized parameters to accommodate more averages for a constant specific absorption rate, reducing noise variance for a given scan length) results in signal-to-noise ratio improvement (22 ± 5% in brain tissue of five healthy volunteers--images created in 11 min with nominal resolution of 8.4 mm isotropic). However, residual intensity was observed in the ventricular space on triple-quantum-filtered images acquired with either optimized or standard parameters, contrary to the expectation of complete single-quantum signal suppression. Further simulation and experimentation suggest that this is likely due to the combination of triple-quantum-passed signal from surrounding brain tissue being spatially smeared into the ventricular space and single-quantum-signal breakthrough from sodium nuclei in the fluid space. It is shown that the latter can be eliminated with judicious first flip angle selection.
Collapse
Affiliation(s)
- Adrian Tsang
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
15
|
Tsang A, Stobbe RW, Asdaghi N, Hussain MS, Bhagat YA, Beaulieu C, Emery D, Butcher KS. Relationship between sodium intensity and perfusion deficits in acute ischemic stroke. J Magn Reson Imaging 2011; 33:41-7. [PMID: 21182119 DOI: 10.1002/jmri.22299] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To assess the relationship between sodium signal intensity changes and oligemia, measured with perfusion-weighted imaging (PWI), in ischemic stroke patients. MATERIALS AND METHODS Nine ischemic stroke patients (55 ± 13 years), four with follow-up scans, underwent sodium and proton imaging 4-32 hours after symptom onset. Relative sodium intensity was calculated as the ratio of signal intensities in core (identified as hypertintense lesions on diffusion-weighted imaging [DWI]) or putative penumbra (PWI-DWI mismatch) to contralateral homologous regions. RESULTS Sodium intensity increases in the core were not correlated with the severity of hypoperfusion, measured with either cerebral blood flow (rho = 0.157; P = 0.61) or cerebral blood volume (rho = -0.234; P = 0.44). In contrast, relative sodium intensity was not elevated (4-7 hours 0.96 ± 0.07; 17-32 hours 1.00 ± 0.07) in PWI-DWI mismatch regions. CONCLUSION Sodium signal intensity cannot be predicted by the degree of hypoperfusion acutely. Sodium intensity also remains unchanged in PWI-DWI mismatch tissue, indicating preservation of ionic homeostasis. Sodium magnetic resonance imaging (MRI), in conjunction with PWI and DWI, may permit identification of patients with viable tissue, despite an unknown symptom onset time.
Collapse
Affiliation(s)
- Adrian Tsang
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Watts A, Stobbe RW, Beaulieu C. Signal-to-noise optimization for sodium MRI of the human knee at 4.7 Tesla using steady state. Magn Reson Med 2011; 66:697-705. [PMID: 21437972 DOI: 10.1002/mrm.22838] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/17/2010] [Accepted: 12/27/2010] [Indexed: 11/07/2022]
Abstract
Sodium magnetic resonance imaging of knee cartilage is a possible diagnostic method for osteoarthritis, but low signal-to-noise ratio yields low spatial resolution images and long scan times. For a given scan time, a steady-state approach with reduced repetition time and increased averaging may improve signal-to-noise ratio and hence attainable resolution. However, repetition time reduction results in increased power deposition, which must be offset with increased radiofrequency pulse length and/or reduced flip angle to maintain an acceptable specific absorption rate. Simulations varying flip angle, repetition time, and radiofrequency pulse length were performed for constant power deposition corresponding to ∼6 W/kg over the human knee at 4.7 T. For 10% agar, simulation closely matched experiment. For healthy human knee cartilage, a 37% increase in signal-to-noise ratio was predicted for steady-state over "fully relaxed" parameters while a 29% ± 4% increase was determined experimentally (n=10). Partial volume of cartilage with synovial fluid, inaccurate relaxation parameters used in simulation, and/or quadrupolar splitting may be responsible for this disagreement. Excellent quality sodium images of the human knee were produced in 9 mins at 4.7 T using the signal-to-noise ratio enhancing steady-state technique.
Collapse
Affiliation(s)
- Alexander Watts
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
17
|
Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR. Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 2010; 62:1565-73. [PMID: 19859915 DOI: 10.1002/mrm.22157] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A density-adapted three-dimensional radial projection reconstruction pulse sequence is presented which provides a more efficient k-space sampling than conventional three-dimensional projection reconstruction sequences. The gradients of the density-adapted three-dimensional radial projection reconstruction pulse sequence are designed such that the averaged sampling density in each spherical shell of k-space is constant. Due to hardware restrictions, an inner sphere of k-space is sampled without density adaption. This approach benefits from both the straightforward handling of conventional three-dimensional projection reconstruction sequence trajectories and an enhanced signal-to-noise ratio (SNR) efficiency akin to the commonly used three-dimensional twisted projection imaging trajectories. Benefits for low SNR applications, when compared to conventional three-dimensional projection reconstruction sequences, are demonstrated with the example of sodium imaging. In simulations of the point-spread function, the SNR of small objects is increased by a factor 1.66 for the density-adapted three-dimensional radial projection reconstruction pulse sequence sequence. Using analytical and experimental phantoms, it is shown that the density-adapted three-dimensional radial projection reconstruction pulse sequence allows higher resolutions and is more robust in the presence of field inhomogeneities. High-quality in vivo images of the healthy human leg muscle and the healthy human brain are acquired. For equivalent scan times, the SNR is up to a factor of 1.8 higher and anatomic details are better resolved using density-adapted three-dimensional radial projection reconstruction pulse sequence.
Collapse
Affiliation(s)
- Armin M Nagel
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Fleysher L, Oesingmann N, Stoeckel B, Grossman RI, Inglese M. Sodium long-component T(2)(*) mapping in human brain at 7 Tesla. Magn Reson Med 2010; 62:1338-41. [PMID: 19780162 DOI: 10.1002/mrm.22133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sodium ((23)Na) MRI may provide unique information about the cellular and metabolic integrity of the brain. The quantification of tissue sodium concentration from (23)Na images with nonzero echo time (TE) requires knowledge of tissue-specific parameters that influence the single-quantum sodium signal such as transverse (T(2)) relaxation times. We report the sodium ((23)Na) long component of the effective transverse relaxation time T(2) (*) values obtained at 7 T in several brain regions from six healthy volunteers. A two-point protocol based on a gradient-echo sequence optimized for the least error per given imaging time was used (TE(1) = 12 ms; TE(2) = 37 ms; averaged N(1) = 5; N(2) = 15 times; pulse repetition time = 130 ms). The results reveal that long T(2)(*) component of tissue sodium (mean +/- standard deviation) varied between cerebrospinal fluid (54 +/- 4 ms) and gray (28 +/- 2 ms) and white (29 +/- 2 ms) matter structures. The results also show that the long T(2)(*) component increases as a function of the main static field B(0), indicating that correlation time of sodium ion motion is smaller than the time-scale defined by the Larmor frequency. These results are a prerequisite for the quantification of tissue sodium concentration from (23)Na MRI scans with nonzero echo time, will contribute to the design of future measurements (such as triple-quantum imaging), and themselves may be of clinical utility.
Collapse
Affiliation(s)
- Lazar Fleysher
- Department of Radiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
19
|
Wang L, Wu Y, Chang G, Oesingmann N, Schweitzer ME, Jerschow A, Regatte RR. Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging 2009; 30:606-14. [PMID: 19711406 DOI: 10.1002/jmri.21881] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To demonstrate the feasibility of acquiring high-resolution, isotropic 3D-sodium magnetic resonance (MR) images of the whole knee joint in vivo at ultrahigh field strength (7.0T) via a 3D-radial acquisition with ultrashort echo times and clinically acceptable acquisition times. MATERIALS AND METHODS Five healthy controls (four males, one female; mean +/- standard deviation [SD] age 28.7 +/- 4.8 years) and five patients with osteoarthritis (OA) (three males, two females; mean +/- SD age 52.4 +/- 5.6 years) underwent (23)Na MRI on a 7T, multinuclei equipped whole-body scanner. A quadrature (23)Na knee coil and a 3D-gradient echo (GRE) imaging sequence with a radial acquisition were utilized. Cartilage sodium concentration was measured and compared between the healthy controls and OA patients. RESULTS The average signal-to-noise ratio (SNR) for different spatial resolutions (1.2-4 mm) varied from approximately 14-120, respectively. The mean sodium concentration of healthy subjects ranged from approximately 240 +/- 28 mM/L to 280 +/- 22 mM/L. However, in OA patients the sodium concentrations were reduced significantly by approximately 30%-60%, depending on the degree of cartilage degeneration. CONCLUSION The preliminary results suggest that sodium imaging at 7T may be a feasible potential alternative for physiologic OA imaging and clinical diagnosis.
Collapse
Affiliation(s)
- Ligong Wang
- Center for Biomedical Imaging, New York University Langone Medical Center, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Hussain MS, Stobbe RW, Bhagat YA, Emery D, Butcher KS, Manawadu D, Rizvi N, Maheshwari P, Scozzafava J, Shuaib A, Beaulieu C. Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol 2009; 66:55-62. [PMID: 19670436 DOI: 10.1002/ana.21648] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Establishing time of onset is important in acute stroke management. Current imaging modalities do not allow determination of stroke onset time. Although correlations between sodium magnetic resonance imaging signal intensity within ischemic lesions and time of onset have been shown in animal models, the relation to onset time has not been established in human stroke. Utilizing high-quality sodium images, we tested the hypothesis that sodium signal intensity increases with time from symptom onset in human ischemic stroke. METHODS Twenty-one stroke patients (63 +/- 15 years old) were scanned 4 to 104 hours after symptom onset. Follow-up images were obtained in 10 patients at 23 to 161 hours after onset, yielding a total of 32 time points. A standard stroke imaging protocol was acquired at 1.5 Tesla, followed by sodium magnetic resonance imaging at 4.7 Tesla. Relative sodium signal intensity within each lesion was measured with respect to the contralateral side. RESULTS The sodium image quality was sufficient to visualize each acute lesion (lesion volume range, 1.7-217cm(3)). Relative sodium signal intensity increased nonlinearly over time after stroke onset. Sodium images acquired within 7 hours (n = 5) demonstrated a relative increase in lesion intensity of 10% or less, whereas the majority beyond 9 hours demonstrated increases of 23% or more, with an eventual leveling at 69 +/- 18%. INTERPRETATION Increases of sodium signal intensity within the ischemic lesion are related to time after stroke onset. Thus, noninvasive imaging of sodium may be a novel metabolic biomarker related to stroke progression. Ann Neurol 2009;66:55-62.
Collapse
Affiliation(s)
- Muhammad S Hussain
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stobbe R, Beaulieu C. Advantage of sampling density weighted apodization over postacquisition filtering apodization for sodium MRI of the human brain. Magn Reson Med 2008; 60:981-6. [DOI: 10.1002/mrm.21738] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|