1
|
Grattan-Smith JD, Chow J, Kurugol S, Jones RA. Quantitative renal magnetic resonance imaging: magnetic resonance urography. Pediatr Radiol 2022; 52:228-248. [PMID: 35022851 PMCID: PMC9670866 DOI: 10.1007/s00247-021-05264-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023]
Abstract
The goal of functional renal imaging is to identify and quantitate irreversible renal damage and nephron loss, as well as potentially reversible hemodynamic changes. MR urography has evolved into a comprehensive evaluation of the urinary tract that combines anatomical imaging with functional evaluation in a single test without ionizing radiation. Quantitative functional MR imaging is based on dynamic contrast-enhanced MR acquisitions that provide progressive, visible enhancement of the renal parenchyma and urinary tract. The signal changes related to perfusion, concentration and excretion of the contrast agent can be evaluated using both quantitative and qualitative measures. Functional evaluation with MR has continued to improve as a result of significant technical advances allowing for faster image acquisition as well as the development of new tracer kinetic models of renal function. The most common indications for MR urography in children are the evaluation of congenital anomalies of the kidney and urinary tract including hydronephrosis and renal malformations, and the identification of ectopic ureters in children with incontinence. In this paper, we review the underlying acquisition schemes and techniques used to generate quantitative functional parameters including the differential renal function (DRF), asymmetry index, mean transit time (MTT), signal intensity versus time curves as well as the calculation of individual kidney glomerular filtration rate (GFR). Visual inspection and semi-quantitative assessment using the renal transit time (RTT) and calyceal transit times (CTT) are fundamental to accurate diagnosis and are used as a basis for the interpretation of the quantitative data. The importance of visual assessment of the images cannot be overstated when analyzing the quantitative measures of renal function.
Collapse
Affiliation(s)
| | - Jeanne Chow
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Sila Kurugol
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Richard A Jones
- Department of Radiology, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Bane O, Said D, Weiss A, Stocker D, Kennedy P, Hectors SJ, Khaim R, Salem F, Delaney V, Menon MC, Markl M, Lewis S, Taouli B. 4D flow MRI for the assessment of renal transplant dysfunction: initial results. Eur Radiol 2020; 31:909-919. [PMID: 32870395 DOI: 10.1007/s00330-020-07208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/07/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES (1) Determine inter-observer reproducibility and test-retest repeatability of 4D flow parameters in renal allograft vessels; (2) determine if 4D flow measurements in the renal artery (RA) and renal vein (RV) can distinguish between functional and dysfunctional allografts; (3) correlate haemodynamic parameters with estimated glomerular filtration rate (eGFR), perfusion measured with dynamic contrast-enhanced MRI (DCE-MRI) and histopathology. METHODS Twenty-five prospectively recruited renal transplant patients (stable function/chronic renal allograft dysfunction, 12/13) underwent 4D flow MRI at 1.5 T. 4D flow coronal oblique acquisitions were performed in the transplant renal artery (RA) (velocity encoding parameter, VENC = 120 cm/s) and renal vein (RV) (VENC = 45 cm/s). Test-retest repeatability (n = 3) and inter-observer reproducibility (n = 10) were assessed by Cohen's kappa, coefficient of variation (CoV) and Bland-Altman statistics. Haemodynamic parameters were compared between patients and correlated to the estimated glomerular filtration rate, DCE-MRI parameters (n = 10) and histopathology from allograft biopsies (n = 15). RESULTS For inter-observer reproducibility, kappa was > 0.99 and 0.62 and CoV of flow was 12.6% and 7.8% for RA and RV, respectively. For test-retest repeatability, kappa was > 0.99 and 0.5 and CoV of flow was 27.3% and 59.4%, for RA and RV, respectively. RA (p = 0.039) and RV (p = 0.019) flow were both significantly reduced in dysfunctional allografts. Both identified chronic allograft dysfunction with good diagnostic performance (RA: AUC = 0.76, p = 0.036; RV: AUC = 0.8, p = 0.018). RA flow correlated negatively with histopathologic interstitial fibrosis score ci (ρ = - 0.6, p = 0.03). CONCLUSIONS 4D flow parameters had better repeatability in the RA than in the RV. RA and RV flow can identify chronic renal allograft dysfunction, with RA flow correlating with histopathologic interstitial fibrosis score. KEY POINTS • Inter-observer reproducibility of 4D flow measurements was acceptable in both the transplant renal artery and vein, but test-retest repeatability was better in the renal artery than in the renal vein. • Blood flow measurements obtained with 4D flow MRI in the renal artery and renal vein are significantly reduced in dysfunctional renal transplants. • Renal transplant artery flow correlated negatively with histopathologic interstitial fibrosis score.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Daniela Said
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Amanda Weiss
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Daniel Stocker
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Paul Kennedy
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Stefanie J Hectors
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, NY, USA
| | - Rafael Khaim
- Division of Renal Medicine, Recanati Miller Transplantation Institute, ISMMS, New York, NY, USA
| | - Fadi Salem
- Department of Pathology, ISMMS, New York, NY, USA
| | - Veronica Delaney
- Division of Renal Medicine, Recanati Miller Transplantation Institute, ISMMS, New York, NY, USA
| | - Madhav C Menon
- Division of Renal Medicine, Recanati Miller Transplantation Institute, ISMMS, New York, NY, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Sara Lewis
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Bachir Taouli
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA. .,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA.
| |
Collapse
|
3
|
Prospective pediatric study comparing glomerular filtration rate estimates based on motion-robust dynamic contrast-enhanced magnetic resonance imaging and serum creatinine (eGFR) to 99mTc DTPA. Pediatr Radiol 2020; 50:698-705. [PMID: 31984436 PMCID: PMC7153988 DOI: 10.1007/s00247-020-04617-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/12/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Current methods to estimate glomerular filtration rate (GFR) have shortcomings. Estimates based on serum creatinine are known to be inaccurate in the chronically ill and during acute changes in renal function. Gold standard methods such as inulin and 99mTc diethylenetriamine pentaacetic acid (DTPA) require blood or urine sampling and thus can be difficult to perform in children. Motion-robust radial volumetric interpolated breath-hold examination (VIBE) dynamic contrast-enhanced MRI represents a novel tool for estimating GFR that has not been validated in children. OBJECTIVE The purpose of our study was to determine the feasibility and accuracy of GFR measured by motion-robust radial VIBE dynamic contrast-enhanced MRI compared to estimates by serum creatinine (eGFR) and 99mTc DTPA in children. MATERIALS AND METHODS We enrolled children, 0-18 years of age, who were undergoing both a contrast-enhanced MRI and nuclear medicine 99mTc DTPA glomerular filtration rate (NM-GFR) within 2 weeks of each other. Enrolled children consented to an additional 6-min dynamic contrast-enhanced MRI scan using the motion-robust high spatiotemporal resolution prototype dynamic radial VIBE sequence (Siemens, Erlangen, Germany) at 3 tesla (T). The images were reconstructed offline with high temporal resolution (~3 s/volume) using compressed sensing image reconstruction including regularization in temporal dimension to improve image quality and reduce streaking artifacts. Images were then automatically post-processed using in-house-developed software. Post-processing steps included automatic segmentation of kidney parenchyma and aorta using convolutional neural network techniques and tracer kinetic model fitting using the Sourbron two-compartment model to calculate the MR-based GFR (MR-GFR). The NM-GFR was compared to MR-GFR and estimated GFR based on serum creatinine (eGFR) using Pearson correlation coefficient and Bland-Altman analysis. RESULTS Twenty-one children (7 female, 14 male) were enrolled between February 2017 and May 2018. Data from six of these children were not further analyzed because of deviations from the MRI protocol. Fifteen patients were analyzed (5 female, 10 male; average age 5.9 years); the method was technically feasible in all children. The results showed that the MR-GFR correlated with NM-GFR with a Pearson correlation coefficient (r-value) of 0.98. Bland-Altman analysis (i.e. difference of MR-GFR and NM-GFR versus mean of NM-GFR and MR-GFR) showed a mean difference of -0.32 and reproducibility coefficient of 18 with 95% confidence interval, and the coefficient of variation of 6.7% with values between -19 (-1.96 standard deviation) and 18 (+1.96 standard deviation). In contrast, serum creatinine compared with NM-GFR yielded an r-value of 0.73. Bland-Altman analysis (i.e. difference of eGFR and NM-GFR versus mean of NM-GFR and eGFR) showed a mean difference of 2.9 and reproducibility coefficient of 70 with 95% confidence interval, and the coefficient of variation of 25% with values between -67 (-1.96 standard deviation) and 73 (+1.96 standard deviation). CONCLUSION MR-GFR is a technically feasible and reliable method of measuring GFR when compared to the reference standard, NM-GFR by serum 99mTc DTPA, and MR-GFR is more reliable than estimates based on serum creatinine.
Collapse
|
4
|
Zhang JL, Lee VS. Renal perfusion imaging by MRI. J Magn Reson Imaging 2019; 52:369-379. [PMID: 31452303 DOI: 10.1002/jmri.26911] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Renal perfusion can be quantitatively assessed by multiple magnetic resonance imaging (MRI) methods, including dynamic contrast enhanced (DCE), arterial spin labeling (ASL), and diffusion-weighted imaging with intravoxel incoherent motion (IVIM) analysis. In this review we summarize the advances in the field of renal-perfusion MRI over the past 5 years. The review starts with a brief introduction of relevant MRI methods, followed by a discussion of recent technical developments. In the main section of the review, we examine the clinical and preclinical applications for three disease populations: chronic kidney disease, renal transplant, and renal tumors. The DCE method has been routinely used for assessing renal tumors but not other renal diseases. As a noncontrast alternative, ASL was extensively explored in both preclinical and clinical applications and showed much promise. Protocol standardization for the methods is desperately needed, and then large-scale clinical trials for the methods can be initiated prior to their broad clinical use. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:369-379.
Collapse
Affiliation(s)
- Jeff L Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivian S Lee
- Verily Life Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Jiang K, Tang H, Mishra PK, Macura SI, Lerman LO. Measurement of murine kidney functional biomarkers using DCE-MRI: A multi-slice TRICKS technique and semi-automated image processing algorithm. Magn Reson Imaging 2019; 63:226-234. [PMID: 31442558 DOI: 10.1016/j.mri.2019.08.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 11/24/2022]
Abstract
PURPOSE To propose a rapid multi-slice T1 measurement method using time-resolved imaging of contrast kinetics (TRICKS) and a semi-automated image processing algorithm for comprehensive assessment murine kidney function using dynamic contrast-enhanced MRI (DCE-MRI). METHODS A multi-slice TRICKS sampling scheme was implemented in an established rapid T1 measurement method. A semi-automated image-processing scheme employing basic image processing techniques and machine learning was developed to facilitate image analysis. Reliability of the multi-slice technique in measuring renal perfusion and glomerular filtration rate (GFR) was tested in normal mice (n = 7 for both techniques) by comparing to the validated single-slice technique. Utility of this method was demonstrated on mice after either sham surgery (n = 7) or induction of unilateral renal artery stenosis (RAS, n = 8). Renal functional parameters were extracted using a validated bi-compartment model. RESULTS The TRICKS sampling scheme achieved an acceleration factor of 2.7, allowing imaging of eight axial slices at 1.23 s/scan. With the aid of the semi-automated scheme, image analysis required under 15-min for both kidneys per mouse. The multi-slice technique yielded renal perfusion and GFR values comparable to the single-slice technique. Model-fitted renal parameters successfully differentiated control and stenotic mouse kidneys, including renal perfusion (706.5 ± 164.0 vs. 375.9 ± 277.9 mL/100 g/min, P = 0.002), blood flow (1.6 ± 0.4 vs. 0.7 ± 0.7 mL/min, P < 0.001), and GFR (142.9 ± 17.9 vs. 58.0 ± 42.8 μL/min, P < 0.001). CONCLUSION The multi-slice TRICKS-based DCE-MRI technique, with a semi-automated image processing scheme, allows rapid and comprehensive measurement of murine kidney function.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Prasanna K Mishra
- Division of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Slobodan I Macura
- Division of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Taton B, De La Faille R, Asselineau J, Perez P, Merville P, Colin T, Combe C, Sourbron S, Grenier N. A prospective comparison of dynamic contrast-enhanced MRI and 51Cr-EDTA clearance for glomerular filtration rate measurement in 42 kidney transplant recipients. Eur J Radiol 2019; 117:209-215. [DOI: 10.1016/j.ejrad.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 11/25/2022]
|
7
|
Pavuluri K, Manoli I, Pass A, Li Y, Vernon HJ, Venditti CP, McMahon MT. Noninvasive monitoring of chronic kidney disease using pH and perfusion imaging. SCIENCE ADVANCES 2019; 5:eaaw8357. [PMID: 31453331 PMCID: PMC6693904 DOI: 10.1126/sciadv.aaw8357] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/08/2019] [Indexed: 05/18/2023]
Abstract
Chronic Kidney Disease (CKD) is a cardinal feature of methylmalonic acidemia (MMA), a prototypic organic acidemia. Impaired growth, low activity, and protein restriction affect muscle mass and lower serum creatinine, which can delay diagnosis and management of renal disease. We have designed an alternative strategy for monitoring renal function based on administration of a pH sensitive MRI agent and assessed this in a mouse model. This protocol produced three metrics: kidney contrast, ~4% for severe renal disease mice compared to ~13% and ~25% for moderate renal disease and healthy controls, filtration fraction (FF), ~15% for severe renal disease mice compared to ~79% and 100% for moderate renal disease and healthy controls, and variation in pH, ~0.45 units for severe disease mice compared to 0.06 and 0.01 for moderate disease and healthy controls. Our results demonstrate that MRI can be used for early detection and monitoring of CKD.
Collapse
Affiliation(s)
- KowsalyaDevi Pavuluri
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Irini Manoli
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexandra Pass
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yuguo Li
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Hilary J. Vernon
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles P. Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michael T. McMahon
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
8
|
Jiang K, Ferguson CM, Abumoawad A, Saad A, Textor SC, Lerman LO. A modified two-compartment model for measurement of renal function using dynamic contrast-enhanced computed tomography. PLoS One 2019; 14:e0219605. [PMID: 31291361 PMCID: PMC6619810 DOI: 10.1371/journal.pone.0219605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives To validate and adapt a modified two-compartment model, originally developed for magnetic resonance imaging, for measuring human single-kidney glomerular filtration rate (GFR) and perfusion using dynamic contrast-enhanced computed tomography (DCE-CT). Methods This prospective study was approved by the institutional review board, and written informed consent was obtained from all patients. Thirty-eight patients with essential hypertension (EH, n = 13) or atherosclerotic renal artery stenosis (ARAS, n = 25) underwent renal DCE-CT for GFR and perfusion measurement using a modified two-compartment model. Iothalamate clearance was used to measure reference total GFR, which was apportioned into single-kidney GFR by renal blood flow. Renal perfusion was also calculated using a conventional deconvolution algorithm. Validation of GFR and perfusion and inter-observer reproducibility, were conducted by using the Pearson correlation and Bland-Altman analysis. Results Both the two-compartment model and iothalamate clearance detected in ARAS patients lower GFR in the stenotic compared to the contralateral and EH kidneys. GFRs measured by DCE-CT and iothalamate clearance showed a close match (r = 0.94, P<0.001, and mean difference 2.5±12.2mL/min). Inter-observer bias and variation in model-derived GFR (r = 0.97, P<0.001; mean difference, 0.3±7.7mL/min) were minimal. Renal perfusion by deconvolution agreed well with that by the compartment model when the blood transit delay from abdominal aorta to kidney was negligible. Conclusion The proposed two-compartment model faithfully depicts contrast dynamics using DCE-CT and may provide a reliable tool for measuring human single-kidney GFR and perfusion.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Christopher M. Ferguson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Abdelrhman Abumoawad
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ahmed Saad
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen C. Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
9
|
Mehl JN, Lüpke M, Brenner AC, Dziallas P, Wefstaedt P, Seifert H. Measurement of single kidney glomerular filtration rate in dogs using dynamic contrast-enhanced magnetic resonance imaging and the Rutland-Patlak plot technique. Acta Vet Scand 2018; 60:72. [PMID: 30400988 PMCID: PMC6219261 DOI: 10.1186/s13028-018-0423-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
Background Nephropathies are among the most common diseases in dogs. Regular examination of the kidney function plays an important role for an adequate treatment scheme. The determination of the glomerular filtration rate (GFR) is seen as the gold standard in assessing the kidney status. Most of the tests have the disadvantage that only the complete glomerular filtration rate of both kidneys can be assessed and not the single kidney glomerular filtration rate. Imaging examination techniques like dynamic contrast-enhanced magnetic resonance imaging have the potential to evaluate the single kidney GFR. There are studies in human medicine describing the determination of the single kidney GFR using this technique. To our knowledge there are no such studies for dogs. Results An exponential fit was found to describe the functional interrelation between signal intensity and contrast medium concentrations. The changes of contrast medium concentrations during the contrast medium bolus propagation were calculated. The extreme values of contrast medium concentrations in the kidneys were reached at nearly the same time in every individual dog (1st maximum aorta 8.5 s, 1st maximum in both kidneys after about 14.5 s; maximum concentration values varied between 17 and 125 µmol/mL in the aorta and between 4 and 15 µmol/mL in the kidneys). The glomerular filtration rate was calculated from the concentration changes of the contrast medium using a modified Rutland-Patlak plot technique. The GFR was 12.7 ± 2.9 mL/min m2 BS for the left kidney and 12.0 ± 2.2 mL/min/m2 BS for the right kidney. The mean values of the coefficient of determination of the regression lines were averagely 0.91 ± 0.08. Conclusions The propagation of contrast medium bolus could be depicted well. The contrast medium proceeded in a similar manner for every individual dog. Additionally, the evaluation of the single kidney function of the individual dogs is possible with this method. A standardized examination procedure would be recommended in order to minimize influencing parameters. Electronic supplementary material The online version of this article (10.1186/s13028-018-0423-3) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Zhang JL, Layec G, Hanrahan C, Conlin CC, Hart C, Hu N, Khor L, Mueller M, Lee VS. Exercise-induced calf muscle hyperemia: quantitative mapping with low-dose dynamic contrast enhanced magnetic resonance imaging. Am J Physiol Heart Circ Physiol 2018; 316:H201-H211. [PMID: 30388024 DOI: 10.1152/ajpheart.00537.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) in the lower extremities often leads to intermittent claudication. In the present study, we proposed a low-dose DCE MRI protocol for quantifying calf muscle perfusion stimulated with plantar flexion and multiple new metrics for interpreting perfusion maps, including the ratio of gastrocnemius over soleus perfusion (G/S; for assessing the vascular redistribution between the two muscles) and muscle perfusion normalized by whole body perfusion (for quantifying the muscle's active hyperemia). Twenty-eight human subjects participated in this Institutional Review Board-approved study, with 10 healthy subjects ( group A) for assessing interday reproducibility and 8 healthy subjects ( group B) for exploring the relationship between plantar-flexion load and induced muscle perfusion. In a pilot group of five elderly healthy subjects and five patients with PAD ( group C), we proposed a protocol that measured perfusion for a low-intensity exercise and for an exhaustion exercise in a single MRI session. In group A, perfusion estimates for calf muscles were highly reproducible, with correlation coefficients of 0.90-0.93. In group B, gastrocnemius perfusion increased linearly with the exercise workload ( P < 0.05). With the low-intensity exercise, patients with PAD in group C showed substantially lower gastrocnemius perfusion compared with elderly healthy subjects [43.4 (SD 23.5) vs. 106.7 (SD 73.2) ml·min-1·100 g-1]. With exhaustion exercise, G/S [1.0 (SD 0.4)] for patients with PAD was lower than both its low-intensity level [1.9 (SD 1.3)] and the level in elderly healthy subjects [2.7 (SD 2.1)]. In conclusion, the proposed MRI protocol and the new metrics are feasible for quantifying exercise-induced muscle hyperemia, a promising functional test of PAD. NEW & NOTEWORTHY To quantitatively map exercise-induced hyperemia in calf muscles, we proposed a high-resolution MRI method shown to be highly reproducible and sensitive to exercise load. With the use of low contrast, it is feasible to measure calf muscle hyperemia for both low-intensity and exhaustion exercises in a single MRI session. The newly proposed metrics for interpreting perfusion maps are promising for quantifying intermuscle vascular redistribution or a muscle's active hyperemia.
Collapse
Affiliation(s)
- Jeff L Zhang
- Department of Radiology and Imaging Sciences, University of Utah , Salt Lake City, Utah
| | - Gwenael Layec
- Division of Geriatrics, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Christopher Hanrahan
- Department of Radiology and Imaging Sciences, University of Utah , Salt Lake City, Utah
| | - Christopher C Conlin
- Department of Radiology and Imaging Sciences, University of Utah , Salt Lake City, Utah
| | - Corey Hart
- Division of Endocrinology, Diabetes, Nutrition and Metabolism, Mayo Clinic , Rochester, Minnesota
| | - Nan Hu
- Division of Epidemiology, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Lillian Khor
- Division of Cardiology, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Michelle Mueller
- Division of Vascular Surgery, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | | |
Collapse
|
11
|
Abstract
Renal transplantation is the therapy of choice for patients with end-stage renal diseases. Improvement of immunosuppressive therapy has significantly increased the half-life of renal allografts over the past decade. Nevertheless, complications can still arise. An early detection of allograft dysfunction is mandatory for a good outcome. New advances in magnetic resonance imaging (MRI) have enabled the noninvasive assessment of different functional renal parameters in addition to anatomic imaging. Most of these techniques were widely tested on renal allografts in past decades and a lot of clinical data are available. The following review summarizes the comprehensive, functional MRI techniques for the noninvasive assessment of renal allograft function and highlights their potential for the investigations of different etiologies of graft dysfunction.
Collapse
|
12
|
Jiang K, Tang H, Mishra PK, Macura SI, Lerman LO. Measurement of Murine Single-Kidney Glomerular Filtration Rate Using Dynamic Contrast-Enhanced MRI. Magn Reson Med 2018; 79:2935-2943. [PMID: 29034514 PMCID: PMC5843517 DOI: 10.1002/mrm.26955] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/23/2017] [Accepted: 09/11/2017] [Indexed: 01/17/2023]
Abstract
PURPOSE To develop and validate a method for measuring murine single-kidney glomerular filtration rate (GFR) using dynamic contrast-enhanced MRI (DCE-MRI). METHODS This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T1 ) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two-compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model-derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)-inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland-Altman analysis. RESULTS The compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE-MRI method offered assessment of single-kidney GFR and perfusion, comparable to the FITC-inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference -7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods. CONCLUSION The proposed DCE-MRI method may be useful for reliable noninvasive measurements of single-kidney GFR and perfusion in mice. Magn Reson Med 79:2935-2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Prasanna K. Mishra
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Slobodan I. Macura
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Liu AL, Mikheev A, Rusinek H, Huang WC, Wysock JS, Babb JS, Feiweier T, Stoffel D, Chandarana H, Sigmund EE. REnal Flow and Microstructure AnisotroPy (REFMAP) MRI in Normal and Peritumoral Renal Tissue. J Magn Reson Imaging 2018; 48:188-197. [PMID: 29331053 DOI: 10.1002/jmri.25940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) provides insight into the pathophysiology underlying renal dysfunction. Variants of DWI include intravoxel incoherent motion (IVIM), which differentiates between microstructural diffusion and vascular or tubular flow, and diffusion tensor imaging (DTI), which quantifies diffusion directionality. PURPOSE To investigate the reproducibility of joint IVIM-DTI and compare controls to presurgical renal mass patients. STUDY TYPE Prospective cross-sectional. SUBJECTS Thirteen healthy controls and ten presurgical renal mass patients were scanned. Ten controls were scanned twice to investigate reproducibility. FIELD STRENGTH/SEQUENCE Subjects were scanned on a 3T system using 10 b-values and 20 diffusion directions for IVIM-DTI in a study approved by the local Institutional Review Board. ASSESSMENT Retrospective coregistration and measurement of joint IVIM-DTI parameters were performed. STATISTICAL ANALYSIS Parameter reproducibility was defined as intraclass correlation coefficient (ICC) >0.7 and coefficient of variation (CV) <30%. Patient data were stratified by lesion side (contralateral/ipsilateral) for comparison with controls. Corticomedullary differentiation was evaluated. RESULTS In controls, the reproducible subset of REnal Flow and Microstructure AnisotroPy (REFMAP) parameters had average ICC = 0.82 and CV = 7.5%. In renal mass patients, medullary fractional anisotropy (FA) was significantly lower than in controls (0.227 ± 0.072 vs. 0.291 ± 0.044, P = 0.016 for the kidney contralateral to the mass and 0.228 ± 0.070 vs. 0.291 ± 0.044, P = 0.018 for the kidney ipsilateral). In the kidney ipsilateral to the mass, cortical Dp,radial was significantly higher than in controls (P = 0.012). Conversely, medullary Dp,axial was significantly lower in contralateral than ipsilateral kidneys (P = 0.027) and normal controls (P = 0.044). DATA CONCLUSION REFMAP-MRI parameters provide unique information regarding renal dysfunction. In presurgical renal mass patients, directional flow changes were noted that were not identified with IVIM analysis alone. Both contralateral and ipsilateral kidneys in patients show reductions in structural diffusivities and anisotropy, while flow metrics showed opposing changes in contralateral vs. ipsilateral kidneys. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Andrea L Liu
- New York University School of Medicine, New York, New York, USA
| | - Artem Mikheev
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging and Innovation (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Henry Rusinek
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging and Innovation (CAI2R), New York University School of Medicine, New York, New York, USA
| | - William C Huang
- Department of Urology, New York University School of Medicine, New York, New York, USA
| | - James S Wysock
- Department of Urology, New York University School of Medicine, New York, New York, USA
| | - James S Babb
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging and Innovation (CAI2R), New York University School of Medicine, New York, New York, USA
| | | | - David Stoffel
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging and Innovation (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging and Innovation (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Eric E Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging and Innovation (CAI2R), New York University School of Medicine, New York, New York, USA
| |
Collapse
|
14
|
Conlin CC, Huang Y, Gordon BAJ, Zhang JL. Quantitative characterization of glomerular fibrosis with magnetic resonance imaging: a feasibility study in a rat glomerulonephritis model. Am J Physiol Renal Physiol 2018; 314:F747-F752. [PMID: 29357425 DOI: 10.1152/ajprenal.00529.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glomerular fibrosis occurs in the early stages of multiple renal diseases, including hypertensive and diabetic nephropathy. Conventional assessment of glomerular fibrosis relies on kidney biopsy, which is invasive and does not reflect physiological aspects such as blood perfusion. In this study, we sought to assess potential changes of cortical perfusion and microstructure at different degrees of glomerular fibrosis using magnetic resonance imaging (MRI). A rat model of glomerular fibrosis was induced by injecting anti-Thy-1 monoclonal antibody OX-7 to promote mesangial extracellular matrix proliferation. For six rats on day 5 and five rats on day 12 after the induction, we measured renal cortical perfusion and spin-spin relaxation time (T2) in a 3-Tesla MRI scanner. T2 reflects tissue microstructural changes. Glomerular fibrosis severity was evaluated by histological analysis and proteinuria. Four rats without fibrosis were included as controls. In the control rats, the periodic acid-Schiff (PAS)-positive area was 22 ± 1% of total glomerular tuft, which increased significantly to 56 ± 12% and 45 ± 10% in the day 5 and day 12 fibrotic groups, respectively ( P < 0.01). For the three groups (control, day 5, and day 12 after OX-7 injection), cortical perfusion was 7.27 ± 2.54, 3.78 ± 2.17, and 3.32 ± 2.62 ml·min-1·g-1, respectively, decreasing with fibrosis severity ( P < 0.01), and cortical T2 was 75.2 ± 4.6, 84.1 ± 3.0, and 87.9 ± 5.6 ms, respectively ( P < 0.01). In conclusion, extracellular matrix proliferation in glomerular mesangial cells severely diminished blood flow through the glomeruli and also altered cortical microstructure to increase cortical T2. The MRI-measured parameters are proven to be sensitive markers for characterizing glomerular fibrosis.
Collapse
Affiliation(s)
- Christopher C Conlin
- Department of Radiology and Imaging Sciences, University of Utah , Salt Lake City, Utah.,Department of Bioengineering, University of Utah , Salt Lake City, Utah
| | - Yufeng Huang
- Division of Nephrology, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | | | - Jeff L Zhang
- Department of Radiology and Imaging Sciences, University of Utah , Salt Lake City, Utah.,Department of Bioengineering, University of Utah , Salt Lake City, Utah
| |
Collapse
|
15
|
Zhang JL. Functional Magnetic Resonance Imaging of the Kidneys-With and Without Gadolinium-Based Contrast. Adv Chronic Kidney Dis 2017; 24:162-168. [PMID: 28501079 DOI: 10.1053/j.ackd.2017.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Assessment of renal function with magnetic resonance imaging (MRI) has been actively explored in the past decade. In this review, we introduce the principle of MRI and review recent progress of MRI methods (contrast enhanced and noncontrast) in assessing renal function. Contrast-enhanced MRI using ultra-low dose of gadolinium-based agent has been validated for measuring single-kidney glomerular filtration rate and renal plasma flow accurately. For routine functional test, contrast-enhanced MRI may not replace the simple serum-creatinine method. However, for patients with renal diseases, it is often worthy to perform MRI to accurately monitor renal function, particularly for the diseased kidney. As contrast-enhanced MRI is already an established clinical tool for characterizing renal structural abnormalities, including renal mass and ureteral obstruction, it is possible to adapt the clinical MRI protocol to measure single-kidney glomerular filtration rate and renal plasma flow, as demonstrated by recent studies. What makes MRI unique is the promise of its noncontrast methods. These methods include arterial spin labeling for tissue perfusion, blood oxygen-level dependent for blood and tissue oxygenation, and diffusion-weighted imaging for water diffusion. For each method, we reviewed recent findings and summarized challenges.
Collapse
|
16
|
Conlin CC, Oesingmann N, Bolster B, Huang Y, Lee VS, Zhang JL. Renal plasma flow (RPF) measured with multiple-inversion-time arterial spin labeling (ASL) and tracer kinetic analysis: Validation against a dynamic contrast-enhancement method. Magn Reson Imaging 2016; 37:51-55. [PMID: 27864008 DOI: 10.1016/j.mri.2016.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE To propose and validate a method for accurately quantifying renal plasma flow (RPF) with arterial spin labeling (ASL). MATERIALS AND METHODS The proposed method employs a tracer-kinetic approach and derives perfusion from the slope of the ASL difference signal sampled at multiple inversion-times (TIs). To validate the method's accuracy, we performed a HIPAA-compliant and IRB-approved study with 15 subjects (9 male, 6 female; age range 24-73) to compare RPF estimates obtained from ASL to those from a more established dynamic contrast-enhanced (DCE) MRI method. We also investigated the impact of TI-sampling density on the accuracy of estimated RPF. RESULTS Good agreement was found between ASL- and DCE-measured RPF, with a mean difference of 9±30ml/min and a correlation coefficient R=0.92 when ASL signals were acquired at 16 TIs and a mean difference of 9±57ml/min and R=0.81 when ASL signals were acquired at 5 TIs. RPF estimated from ASL signals acquired at only 2 TIs (400 and 1200ms) showed a low correlation with DCE-measured values (R=0.30). CONCLUSION The proposed ASL method is capable of measuring RPF with an accuracy that is comparable to DCE MRI. At least 5 TIs are recommended for the ASL acquisition to ensure reliability of RPF measurements.
Collapse
Affiliation(s)
- Christopher C Conlin
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108, USA; Department of Bioengineering, University of Utah, 36 S Wasatch Drive, Rm 3100, Salt Lake City, UT 84112, USA.
| | - Niels Oesingmann
- Siemens Medical Solutions, Inc., 660 First Avenue, 4th Floor, New York, NY 10016, USA.
| | - Bradley Bolster
- Siemens Medical Solutions, Inc., 729 Arapeen Drive, Salt Lake City, UT 84108, USA.
| | - Yufeng Huang
- Division of Nephrology, Department of Internal Medicine, University of Utah, 30 N 1900 E, Rm 4R312, Salt Lake City, UT 84132, USA.
| | - Vivian S Lee
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108, USA.
| | - Jeff L Zhang
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108, USA; Department of Bioengineering, University of Utah, 36 S Wasatch Drive, Rm 3100, Salt Lake City, UT 84112, USA.
| |
Collapse
|
17
|
Bane O, Wagner M, Zhang JL, Dyvorne HA, Orton M, Rusinek H, Taouli B. Assessment of renal function using intravoxel incoherent motion diffusion-weighted imaging and dynamic contrast-enhanced MRI. J Magn Reson Imaging 2016; 44:317-26. [PMID: 26855407 PMCID: PMC4946973 DOI: 10.1002/jmri.25171] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/13/2016] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To assess the correlation between each of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) metrics in renal parenchyma with renal function, in a cohort of patients with chronic liver disease. MATERIALS AND METHODS Thirty patients with liver disease underwent abdominal MRI at 1.5T, including a coronal respiratory-triggered IVIM-DWI sequence and a coronal 3D FLASH DCE-MRI acquisition. Diffusion signals in the renal cortex and medulla were fitted to the IVIM model to estimate the diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (PF). The apparent diffusion coefficient (ADC) was calculated using all b-values. The glomerular filtration rate (GFR), cortical and medullary renal plasma flow (RPF), mean transit times (MTT) of vascular and tubular compartments and the whole kidney, were calculated from DCE-MRI data by fitting to a three-compartment model. The estimated GFR (eGFR) was calculated from serum creatinine measured 30 ± 27 days of MRI. RESULTS ADC, PF, and RPF were significantly higher in renal cortex vs. medulla (P < 10(-5) ). DCE-MRI GFR significantly correlated with, but underestimated, eGFR (Spearman's r/P = 0.49/0.01). IVIM-DWI parameters were not significantly correlated with eGFR. DCE-MRI GFR correlated weakly with D (cortex, r/P = 0.3/0.03; medulla r/P = 0.27/0.05) and ADC (cortex r/P = 0.28/0.04; medulla r/P = 0.34/0.01). Weak correlations were observed for pooled cortical and medullar RPF with PF (r/P = 0.32/10(-3) ) and with ADC (r/P = 0.29/0.0025). Significant negative correlations were observed for vascular MTT with cortical D* (r/P = -0.38/0.004) and D*×PF (r/P = -0.34/0.01). CONCLUSION The weak correlations between renal IVIM and DCE-MRI perfusion parameters imply that these functional measures could be complementary. J. Magn. Reson. Imaging 2016;44:317-326.
Collapse
Affiliation(s)
- Octavia Bane
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mathilde Wagner
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jeff L. Zhang
- Departments of Radiology and Biomedical Engineering, University of Utah, Salt Lake City, UT
| | - Hadrien A. Dyvorne
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew Orton
- Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, Surrey, UK
| | - Henry Rusinek
- Departments of Radiology and Biomedical Engineering, New York University, New York, NY
| | - Bachir Taouli
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
18
|
Zhang JL, Conlin CC, Carlston K, Xie L, Kim D, Morrell G, Morton K, Lee VS. Optimization of saturation-recovery dynamic contrast-enhanced MRI acquisition protocol: monte carlo simulation approach demonstrated with gadolinium MR renography. NMR IN BIOMEDICINE 2016; 29:969-77. [PMID: 27200499 PMCID: PMC5206992 DOI: 10.1002/nbm.3553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 03/13/2016] [Accepted: 04/11/2016] [Indexed: 05/18/2023]
Abstract
Dynamic contrast-enhanced (DCE) MRI is widely used for the measurement of tissue perfusion and to assess organ function. MR renography, which is acquired using a DCE sequence, can measure renal perfusion, filtration and concentrating ability. Optimization of the DCE acquisition protocol is important for the minimization of the error propagation from the acquired signals to the estimated parameters, thus improving the precision of the parameters. Critical to the optimization of contrast-enhanced T1 -weighted protocols is the balance of the T1 -shortening effect across the range of gadolinium (Gd) contrast concentration in the tissue of interest. In this study, we demonstrate a Monte Carlo simulation approach for the optimization of DCE MRI, in which a saturation-recovery T1 -weighted gradient echo sequence is simulated and the impact of injected dose (D) and time delay (TD, for saturation recovery) is tested. The results show that high D and/or high TD cause saturation of the peak arterial signals and lead to an overestimation of renal plasma flow (RPF) and glomerular filtration rate (GFR). However, the use of low TD (e.g. 100 ms) and low D leads to similar errors in RPF and GFR, because of the Rician bias in the pre-contrast arterial signals. Our patient study including 22 human subjects compared TD values of 100 and 300 ms after the injection of 4 mL of Gd contrast for MR renography. At TD = 100 ms, we computed an RPF value of 157.2 ± 51.7 mL/min and a GFR of 33.3 ± 11.6 mL/min. These results were all significantly higher than the parameter estimates at TD = 300 ms: RPF = 143.4 ± 48.8 mL/min (p = 0.0006) and GFR = 30.2 ± 11.5 mL/min (p = 0.0015). In conclusion, appropriate optimization of the DCE MRI protocol using simulation can effectively improve the precision and, potentially, the accuracy of the measured parameters. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeff L. Zhang
- Correspondence to: J. L. Zhang, University of Utah School of Medicine, Department of Radiology, 729 Arapeend Dr., Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Li H, Bao N, Xu X, Zhang Y, Jin S, Jin Y, Sun H. A renal vascular compartment segmentation method based on dynamic contrast-enhanced images. Technol Health Care 2016; 24 Suppl 2:S631-9. [DOI: 10.3233/thc-161190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hong Li
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, Liaoning, China
| | - Nan Bao
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, Liaoning, China
| | - Xieping Xu
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, Liaoning, China
| | - Yaonan Zhang
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, Liaoning, China
| | - Shikai Jin
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, Liaoning, China
| | - Yueming Jin
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, Liaoning, China
| | - Haoran Sun
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
20
|
Tipirneni-Sajja A, Loeffler RB, Oesingmann N, Bissler J, Song R, McCarville B, Jones DP, Hudson M, Spunt SL, Hillenbrand CM. Measurement of glomerular filtration rate by dynamic contrast-enhanced magnetic resonance imaging using a subject-specific two-compartment model. Physiol Rep 2016; 4:4/7/e12755. [PMID: 27081161 PMCID: PMC4831325 DOI: 10.14814/phy2.12755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/12/2016] [Indexed: 12/13/2022] Open
Abstract
Measuring glomerular filtration rate (GFR) by dynamic contrast‐enhanced (DCE) magnetic resonance imaging (MRI) as part of standard of care clinical MRI exams (e.g., in pediatric solid tumor patients) has the potential to reduce diagnostic burden. However, enthusiasm for this relatively new GFR test may be curbed by the limited amount of cross‐calibration studies with reference GFR techniques and the vast variety of MR tracer model algorithms causing confusion on the choice of model. To advance MRI‐based GFR quantification via improved GFR modeling and comparison with associated 99mTc‐DTPA‐GFR, 29 long‐term Wilms' tumor survivors (19.0–43.3 years, [median 32.0 ± 6.0 years]) treated with nephrectomy, nonnephrotoxic chemotherapy ± radiotherapy underwent MRI with Gd‐DTPA administration and a 99mTc‐DTPA GFR test. For DCE‐MRI‐based GFR estimation, a subject‐specific two‐compartment (SS‐2C) model was developed that uses individual hematocrit values, automatically defines subject‐specific uptake intervals, and fits tracer‐uptake curves by incorporating these measures. The association between reference 99mTc‐DTPA GFR and MR‐GFRs obtained by SS‐2C, three published 2C uptake, and inflow–outflow models was investigated via linear regression analysis. Uptake intervals varied from 64 sec to 141 sec [96 sec ± 21 sec] and hematocrit values ranged from 30% to 49% [41% ± 4%]; these parameters can therefore not be assumed as constants in 2C modeling. Our MR‐GFR estimates using the SS‐2C model showed accordingly the highest correlation with 99mTc‐DTPA‐GFRs (R2 = 0.76, P < 0.001) compared with other models (R2‐range: 0.36–0.66). In conclusion, SS‐2C modeling of DCE‐MRI data improved the association between GFR obtained by 99mTc‐DTPA and Gd‐DTPA DCE‐MRI to such a degree that this approach could turn into a viable, diagnostic GFR assay without radiation exposure to the patient.
Collapse
Affiliation(s)
- Aaryani Tipirneni-Sajja
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee
| | - Ralf B Loeffler
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - John Bissler
- Division of Nephrology, St. Jude Children's Research Hospital, Memphis, Tennessee Department of Pediatric Nephrology, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Ruitian Song
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Beth McCarville
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Deborah P Jones
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Melissa Hudson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sheri L Spunt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Claudia M Hillenbrand
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
21
|
Conlin CC, Zhang JL, Rousset F, Vachet C, Zhao Y, Morton KA, Carlston K, Gerig G, Lee VS. Performance of an efficient image-registration algorithm in processing MR renography data. J Magn Reson Imaging 2016; 43:391-7. [PMID: 26174884 PMCID: PMC4713380 DOI: 10.1002/jmri.25000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/24/2015] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the performance of an edge-based registration technique in correcting for respiratory motion artifacts in magnetic resonance renographic (MRR) data and to examine the efficiency of a semiautomatic software package in processing renographic data from a cohort of clinical patients. MATERIALS AND METHODS The developed software incorporates an image-registration algorithm based on the generalized Hough transform of edge maps. It was used to estimate glomerular filtration rate (GFR), renal plasma flow (RPF), and mean transit time (MTT) from 36 patients who underwent free-breathing MRR at 3T using saturation-recovery turbo-FLASH. The processing time required for each patient was recorded. Renal parameter estimates and model-fitting residues from the software were compared to those from a previously reported technique. Interreader variability in the software was quantified by the standard deviation of parameter estimates among three readers. GFR estimates from our software were also compared to a reference standard from nuclear medicine. RESULTS The time taken to process one patient's data with the software averaged 12 ± 4 minutes. The applied image registration effectively reduced motion artifacts in dynamic images by providing renal tracer-retention curves with significantly smaller fitting residues (P < 0.01) than unregistered data or data registered by the previously reported technique. Interreader variability was less than 10% for all parameters. GFR estimates from the proposed method showed greater concordance with reference values (P < 0.05). CONCLUSION These results suggest that the proposed software can process MRR data efficiently and accurately. Its incorporated registration technique based on the generalized Hough transform effectively reduces respiratory motion artifacts in free-breathing renographic acquisitions.
Collapse
Affiliation(s)
- Christopher C Conlin
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | - Jeff L Zhang
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | - Florian Rousset
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA
- CPE Lyon, Lyon, France
| | - Clement Vachet
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA
| | - Yangyang Zhao
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | - Kathryn A Morton
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| | - Kristi Carlston
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| | - Guido Gerig
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA
| | - Vivian S Lee
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
22
|
Lanzman RS, Notohamiprodjo M, Wittsack HJ. [Functional magnetic resonance imaging of the kidneys]. Radiologe 2015; 55:1077-87. [PMID: 26628260 DOI: 10.1007/s00117-015-0044-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Interest in functional renal magnetic resonance imaging (MRI) has significantly increased in recent years. This review article provides an overview of the most important functional imaging techniques and their potential clinical applications for assessment of native and transplanted kidneys, with special emphasis on the clarification of renal tumors.
Collapse
|
23
|
Estimating liver perfusion from free-breathing continuously acquired dynamic gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced acquisition with compressed sensing reconstruction. Invest Radiol 2015; 50:88-94. [PMID: 25333309 DOI: 10.1097/rli.0000000000000105] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The purpose of this study was to estimate perfusion metrics in healthy and cirrhotic liver with pharmacokinetic modeling of high-temporal resolution reconstruction of continuously acquired free-breathing gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced acquisition in patients undergoing clinically indicated liver magnetic resonance imaging. SUBJECTS AND METHODS In this Health Insurance Portability and Accountability Act-compliant prospective study, 9 cirrhotic and 10 noncirrhotic patients underwent clinical magnetic resonance imaging, which included continuously acquired radial stack-of-stars 3-dimensional gradient recalled echo sequence with golden-angle ordering scheme in free breathing during contrast injection. A total of 1904 radial spokes were acquired continuously in 318 to 340 seconds. High-temporal resolution data sets were formed by grouping 13 spokes per frame for temporal resolution of 2.2 to 2.4 seconds, which were reconstructed using the golden-angle radial sparse parallel technique that combines compressed sensing and parallel imaging. High-temporal resolution reconstructions were evaluated by a board-certified radiologist to generate gadolinium concentration-time curves in the aorta (arterial input function), portal vein (venous input function), and liver, which were fitted to dual-input dual-compartment model to estimate liver perfusion metrics that were compared between cirrhotic and noncirrhotic livers. RESULTS The cirrhotic livers had significantly lower total plasma flow (70.1 ± 10.1 versus 103.1 ± 24.3 mL/min per 100 mL; P < 0.05), lower portal venous flow (33.4 ± 17.7 versus 89.9 ± 20.8 mL/min per 100 mL; P < 0.05), and higher arterial perfusion fraction (52.0% ± 23.4% versus 12.4% ± 7.1%; P < 0.05). The mean transit time was higher in the cirrhotic livers (24.4 ± 4.7 versus 15.7 ± 3.4 seconds; P < 0.05), and the hepatocellular uptake rate was lower (3.03 ± 2.1 versus 6.53 ± 2.4 100/min; P < 0.05). CONCLUSIONS Liver perfusion metrics can be estimated from free-breathing dynamic acquisition performed for every clinical examination without additional contrast injection or time. This is a novel paradigm for dynamic liver imaging.
Collapse
|
24
|
Zhang YD, Wu CJ, Zhang J, Wang XN, Liu XS, Shi HB. Feasibility study of high-resolution DCE-MRI for glomerular filtration rate (GFR) measurement in a routine clinical modal. Magn Reson Imaging 2015; 33:978-83. [PMID: 26004284 DOI: 10.1016/j.mri.2015.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
Dynamic contrast enhanced (DCE) MR renography has been identified as an interesting tool to determine single-kidney GFR. However, a fundamental issue for the applicability of MR-based estimate of single-kidney GFR is selecting a balance between spatial and temporal resolution of DCE-MRI data. The purpose is to assess the feasibility of GFR estimate from high-resolution (HR) dynamic contrast-enhanced (DCE) MRI in a routine clinical modal. Standard MR renography (2.4s/phase, total 4min; 4-ml Gd) and five-phase, HR-based imaging protocol (0, 30, 70, 120, and 240s; 0.05mmol/kg Gd) were prospectively performed in twelve volunteers who were scheduled for routine renal MRI. Data were plotted with Patlak, two-compartment modified Tofts model (2CTM), and two-compartment filtration model (2CFM) for GFR estimate. During all the measurements, only the signal intensities in the aorta and whole kidney parenchyma were considered. Standard 2CFM and 2CTM produced lower residuals over the fitted interval than HR-based measures (p<0.05); and HR-bases 2CFM and 2CTM did not reflect significant correlation to standard values. Standard Patlak plots with 0-240s data points produced significantly lower GFR and higher residuals than that plots with 0-120s data points (p<0.05). HR-based Patlak plots with 0, 30, 70, and 120s data points significantly correlated with reference values (Pearson ρ=0.97, p<0.01), and produced a 33.2% underestimation of reference value, which was better than that plots with 0, 30, 70, 120, and 240s data points (ρ=0.92, p<0.01; 58.6% underestimation of reference value). It concludes that it is feasible to estimate GFR with HR-based DCE-MRI and appreciate kinetic model. Patlak plots from 0, 30, 70, and 120s data points is better than plots from 0, 30, 70, 120, and 240s data points.
Collapse
Affiliation(s)
- Yu-Dong Zhang
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210000, China.
| | - Chen-Jiang Wu
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210000, China.
| | - Jing Zhang
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210000, China.
| | - Xiao-Ning Wang
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210000, China.
| | - Xi-Sheng Liu
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210000, China.
| | - Hai-Bin Shi
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210000, China.
| |
Collapse
|
25
|
Measurement of single-kidney glomerular filtration function from magnetic resonance perfusion renography. Eur J Radiol 2015; 84:1419-1423. [PMID: 26032130 DOI: 10.1016/j.ejrad.2015.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/27/2015] [Accepted: 05/02/2015] [Indexed: 01/23/2023]
Abstract
Glomerular filtration rate (GFR) describes the flow rate of filtered fluid through the kidney, and is considered to be the reference standard in the evaluation of renal function. There are many ways to test the GFR clinically, such as serum creatinine concentration, blood urea nitrogen and SPECT renography, however, they're all not a good standard to evaluate the early damage of renal function. In recent years, the improvement of MRI hardware and software makes it possible to reveal physiological characteristics such as renal blood flow or GFR by dynamic contrast enhancement magnetic resonance perfusion renography (DEC MRPR). MRPR is a method used to monitor the transit of contrast material, typically a gadolinium chelate, through the renal cortex, the medulla, and the collecting system. This review outlines the basics of DCE MRPR included acquisition of dynamic MR perfusion imaging, calculation of the contrast concentration from signal intensity and compartment models, and some challenges of MRPR method faced in prospective clinical application.
Collapse
|
26
|
Use of Dual-Source Computed Tomography to Evaluate Renal Cortical Perfusion in Patients With Essential Hypertension Without Diabetes: Preliminary Results. J Comput Assist Tomogr 2015; 39:473-8. [PMID: 25756803 DOI: 10.1097/rct.0000000000000230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To assess renal cortical perfusion parameter changes using computed tomography (CT) renal perfusion examination in patients with essential hypertension (EH), especially those with EH-related target organ damage (TOD), and to correlate renal perfusion parameters with clinical and laboratory data. METHODS Consecutive patients with EH (without exclusion criteria) and healthy controls underwent 128-slice dual-source CT perfusion imaging. Quantitative perfusion analysis of renal cortex parameters [blood flow (BF), blood volume, time to peak, and mean transit time] was performed. RESULTS Ninety-one participants (60 patients with EH, 31 healthy controls) underwent renal perfusion CT imaging, and 84 participants (92.3%) were eligible for perfusion analysis. The BF values were lower in patients with EH than that in controls. Blood flow was correlated with age (P < 0.01), duration of hypertension (P < 0.01), estimated glomerular filtration rate (eGFR; P < 0.01), pulse pressure (P < 0.05), and body mass index (BMI; P < 0.05). Duration of hypertension, eGFR, and BMI were independently associated with BF. No parameter differed between control subjects and those with EH but not. Blood flow was lower in patients with TOD than in control subjects (P < 0.01), but no other parameter differed. Blood flow was lower (P < 0.01) and mean transit time and time to peak were higher (P < 0.05) in the TOD than that in the non-TOD group. CONCLUSIONS Essential hypertension, especially EH-related TOD, alters renal cortical perfusion parameters, especially BF. Four-dimensional spiral CT renal perfusion examination showed that duration of hypertension, eGFR, and BMI were independently associated with decreased BF.
Collapse
|
27
|
Durand E. Comparison of magnetic resonance imaging with radionuclide methods of evaluating the kidney. Semin Nucl Med 2014; 44:82-92. [PMID: 24484746 DOI: 10.1053/j.semnuclmed.2013.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nuclear medicine and MRI provide information about renal perfusion, function (glomerular filtration rate), and drainage. Some tracers that are used in nuclear medicine (technetium-diethylene triamine pentaacetic acid ([(99m)Tc-DTPA] and (51)chromium-EDTA) and some contrast media (CM) that are used for MRI (gadolinium-DTPA for instance) share the same pharmacokinetic properties, though, detection techniques are different (low-spatial resolution 2-dimensional projection with a good concentration-to-signal linearity for nuclear medicine and high-resolution 3-dimensional localization with nonlinear behavior for MRI). Thus, though based on the same principles, the methods are not the same and they provide somewhat different information. Many MRI perfusion studies have been conducted; some of them were compared with nuclear medicine with no good agreement. Phase contrast can reliably assess global renal blood flow but not perfusion at a tissular level. Arterial spin labeling has not proven to be a reliable tool to measure renal perfusion. Techniques using CM theoretically can assess perfusion at the tissular level, but they have not proven to be precise. To assess renal function, many models have been proposed. Some MRI techniques using CM, both semiquantitative (Patlak) and quantitative, have shown ability to roughly assess relative function. Some quantitative methods (Annet's and Lee's methods) have even showed that they could roughly estimate absolute renal function, with better results than estimated glomerular filtration rate. Quantification of drainage has not been much studied using MRI.
Collapse
Affiliation(s)
- Emmanuel Durand
- Biophysique et Médecine Nucléaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
28
|
Chen B, Zhang Y, Song X, Wang X, Zhang J, Fang J. Quantitative estimation of renal function with dynamic contrast-enhanced MRI using a modified two-compartment model. PLoS One 2014; 9:e105087. [PMID: 25141138 PMCID: PMC4139329 DOI: 10.1371/journal.pone.0105087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/19/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To establish a simple two-compartment model for glomerular filtration rate (GFR) and renal plasma flow (RPF) estimations by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS A total of eight New Zealand white rabbits were included in DCE-MRI. The two-compartment model was modified with the impulse residue function in this study. First, the reliability of GFR measurement of the proposed model was compared with other published models in Monte Carlo simulation at different noise levels. Then, functional parameters were estimated in six healthy rabbits to test the feasibility of the new model. Moreover, in order to investigate its validity of GFR estimation, two rabbits underwent acute ischemia surgical procedure in unilateral kidney before DCE-MRI, and pixel-wise measurements were implemented to detect the cortical GFR alterations between normal and abnormal kidneys. RESULTS The lowest variability of GFR and RPF measurements were found in the proposed model in the comparison. Mean GFR was 3.03±1.1 ml/min and mean RPF was 2.64±0.5 ml/g/min in normal animals, which were in good agreement with the published values. Moreover, large GFR decline was found in dysfunction kidneys comparing to the contralateral control group. CONCLUSION Results in our study demonstrate that measurement of renal kinetic parameters based on the proposed model is feasible and it has the ability to discriminate GFR changes in healthy and diseased kidneys.
Collapse
Affiliation(s)
- Bin Chen
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yudong Zhang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xiaojian Song
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Department of Electrical Engineering, Chengdu University of Information Technology, Chengdu, Sichuan, China
| | - Xiaoying Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Department of Radiology, Peking University First Hospital, Beijing, China
- * E-mail: (XW); (JZ)
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Engineering, Peking University, Beijing, China
- * E-mail: (XW); (JZ)
| | - Jing Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Engineering, Peking University, Beijing, China
| |
Collapse
|
29
|
Dynamic contrast-enhanced magnetic resonance imaging measurement of renal function in patients undergoing partial nephrectomy: preliminary experience. Invest Radiol 2014; 48:687-92. [PMID: 23669587 DOI: 10.1097/rli.0b013e3182909e7b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To evaluate changes in single-kidney glomerular filtration rate (SK-GFR) using low-dose dynamic contrast-enhanced magnetic resonance (MR) renography (MRR) in patients undergoing partial nephrectomy for renal masses. MATERIALS AND METHODS In this Health Information Patient Protection Act-compliant prospective study, 18 patients with renal masses underwent preoperative MR imaging at 1.5 T for renal mass evaluation and low-dose gadolinium-enhanced MRR. Magnetic resonance renography was repeated approximately 48 to 72 hours and 6 months after partial nephrectomy. Single-kidney glomerular filtration rate was calculated from the MRR images, and the right and left kidney values were summed for total MR-GFR. Postoperative changes in SK-GFR and MR-GFR were compared with changes in estimated glomerular filtration rate calculated using modification of diet in renal disease formula, renal lesion characteristics, ischemia type (warm vs cold), and ischemia time. RESULTS A decrease in the operated kidney SK-GFR was seen in 15 of the 18 patients, with a mean (SD) loss of 31% (23%), whereas estimated glomerular filtration rate decreased in 13 of the 18 patients with mean (SD) decrease of 19% (14%). Decrease in SK-GFR was greatest in the patients with warm ischemia time greater than 40 minutes and least in the patients with cold ischemia. In the immediate postoperative period, 6 of 7 patients (86%) with preoperative MR-GFR less than 60 mL/min per 1.73 m failed to demonstrate compensatory increase in SK-GFR in the nonoperated kidney, whereas 5 of 11 patients with baseline MR-GFR more than 60 mL/min per 1.73 m showed compensatory increase in nonoperated kidney SK-GFR. CONCLUSIONS Magnetic resonance renography can demonstrate functional loss in the operated kidney and compensatory increase in the function of the contralateral kidney, thus enabling evaluation of various surgical techniques on kidney function.
Collapse
|
30
|
Zhang JL, Morrell G, Rusinek H, Sigmund EE, Chandarana H, Lerman LO, Prasad PV, Niles D, Artz N, Fain S, Vivier PH, Cheung AK, Lee VS. New magnetic resonance imaging methods in nephrology. Kidney Int 2014; 85:768-78. [PMID: 24067433 PMCID: PMC3965662 DOI: 10.1038/ki.2013.361] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 02/06/2023]
Abstract
Established as a method to study anatomic changes, such as renal tumors or atherosclerotic vascular disease, magnetic resonance imaging (MRI) to interrogate renal function has only recently begun to come of age. In this review, we briefly introduce some of the most important MRI techniques for renal functional imaging, and then review current findings on their use for diagnosis and monitoring of major kidney diseases. Specific applications include renovascular disease, diabetic nephropathy, renal transplants, renal masses, acute kidney injury, and pediatric anomalies. With this review, we hope to encourage more collaboration between nephrologists and radiologists to accelerate the development and application of modern MRI tools in nephrology clinics.
Collapse
Affiliation(s)
- Jeff L Zhang
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| | - Glen Morrell
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| | - Henry Rusinek
- Department of Radiology, New York University, New York, New York, USA
| | - Eric E Sigmund
- Department of Radiology, New York University, New York, New York, USA
| | - Hersh Chandarana
- Department of Radiology, New York University, New York, New York, USA
| | - Lilach O Lerman
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - David Niles
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan Artz
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sean Fain
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Alfred K Cheung
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah, USA
| | - Vivian S Lee
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
31
|
Zhang JL, Morrell G, Rusinek H, Warner L, Vivier PH, Cheung AK, Lerman LO, Lee VS. Measurement of renal tissue oxygenation with blood oxygen level-dependent MRI and oxygen transit modeling. Am J Physiol Renal Physiol 2014; 306:F579-87. [PMID: 24452640 DOI: 10.1152/ajprenal.00575.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Blood oxygen level-dependent (BOLD) MRI data of kidney, while indicative of tissue oxygenation level (Po2), is in fact influenced by multiple confounding factors, such as R2, perfusion, oxygen permeability, and hematocrit. We aim to explore the feasibility of extracting tissue Po2 from renal BOLD data. A method of two steps was proposed: first, a Monte Carlo simulation to estimate blood oxygen saturation (SHb) from BOLD signals, and second, an oxygen transit model to convert SHb to tissue Po2. The proposed method was calibrated and validated with 20 pigs (12 before and after furosemide injection) in which BOLD-derived tissue Po2 was compared with microprobe-measured values. The method was then applied to nine healthy human subjects (age: 25.7 ± 3.0 yr) in whom BOLD was performed before and after furosemide. For the 12 pigs before furosemide injection, the proposed model estimated renal tissue Po2 with errors of 2.3 ± 5.2 mmHg (5.8 ± 13.4%) in cortex and -0.1 ± 4.5 mmHg (1.7 ± 18.1%) in medulla, compared with microprobe measurements. After injection of furosemide, the estimation errors were 6.9 ± 3.9 mmHg (14.2 ± 8.4%) for cortex and 2.6 ± 4.0 mmHg (7.7 ± 11.5%) for medulla. In the human subjects, BOLD-derived medullary Po2 increased from 16.0 ± 4.9 mmHg (SHb: 31 ± 11%) at baseline to 26.2 ± 3.1 mmHg (SHb: 53 ± 6%) at 5 min after furosemide injection, while cortical Po2 did not change significantly at ∼58 mmHg (SHb: 92 ± 1%). Our proposed method, validated with a porcine model, appears promising for estimating tissue Po2 from renal BOLD MRI data in human subjects.
Collapse
|
32
|
Zhang YD, Wang J, Zhang J, Wang X, Jiang X. Effect of iodinated contrast media on renal function evaluated with dynamic three-dimensional MR renography. Radiology 2013; 270:409-15. [PMID: 24091357 DOI: 10.1148/radiol.13122495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To assess the hemodynamic effect of iodinated contrast media (CM) on glomerular filtration rate (GFR) by using dynamic three-dimensional magnetic resonance (MR) renography in a rabbit model. MATERIALS AND METHODS This study was approved by the university animal care and use committee. Twelve healthy male New Zealand rabbits (body mass range, 2.5-3.0 kg) were included. Two of them were sacrificed before MR examination to obtain renal histologic samples as controls. The other ten rabbits completed 4-minute dynamic contrast material-enhanced MR imaging 24 hours before and 20 minutes after intravenous injection of iopamidol (370 mg of iodine per milliliter) at a dose of 6 mL per kilogram of body weight. Blood volume (V(B)), GFR, and tubule volume (V(E)) of the renal cortex were determined with a two-compartment kinetic model. Maximum upslope (K(m)), peak concentration (P(c)), and initial 60-second area under the curve (IAUC) of the whole kidney renogram curve were measured with semiquantitative analysis. The self-control data were compared by using the Student paired t test. RESULTS Iopamidol significantly decreased cortical V(B) (mean, 42.53% ± 10.16 [standard deviation] before CM administration vs 27.23% ± 16.13 after CM administration; P < .01), V(E) (mean, 22.40% ± 11.69 before CM administration vs 11.51% ± 6.58 after CM administration; P < .01), and GFR (mean, 31.92 mL/100 g per minute ± 12.52 before CM administration vs 21.48 mL/100 g per minute ± 10.02 after CM administration; P < .01). Results of whole-kidney renogram analysis showed a decrease in K(m), P(c), and IAUC caused by iopamidol administration. CONCLUSION High-dose iopamidol resulted in a marked decrease in renal function, which could be detected at dynamic three-dimensional MR renography.
Collapse
Affiliation(s)
- Yu-Dong Zhang
- From the Center for MRI Research, Peking University, Beijing, China (J.W.); Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China (J.Z.); and Department of Radiology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, China 100034 (Y.D.Z., X.W., X.J.)
| | | | | | | | | |
Collapse
|
33
|
MR renographic measurement of renal function in patients undergoing partial nephrectomy. AJR Am J Roentgenol 2013; 200:1204-9. [PMID: 23701054 DOI: 10.2214/ajr.12.10276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this review is to describe the role of functional renal MRI, or MR renography, in the care of patients with renal masses undergoing partial nephrectomy. CONCLUSION MR renography can be used to monitor renal functional outcome for patients undergoing partial nephrectomy and may help guide patient selection in this population with elevated risk of chronic kidney disease.
Collapse
|
34
|
Ingrisch M, Sourbron S. Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer. J Pharmacokinet Pharmacodyn 2013. [PMID: 23563847 DOI: 10.1007/s10928-013-939315-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dynamic contrast-enhanced computed tomography (DCE-CT) and magnetic resonance imaging (DCE-MRI) are functional imaging techniques. They aim to characterise the microcirculation by applying the principles of tracer-kinetic analysis to concentration-time curves measured in individual image pixels. In this paper, we review the basic principles of DCE-MRI and DCE-CT, with a specific emphasis on the use of tracer-kinetic modeling. The aim is to provide an introduction to the field for a broader audience of pharmacokinetic modelers. In a first part, we first review the key aspects of data acquisition in DCE-CT and DCE-MRI, including a review of basic measurement strategies, a discussion on the relation between signal and concentration, and the problem of measuring reference data in arterial blood. In a second part, we define the four main parameters that can be measured with these techniques and review the most common tracer-kinetic models that are used in this field. We first discuss the models for the capillary bed and then define the most general four-parameter models used today: the two-compartment exchange model, the tissue-homogeneity model, the "adiabatic approximation to the tissue-homogeneity model" and the distributed-parameter model. In simpler tissue types or when the data quality is inadequate to resolve all the features of the more complex models, it is often necessary to resort to simpler models, which are special cases of the general models and hence have less parameters. We discuss the most common of these special cases, i.e. the uptake models, the extended Tofts model, and the one-compartment model. Models for two specific tissue types, liver and kidney, are discussed separately. We conclude with a review of practical aspects of DCE-CT and DCE-MRI data analysis, including the problem of identifying a suitable model for any given data set, and a brief discussion of the application of tracer-kinetic modeling in the context of drug development. Here, an important application of DCE techniques is the derivation of quantitative imaging biomarkers for the assessment of effects of targeted therapeutics on tumors.
Collapse
Affiliation(s)
- Michael Ingrisch
- Institute for Clinical Radiology, Ludwig-Maximilians University Hospital Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | | |
Collapse
|
35
|
Ingrisch M, Sourbron S. Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer. J Pharmacokinet Pharmacodyn 2013; 40:281-300. [PMID: 23563847 DOI: 10.1007/s10928-013-9315-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/22/2013] [Indexed: 12/19/2022]
Abstract
Dynamic contrast-enhanced computed tomography (DCE-CT) and magnetic resonance imaging (DCE-MRI) are functional imaging techniques. They aim to characterise the microcirculation by applying the principles of tracer-kinetic analysis to concentration-time curves measured in individual image pixels. In this paper, we review the basic principles of DCE-MRI and DCE-CT, with a specific emphasis on the use of tracer-kinetic modeling. The aim is to provide an introduction to the field for a broader audience of pharmacokinetic modelers. In a first part, we first review the key aspects of data acquisition in DCE-CT and DCE-MRI, including a review of basic measurement strategies, a discussion on the relation between signal and concentration, and the problem of measuring reference data in arterial blood. In a second part, we define the four main parameters that can be measured with these techniques and review the most common tracer-kinetic models that are used in this field. We first discuss the models for the capillary bed and then define the most general four-parameter models used today: the two-compartment exchange model, the tissue-homogeneity model, the "adiabatic approximation to the tissue-homogeneity model" and the distributed-parameter model. In simpler tissue types or when the data quality is inadequate to resolve all the features of the more complex models, it is often necessary to resort to simpler models, which are special cases of the general models and hence have less parameters. We discuss the most common of these special cases, i.e. the uptake models, the extended Tofts model, and the one-compartment model. Models for two specific tissue types, liver and kidney, are discussed separately. We conclude with a review of practical aspects of DCE-CT and DCE-MRI data analysis, including the problem of identifying a suitable model for any given data set, and a brief discussion of the application of tracer-kinetic modeling in the context of drug development. Here, an important application of DCE techniques is the derivation of quantitative imaging biomarkers for the assessment of effects of targeted therapeutics on tumors.
Collapse
Affiliation(s)
- Michael Ingrisch
- Institute for Clinical Radiology, Ludwig-Maximilians University Hospital Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | | |
Collapse
|
36
|
Lee VS. MRI: From science to society. J Magn Reson Imaging 2013; 37:753-60. [DOI: 10.1002/jmri.24044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/08/2022] Open
|
37
|
Zhang JL, Rusinek H, Chandarana H, Lee VS. Functional MRI of the kidneys. J Magn Reson Imaging 2013; 37:282-93. [PMID: 23355431 PMCID: PMC3558841 DOI: 10.1002/jmri.23717] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 05/02/2012] [Indexed: 12/20/2022] Open
Abstract
Renal function is characterized by different physiologic aspects, including perfusion, glomerular filtration, interstitial diffusion, and tissue oxygenation. Magnetic resonance imaging (MRI) shows great promise in assessing these renal tissue characteristics noninvasively. The last decade has witnessed a dramatic progress in MRI techniques for renal function assessment. This article briefly describes relevant renal anatomy and physiology, reviews the applications of functional MRI techniques for the diagnosis of renal diseases, and lists unresolved issues that will require future work.
Collapse
Affiliation(s)
- Jeff L Zhang
- Department of Radiology, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA.
| | | | | | | |
Collapse
|
38
|
Tyson R, Logsdon SA, Werre SR, Daniel GB. Estimation of feline renal volume using computed tomography and ultrasound. Vet Radiol Ultrasound 2012; 54:127-32. [PMID: 23278991 DOI: 10.1111/vru.12007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/14/2012] [Indexed: 11/27/2022] Open
Abstract
Renal volume estimation is an important parameter for clinical evaluation of kidneys and research applications. A time efficient, repeatable, and accurate method for volume estimation is required. The purpose of this study was to describe the accuracy of ultrasound and computed tomography (CT) for estimating feline renal volume. Standardized ultrasound and CT scans were acquired for kidneys of 12 cadaver cats, in situ. Ultrasound and CT multiplanar reconstructions were used to record renal length measurements that were then used to calculate volume using the prolate ellipsoid formula for volume estimation. In addition, CT studies were reconstructed at 1 mm, 5 mm, and 1 cm, and transferred to a workstation where the renal volume was calculated using the voxel count method (hand drawn regions of interest). The reference standard kidney volume was then determined ex vivo using water displacement with the Archimedes' principle. Ultrasound measurement of renal length accounted for approximately 87% of the variability in renal volume for the study population. The prolate ellipsoid formula exhibited proportional bias and underestimated renal volume by a median of 18.9%. Computed tomography volume estimates using the voxel count method with hand-traced regions of interest provided the most accurate results, with increasing accuracy for smaller voxel sizes in grossly normal kidneys (-10.1 to 0.6%). Findings from this study supported the use of CT and the voxel count method for estimating feline renal volume in future clinical and research studies.
Collapse
Affiliation(s)
- Reid Tyson
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | |
Collapse
|
39
|
Tofts PS, Cutajar M, Mendichovszky IA, Peters AM, Gordon I. Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values. Eur Radiol 2012; 22:1320-30. [PMID: 22415410 DOI: 10.1007/s00330-012-2382-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/25/2011] [Accepted: 12/04/2011] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To model the uptake phase of T(1)-weighted DCE-MRI data in normal kidneys and to demonstrate that the fitted physiological parameters correlate with published normal values. METHODS The model incorporates delay and broadening of the arterial vascular peak as it appears in the capillary bed, two distinct compartments for renal intravascular and extravascular Gd tracer, and uses a small-vessel haematocrit value of 24%. Four physiological parameters can be estimated: regional filtration K ( trans ) (ml min(-1) [ml tissue](-1)), perfusion F (ml min(-1) [100 ml tissue](-1)), blood volume v ( b ) (%) and mean residence time MRT (s). From these are found the filtration fraction (FF; %) and total GFR (ml min(-1)). Fifteen healthy volunteers were imaged twice using oblique coronal slices every 2.5 s to determine the reproducibility. RESULTS Using parenchymal ROIs, group mean values for renal biomarkers all agreed with published values: K ( trans ): 0.25; F: 219; v ( b ): 34; MRT: 5.5; FF: 15; GFR: 115. Nominally cortical ROIs consistently underestimated total filtration (by ~50%). Reproducibility was 7-18%. Sensitivity analysis showed that these fitted parameters are most vulnerable to errors in the fixed parameters kidney T(1), flip angle, haematocrit and relaxivity. CONCLUSIONS These renal biomarkers can potentially measure renal physiology in diagnosis and treatment. KEY POINTS • Dynamic contrast-enhanced magnetic resonance imaging can measure renal function. • Filtration and perfusion values in healthy volunteers agree with published normal values. • Precision measured in healthy volunteers is between 7 and 15%.
Collapse
Affiliation(s)
- Paul S Tofts
- Brighton and Sussex Medical School, Falmer, Sussex BN1 9PX, UK.
| | | | | | | | | |
Collapse
|
40
|
Zhang Y, Wang J, Wang X, Zhang J, Fang J, Jiang X. Feasibility study of exploring a T₁-weighted dynamic contrast-enhanced MR approach for brain perfusion imaging. J Magn Reson Imaging 2012; 35:1322-31. [PMID: 22314848 DOI: 10.1002/jmri.23570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/02/2011] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To investigate the feasibility of T(1) -weighted dynamic contrast-enhanced (DCE) MRI for the measurement of brain perfusion. MATERIALS AND METHODS Dynamic imaging was performed on a 3.0 Tesla (T) MR scanner by using a rapid spoiled-GRE protocol. T(1) measurement with driven equilibrium single pulse observation of T(1) (DESPOT1) was used to convert the MR signal to tracer concentration. Cerebral perfusion maps were obtained by using an improved gamma-variate model in 10 subjects and compared with those with arterial spin label (ASL) approach. RESULTS The cerebral blood volume (CBV) values were calculated as 4.74 ± 1.09 and 2.29 ± 0.58 mL/100 g in gray matter (GM) and whiter matter (WM), respectively. Mean transit time (MTT) values were 6.15 ± 0.59 s in GM and 6.96 ± 0.79 s in WM. The DCE values for GM/WM cerebral blood flow (CBF) were measured as 53.41 ± 9.23 / 25.78 ± 8.91 mL/100 g/min, versus ASL values of 49.05 ± 10.81 / 23.00 ± 5.89 mL/100 g/min for GW/WM. Bland-Altman plot revealed a small difference of CBF between two approaches (mean bias = 3.83 mL/100 g/min, SD = 11.29). There were 6 pairs of samples (5%, 6/120) beyond the 95% limits of agreement. The correlation plots showed that the slop of Y (CBF_(_DCE)) versus X intercept (CBF_(_ASL)) is 0.95 with the intercept of 4.53 mL/100 g/min (r = 0.74; P < 0.05). CONCLUSION It is feasible to evaluate the cerebral perfusion by using T(1)-weighted DCE-MRI with the improved kinetic model.
Collapse
Affiliation(s)
- Yudong Zhang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
41
|
Yamamoto A, Zhang JL, Rusinek H, Chandarana H, Vivier PH, Babb JS, Diflo T, John DG, Benstein JA, Barisoni L, Stoffel DR, Lee VS. Quantitative evaluation of acute renal transplant dysfunction with low-dose three-dimensional MR renography. Radiology 2011; 260:781-9. [PMID: 21771953 DOI: 10.1148/radiol.11101664] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE To assess prospectively the ability of quantitative low-dose three-dimensional magnetic resonance (MR) renography to help identify the cause of acute graft dysfunction. MATERIALS AND METHODS This HIPAA-compliant study was approved by the institutional review board, and written informed consent was obtained. Between December 2001 and May 2009, sixty patients with transplanted kidneys (41 men and 19 women; mean age, 49 years; age range, 22-71 years) were included. Thirty-one patients had normal function and 29 had acute dysfunction due to acute rejection (n = 12), acute tubular necrosis (ATN) (n = 8), chronic rejection (n = 6), or drug toxicity (n = 3). MR renography was performed at 1.5 T with three-dimensional gradient-echo imaging. With use of a multicompartment renal model, the glomerular filtration rate (GFR) and the mean transit time (MTT) of the tracer for the vascular compartment (MTT(A)), the tubular compartment (MTT(T)), and the collecting system compartment (MTT(C)) were calculated. Also derived was MTT for the whole kidney (MTT(K) = MTT(A) + MTT(T) + MTT(C)) and fractional MTT of each compartment (MTT(A/K) = MTT(A)/MTT(K), MTT(T/K) = MTT(T)/MTT(K), MTT(C/K) = MTT(C)/MTT(K)). These parameters were compared in patients in the different study groups. Statistical analysis was performed by using analysis of covariance. RESULTS There were significant differences in GFR and MTT(K) between the acute dysfunction group (36.4 mL/min ± 20.8 [standard deviation] and 177.1 seconds ± 46.8, respectively) and the normal function group (65.9 mL/min ± 27.6 and 140.5 seconds ± 51.8, respectively) (P < .001 and P = .004). The MTT(A/K) was significantly higher in the acute rejection group (mean, 12.7% ± 2.9) than in the normal function group (mean, 8.3% ± 2.2; P < .001) or in the ATN group (mean, 7.1% ± 1.4; P < .001). The MTT(T/K) was significantly higher in the ATN group (mean, 83.2% ± 9.2) than in the normal function group (mean, 72.4% ± 10.2; P = .031) or in the acute rejection group (mean, 69.2% ± 6.1; P = .003). CONCLUSION Low-dose MR renography analyzed by using a multicompartmental tracer kinetic renal model may help to differentiate noninvasively between acute rejection and ATN after kidney transplantation.
Collapse
Affiliation(s)
- Akira Yamamoto
- Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Winter JD, St Lawrence KS, Cheng HLM. Quantification of renal perfusion: comparison of arterial spin labeling and dynamic contrast-enhanced MRI. J Magn Reson Imaging 2011; 34:608-15. [PMID: 21761490 DOI: 10.1002/jmri.22660] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/29/2011] [Indexed: 01/27/2023] Open
Abstract
PURPOSE To provide the first comparison of absolute renal perfusion obtained by arterial spin labeling (ASL) and separable compartment modeling of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). Moreover, we provide the first application of the dual bolus approach to quantitative DCE-MRI perfusion measurements in the kidney. MATERIALS AND METHODS Consecutive ASL and DCE-MRI acquisitions were performed on six rabbits on a 1.5 T MRI system. Gadolinium (Gd)-DTPA was administered in two separate injections to decouple measurement of the arterial input function and tissue uptake curves. For DCE perfusion, pixel-wise and mean cortex region-of-interest tissue curves were fit to a separable compartment model. RESULTS Absolute renal cortex perfusion estimates obtained by DCE and ASL were in close agreement: 3.28 ± 0.59 mL/g/min (ASL), 2.98 ± 0.60 mL/g/min (DCE), and 3.57 ± 0.96 mL/g/min (pixel-wise DCE). Renal medulla perfusion was 1.53 ± 0.35 mL/g/min (ASL) but was not adequately described by the separable compartment model. CONCLUSION ASL and DCE-MRI provided similar measures of absolute perfusion in the renal cortex, offering both noncontrast and contrast-based alternatives to improve current renal MRI assessment of kidney function.
Collapse
Affiliation(s)
- Jeff D Winter
- Research Institute, Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
43
|
Durand E, Chaumet-Riffaud P, Grenier N. Functional renal imaging: new trends in radiology and nuclear medicine. Semin Nucl Med 2011; 41:61-72. [PMID: 21111860 DOI: 10.1053/j.semnuclmed.2010.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this work is to compare the characteristics of various techniques for functional renal imaging, with a focus on nuclear medicine and magnetic resonance imaging. Even with low spatial resolution and rather poor signal-to-noise ratio, classical nuclear medicine has the advantage of linearity and good sensitivity. It remains the gold standard technique for renal relative functional assessment. Technetium-99m ((99m)Tc)-labeled diethylenetriamine penta-acetate remains the reference glomerular tracer. Tubular tracers have been improved: (123)I- or (131)I-hippuran, (99m)Tc-MAG3 and, recently, (99m)Tc-nitrilotriacetic acid. However, advancement in molecular imaging has not produced a groundbreaking tracer. Renal magnetic resonance imaging with classical gadolinated tracers probably has potential in this domain but has a lack of linearity and, therefore, its value still needs evaluation. Moreover, the advent of nephrogenic systemic fibrosis has delayed its expansion. Other developments, such as diffusion or blood oxygen level-dependent imaging, may have a role in the future. The other modalities have a limited role in clinical practice for functional renal imaging.
Collapse
Affiliation(s)
- Emmanuel Durand
- Biophysics and Nuclear Medicine, University Paris Sud, 78 Rue du Général Leclerc, Le Kremlin-Bicêtre Cedex, France.
| | | | | |
Collapse
|
44
|
Lemoine S, Papillard M, Belloi A, Rognant N, Fouque D, Laville M, Rouvière O, Juillard L. Renal perfusion: noninvasive measurement with multidetector CT versus fluorescent microspheres in a pig model. Radiology 2011; 260:414-20. [PMID: 21673226 DOI: 10.1148/radiol.11101317] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To validate the measurement of renal perfusion with multidetector computed tomography (CT) with a low-rate injection of contrast medium (ie, 3 mL/sec) through a catheter placed peripherally with gamma variate extended modeling in a pig model, compared with a reference method of fluorescent microspheres. MATERIALS AND METHODS This study was approved by the Institutional Animal Care and Use Committee. Renal perfusion was measured in 10 anesthetized pigs simultaneously with multidetector CT and with fluorescent microspheres, which are the reference standard for measuring regional renal perfusion. In each pig, measurements were obtained under three conditions. These were dopamine infusion, dopamine infusion with vascular expansion, and angiotensin II infusion. Aortic and cortical time-attenuation curves were modeled to measure renal perfusion with the gamma variate model. The renal perfusion measurements with the multidetector CT and that with microspheres were compared with least squares regression analysis and Bland-Altman plots. RESULTS Perfusion as measured with multidetector CT and that as measured with microspheres were strongly correlated (ρ = 0.93, P < .0001). Multidetector CT renal perfusion with dopamine infusion (3.13 mL/min/g ± 0.53) was not changed after volume expansion (3.37 mL/min/g ± 0.75, P = .35) but was significantly decreased after angiotensin II injection (2.01 mL/min/g ± 0.57, P = .0001). CONCLUSION Multidetector CT provides reliable measurements of single-kidney perfusion with peripheral low-rate contrast medium injection.
Collapse
Affiliation(s)
- Sandrine Lemoine
- Department of Nephrology, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5 place d'Arsonval, Pavillon P, 69437, Cedex 03, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wentland AL, Artz NS, Fain SB, Grist TM, Djamali A, Sadowski EA. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function. Nephrol Dial Transplant 2011; 27:128-35. [PMID: 21622986 DOI: 10.1093/ndt/gfr199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. METHODS To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. RESULTS Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P < 1 × 10(-6)) and oxygen bioavailability (Spearman's correlation coefficient = -0.60; P < 0.0001) correlated significantly with TRBF, whereas medullary perfusion and oxygen bioavailability did not correlate with TRBF. CONCLUSIONS Our results demonstrate expected changes given the pharmacologically induced changes in renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.
Collapse
Affiliation(s)
- Andrew L Wentland
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, WI, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Jones RA, Votaw JR, Salman K, Sharma P, Lurie C, Kalb B, Martin DR. Magnetic resonance imaging evaluation of renal structure and function related to disease: Technical review of image acquisition, postprocessing, and mathematical modeling steps. J Magn Reson Imaging 2011; 33:1270-83. [DOI: 10.1002/jmri.22335] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
47
|
[Evaluation of glomerular filtration rate with magnetic resonance imaging]. ACTA ACUST UNITED AC 2011; 92:369-81. [PMID: 21621103 DOI: 10.1016/j.jradio.2011.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 06/20/2010] [Accepted: 03/18/2011] [Indexed: 11/23/2022]
Abstract
Glomerular Filtration Rate (GFR) is one of the cardinal indices of renal function and is used clinically as the gold standard of renal dysfunction. In the past decade, many studies using dynamic contrast-enhanced MRI (DCE MRI) to measure GFR have been published. The MRI evaluation of GFR centers on visualizing the passage of contrast material (Gadolinium chelates) through the kidney. MRI appears as a promising tool but still relatively difficult to implement in the assessment of GFR. A high heterogeneity of protocols (e.g., in acquisition mode, dose of contrast, postprocessing techniques) is noted in the literature, reflecting the number of technical challenges that should first be solved in order to reach a consensus, and the reported accuracy and reproducibility are insufficient for justifying their use in clinical practice now. This paper presents and discusses the different steps that can be used to quantify the GFR by MRI.
Collapse
|
48
|
Vivier PH, Storey P, Rusinek H, Zhang JL, Yamamoto A, Tantillo K, Khan U, Lim RP, Babb JS, John D, Teperman LW, Chandarana H, Friedman K, Benstein JA, Skolnik EY, Lee VS. Kidney function: glomerular filtration rate measurement with MR renography in patients with cirrhosis. Radiology 2011; 259:462-70. [PMID: 21386050 DOI: 10.1148/radiol.11101338] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To assess the accuracy of glomerular filtration rate (GFR) measurements obtained with low-contrast agent dose dynamic contrast material-enhanced magnetic resonance (MR) renography in patients with liver cirrhosis who underwent routine liver MR imaging, with urinary clearance of technetium 99m ((99m)Tc) pentetic acid (DTPA) as the reference standard. MATERIALS AND METHODS This HIPAA-compliant study was institutional review board approved. Written informed patient consent was obtained. Twenty patients with cirrhosis (14 men, six women; age range, 41-70 years; mean age, 54.6 years) who were scheduled for routine 1.5-T liver MR examinations to screen for hepatocellular carcinoma during a 6-month period were prospectively included. Five-minute MR renography with a 3-mL dose of gadoteridol was performed instead of a routine test-dose timing examination. The GFR was estimated at MR imaging with use of two kinetic models. In one model, only the signal intensities in the aorta and kidney parenchyma were considered, and in the other, renal cortical and medullary signal intensities were treated separately. The GFR was also calculated by using serum creatinine levels according to the Cockcroft-Gault and modification of diet in renal disease (MDRD) formulas. All patients underwent a (99m)Tc-DTPA urinary clearance examination on the same day to obtain a reference GFR measurement. The accuracies of all MR- and creatinine-based GFR estimations were compared by using Wilcoxon signed rank tests. RESULTS The mean reference GFR, based on (99m)Tc-DTPA clearance, was 74.9 mL/min/1.73 m(2) ± 27.7 (standard deviation) (range, 10.3-120.7 mL/min/1.73 m(2)). With both kinetic models, 95% of MR-based GFRs were within 30% of the reference values, whereas only 40% and 60% of Cockcroft-Gault- and MDRD-based GFRs, respectively, were within this range. MR-based GFR estimates were significantly more accurate than creatinine level-based estimates (P < .001). CONCLUSION GFR assessment with MR imaging, which outperformed the Cockcroft-Gault and MDRD formulas, adds less than 10 minutes of table time to a clinically indicated liver MR examination without ionizing radiation. SUPPLEMENTAL MATERIAL http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101338/-/DC1.
Collapse
|
49
|
Rocha G, Pereira M, Benarroz M, Frydman J, Rocha V, Pereira M, Fonseca A, Medeiros A, Bernardo-Filho M. Sucralose sweetener in vivo effects on blood constituents radiolabeling, red blood cell morphology and radiopharmaceutical biodistribution in rats. Appl Radiat Isot 2011; 69:46-51. [DOI: 10.1016/j.apradiso.2010.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/16/2010] [Accepted: 08/11/2010] [Indexed: 11/27/2022]
|
50
|
Notohamiprodjo M, Reiser MF, Sourbron SP. Diffusion and perfusion of the kidney. Eur J Radiol 2010; 76:337-47. [PMID: 20580179 DOI: 10.1016/j.ejrad.2010.05.033] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/28/2010] [Indexed: 01/18/2023]
Abstract
MRI of the kidney currently makes the transition from depiction of morphology to assessment of function. Functional renal imaging methods provide information on diffusion and perfusion on a microstructural level. This review article presents the current status of functional renal imaging with focus on DWI (diffusion-weighted imaging) and DCE-MRI (dynamic contrast-enhanced MRI), as well as BOLD (blood-oxygenation level dependent) MRI, DTI (diffusion tensor imaging) and arterial spin labeling (ASL). Technical background of these techniques is explained and clinical assessment of renal function, parenchymal disease, transplant function and solid masses is discussed.
Collapse
Affiliation(s)
- Mike Notohamiprodjo
- Department of Clinical Radiology, University Hospitals Munich, Campus Großhadern, Marchioninistrasse 15, 81377 Munich, Germany.
| | | | | |
Collapse
|