1
|
Zniber M, Vahdatiyekta P, Huynh TP. Discrimination of serum samples of prostate cancer and benign prostatic hyperplasia with 1H-NMR metabolomics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7043-7053. [PMID: 39291414 DOI: 10.1039/d4ay01109k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Prostate cancer continues to be a prominent health concern for men globally. Current screening techniques, primarily the prostate-specific antigen (PSA) test and digital rectal examination (DRE), possess inherent limitations, with prostate biopsy being the definitive diagnostic procedure. The invasive nature of the biopsy and other drawbacks of current screening tests create the need for non-invasive and more accurate diagnostic methods. This study utilized 1H-NMR (Proton Nuclear Magnetic Resonance) based serum metabolomics to differentiate between prostate cancer (PCa) and benign prostatic hyperplasia (BPH). Serum samples from 40 PCa and 41 BPH patients were analysed using 1H-NMR spectroscopy. PepsNMR was utilized for preprocessing the raw NMR data, and the binned spectra were examined for patterns distinguishing PCa and BPH. Principal component analysis (PCA) showed a moderate separation between PCa and BPH, highlighting the distinct metabolic profiles of both conditions. A logistic regression model was then developed, which demonstrated good performance in distinguishing between the two conditions. The results showed significant variance in multiple metabolites between PCa and BPH, such as isovaleric acid, ethylmalonic acid, formate, and glutamic acid. This research underlines the potential of 1H-NMR-based serum metabolomics as a promising tool for improved prostate cancer screening, offering an alternative to the limitations of current screening methods.
Collapse
Affiliation(s)
- Mohammed Zniber
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Parastoo Vahdatiyekta
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Tan-Phat Huynh
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
2
|
Panach-Navarrete J, González-Marrachelli V, Morales-Tatay JM, García-Morata F, Sales-Maicas MÁ, Monleón-Salvado D, Martínez-Jabaloyas JM. Metabolic analysis using HR-MAS in prostate tissue for prostate cancer diagnosis. Prostate 2024; 84:549-559. [PMID: 38212952 DOI: 10.1002/pros.24670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION In this study we used nuclear magnetic resonance spectroscopy in prostate tissue to provide new data on potential biomarkers of prostate cancer in patients eligible for prostate biopsy. MATERIAL AND METHODS Core needle prostate tissue samples were obtained. After acquiring all the spectra using a Bruker Avance III DRX 600 spectrometer, tissue samples were subjected to routine histology to confirm presence or absence of prostate cancer. Univariate and multivariate analyses with metabolic and clinical variables were performed to predict the occurrence of prostate cancer. RESULTS A total of 201 patients, were included in the study. Of all cores subjected to high-resolution magic angle spinning (HR-MAS) followed by standard histological study, 56 (27.8%) tested positive for carcinoma. According to HR-MAS probe analysis, metabolic pathways such as glycolysis, the Krebs cycle, and the metabolism of different amino acids were associated with presence of prostate cancer. Metabolites detected in tissue such as citrate or glycerol-3-phosphocholine, together with prostate volume and suspicious rectal examination, formed a predictive model for prostate cancer in tissue with an area under the curve of 0.87, a specificity of 94%, a positive predictive value of 80% and a negative predictive value of 84%. CONCLUSIONS Metabolomics using HR-MAS analysis can uncover a specific metabolic fingerprint of prostate cancer in prostate tissue, using a tissue core obtained by transrectal biopsy. This specific fingerprint is based on levels of citrate, glycerol-3-phosphocholine, glycine, carnitine, and 0-phosphocholine. Several clinical variables, such as suspicious digital rectal examination and prostate volume, combined with these metabolites, form a predictive model to diagnose prostate cancer that has shown encouraging results.
Collapse
Affiliation(s)
- Jorge Panach-Navarrete
- Department of Urology, University Clinic Hospital of Valencia, Valencia, Spain
- INCLIVA, Health Research Institute, University Clinic Hospital of Valencia, Valencia, Spain
- Facultat de Medicina i Odontologia, Universitat de València, Valencia, Spain
| | - Vannina González-Marrachelli
- INCLIVA, Health Research Institute, University Clinic Hospital of Valencia, Valencia, Spain
- Department of Physiology, Facultat de Medicina i Odontologia, Universitat de València, Valencia, Spain
| | - José Manuel Morales-Tatay
- INCLIVA, Health Research Institute, University Clinic Hospital of Valencia, Valencia, Spain
- Department of Pathology, Facultat de Medicina i Odontologia, Universitat de València, Valencia, Spain
| | - Francisco García-Morata
- Department of Urology, University Clinic Hospital of Valencia, Valencia, Spain
- INCLIVA, Health Research Institute, University Clinic Hospital of Valencia, Valencia, Spain
- Facultat de Medicina i Odontologia, Universitat de València, Valencia, Spain
| | - María Ángeles Sales-Maicas
- INCLIVA, Health Research Institute, University Clinic Hospital of Valencia, Valencia, Spain
- Facultat de Medicina i Odontologia, Universitat de València, Valencia, Spain
- Department of Pathology, University Clinic Hospital of Valencia, Valencia, Spain
| | - Daniel Monleón-Salvado
- INCLIVA, Health Research Institute, University Clinic Hospital of Valencia, Valencia, Spain
- Department of Metabolomic, Facultat de Medicina i Odontologia, Universitat de València, Valencia, Spain
| | - José María Martínez-Jabaloyas
- Department of Urology, University Clinic Hospital of Valencia, Valencia, Spain
- INCLIVA, Health Research Institute, University Clinic Hospital of Valencia, Valencia, Spain
- Facultat de Medicina i Odontologia, Universitat de València, Valencia, Spain
| |
Collapse
|
3
|
Ossoliński K, Ruman T, Copié V, Tripet BP, Kołodziej A, Płaza-Altamer A, Ossolińska A, Ossoliński T, Krupa Z, Nizioł J. Metabolomic profiling of human bladder tissue extracts. Metabolomics 2024; 20:14. [PMID: 38267657 DOI: 10.1007/s11306-023-02076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Bladder cancer is a common malignancy affecting the urinary tract and effective biomarkers and for which monitoring therapeutic interventions have yet to be identified. OBJECTIVES Major aim of this work was to perform metabolomic profiling of human bladder cancer and adjacent normal tissue and to evaluate cancer biomarkers. METHODS This study utilized nuclear magnetic resonance (NMR) and high-resolution nanoparticle-based laser desorption/ionization mass spectrometry (LDI-MS) methods to investigate polar metabolite profiles in tissue samples from 99 bladder cancer patients. RESULTS Through NMR spectroscopy, six tissue metabolites were identified and quantified as potential indicators of bladder cancer, while LDI-MS allowed detection of 34 compounds which distinguished cancer tissue samples from adjacent normal tissue. Thirteen characteristic tissue metabolites were also found to differentiate bladder cancer tumor grades and thirteen metabolites were correlated with tumor stages. Receiver-operating characteristics analysis showed high predictive power for all three types of metabolomics data, with area under the curve (AUC) values greater than 0.853. CONCLUSION To date, this is the first study in which bladder human normal tissues adjacent to cancerous tissues are analyzed using both NMR and MS method. These findings suggest that the metabolite markers identified in this study may be useful for the detection and monitoring of bladder cancer stages and grades.
Collapse
Affiliation(s)
- Krzysztof Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Tomasz Ruman
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Valérie Copié
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Brian P Tripet
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Artur Kołodziej
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Aneta Płaza-Altamer
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Anna Ossolińska
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Tadeusz Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Zuzanna Krupa
- Doctoral School of Engineering and Technical Sciences, Rzeszów University of Technology, 8 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Joanna Nizioł
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland.
| |
Collapse
|
4
|
Bansal N, Kumar M, Sankhwar SN, Gupta A. Evaluation of prostate cancer tissue metabolomics: would clinics utilise it for diagnosis? Expert Rev Mol Med 2023; 25:e26. [PMID: 37548191 DOI: 10.1017/erm.2023.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The difficulty of diagnosing prostate cancer (PC) with the available biomarkers frequently leads to over-diagnosis and overtreatment of PC, underscoring the need for novel molecular signatures. The purpose of this review is to provide a summary of the currently available cellular metabolomics for PC molecular signatures. A comprehensive search on PubMed was conducted to find studies published between January 2004 and August 2022 that reported biomarkers for PC detection, development, aggressiveness, recurrence and treatment response. Although potential studies have reported the presence of distinguishing molecules that can distinguish between benign and cancerous prostate tissue. However, there are few studies looking into signature molecules linked to disease development, therapy response or tumour recurrence. The majority of these studies use high-dimensional datasets, and the number of potential metabolites investigated frequently exceeds the size of the available samples. In light of this, pre-analytical, statistical, methodological and confounding factors such as antiandrogen therapy (NAT) may also be linked to the identified chemometric multivariate differences between PC and relevant control samples in the datasets. Despite the methodological and procedural challenges, a range of methodological groups and processes have consistently identified a number of signature metabolites and pathways that appear to imply a substantial involvement in the cellular metabolomics of PC for tumour formation and recurrence.
Collapse
Affiliation(s)
- Navneeta Bansal
- Department of Urology, King George's Medical University, Lucknow, India
| | - Manoj Kumar
- Department of Urology, King George's Medical University, Lucknow, India
| | - Satya N Sankhwar
- Department of Urology, King George's Medical University, Lucknow, India
| | - Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| |
Collapse
|
5
|
Lasorsa F, di Meo NA, Rutigliano M, Ferro M, Terracciano D, Tataru OS, Battaglia M, Ditonno P, Lucarelli G. Emerging Hallmarks of Metabolic Reprogramming in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24020910. [PMID: 36674430 PMCID: PMC9863674 DOI: 10.3390/ijms24020910] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is the most common male malignancy and the fifth leading cause of cancer death in men worldwide. Prostate cancer cells are characterized by a hybrid glycolytic/oxidative phosphorylation phenotype determined by androgen receptor signaling. An increased lipogenesis and cholesterogenesis have been described in PCa cells. Many studies have shown that enzymes involved in these pathways are overexpressed in PCa. Glutamine becomes an essential amino acid for PCa cells, and its metabolism is thought to become an attractive therapeutic target. A crosstalk between cancer and stromal cells occurs in the tumor microenvironment because of the release of different cytokines and growth factors and due to changes in the extracellular matrix. A deeper insight into the metabolic changes may be obtained by a multi-omic approach integrating genomics, transcriptomics, metabolomics, lipidomics, and radiomics data.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Octavian Sabin Tataru
- The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Târgu Mureș, Romania
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: or
| |
Collapse
|
6
|
Sanchez-Dahl Gonzalez M, Muti IH, Cheng LL. High resolution magic angle spinning MRS in prostate cancer. MAGMA (NEW YORK, N.Y.) 2022; 35:695-705. [PMID: 35318537 DOI: 10.1007/s10334-022-01005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Prostate cancer (PCa) is one of the leading causes of death among men worldwide. The current methods utilized to screen for prostate cancer may not have sufficient sensitivity in distinguishing aggressive from indolent diseases, which affect the quality of life of patients in the short and long term. The overdiagnosis of cases and overtreatment are prevalent due to the heterogeneity of the disease in terms of latent and progressive variants, as well as in the tissue types present in biopsy samples. METHODS The purpose of this review is to discuss the potential clinical benefits of incorporating high-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) modalities to overcome the current challenges in the diagnosis, prognostication, and monitoring of PCa.
Collapse
Affiliation(s)
| | - Isabella H Muti
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leo L Cheng
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Resurreccion EP, Fong KW. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022; 12:metabo12060488. [PMID: 35736421 PMCID: PMC9230859 DOI: 10.3390/metabo12060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Our understanding of prostate cancer (PCa) has shifted from solely caused by a few genetic aberrations to a combination of complex biochemical dysregulations with the prostate metabolome at its core. The role of metabolomics in analyzing the pathophysiology of PCa is indispensable. However, to fully elucidate real-time complex dysregulation in prostate cells, an integrated approach based on metabolomics and other omics is warranted. Individually, genomics, transcriptomics, and proteomics are robust, but they are not enough to achieve a holistic view of PCa tumorigenesis. This review is the first of its kind to focus solely on the integration of metabolomics with multi-omic platforms in PCa research, including a detailed emphasis on the metabolomic profile of PCa. The authors intend to provide researchers in the field with a comprehensive knowledge base in PCa metabolomics and offer perspectives on overcoming limitations of the tool to guide future point-of-care applications.
Collapse
Affiliation(s)
- Eleazer P. Resurreccion
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Ka-wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
- Correspondence: ; Tel.: +1-859-562-3455
| |
Collapse
|
8
|
Ex Vivo High-Resolution Magic Angle Spinning (HRMAS) 1H NMR Spectroscopy for Early Prostate Cancer Detection. Cancers (Basel) 2022; 14:cancers14092162. [PMID: 35565290 PMCID: PMC9103328 DOI: 10.3390/cancers14092162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Prostate cancer is the second leading cancer diagnosed in men worldwide. Current diagnostic standards lack sufficient reliability in detecting and characterizing prostate cancer. Due to the cancer’s multifocality, prostate biopsies are associated with high numbers of false negatives. Whereas several studies have already shown the potential of metabolomic information for PCa detection and characterization, in this study, we focused on evaluating its predictive power for future PCa diagnosis. In our study, metabolomic information differed substantially between histobenign patients based on their risk for receiving a future PCa diagnosis, making metabolomic information highly valuable for the individualization of active surveillance strategies. Abstract The aim of our study was to assess ex vivo HRMAS (high-resolution magic angle spinning) 1H NMR spectroscopy as a diagnostic tool for early PCa detection by testing whether metabolomic alterations in prostate biopsy samples can predict future PCa diagnosis. In a primary prospective study (04/2006–10/2018), fresh biopsy samples of 351 prostate biopsy patients were NMR spectroscopically analyzed (Bruker 14.1 Tesla, Billerica, MA, USA) and histopathologically evaluated. Three groups of 16 patients were compared: group 1 and 2 represented patients whose NMR scanned biopsy was histobenign, but patients in group 1 were diagnosed with cancer before the end of the study period, whereas patients in group 2 remained histobenign. Group 3 included cancer patients. Single-metabolite concentrations and metabolomic profiles were not only able to separate histobenign and malignant prostate tissue but also to differentiate between samples of histobenign patients who received a PCa diagnosis in the following years and those who remained histobenign. Our results support the hypothesis that metabolomic alterations significantly precede histologically visible changes, making metabolomic information highly beneficial for early PCa detection. Thanks to its predictive power, metabolomic information can be very valuable for the individualization of PCa active surveillance strategies.
Collapse
|
9
|
Tayari N, Wright AJ, Heerschap A. Absolute choline tissue concentration mapping for prostate cancer localization and characterization using 3D 1 H MRSI without water-signal suppression. Magn Reson Med 2022; 87:561-573. [PMID: 34554604 PMCID: PMC9290642 DOI: 10.1002/mrm.29012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Until now, 1 H MRSI of the prostate has been performed with suppression of the large water signal to avoid distortions of metabolite signals. However, this signal can be used for absolute quantification and spectral corrections. We investigated the feasibility of water-unsuppressed MRSI in patients with prostate cancer for water signal-mediated spectral quality improvement and determination of absolute tissue levels of choline. METHODS Eight prostate cancer patients scheduled for radical prostatectomy underwent multi-parametric MRI at 3 T, including 3D water-unsuppressed semi-LASER MRSI. A postprocessing algorithm was developed to remove the water signal and its artifacts and use the extracted water signal as intravoxel reference for phase and frequency correction of metabolite signals and for absolute metabolite quantification. RESULTS Water-unsuppressed MRSI with dedicated postprocessing produced water signal and artifact-free MR spectra throughout the prostate. In all patients, the absolute choline tissue concentration was significantly higher in tumorous than in benign tissue areas (mean ± SD: 7.2 ± 1.4 vs 3.8 ± 0.7 mM), facilitating tumor localization by choline mapping. Tumor tissue levels of choline correlated better with the commonly used (choline + spermine + creatine)/citrate ratio (r = 0.78 ± 0.1) than that of citrate (r = 0.21 ± 0.06). The highest maximum choline concentrations occurred in high-risk cancer foci. CONCLUSION This report presents the first successful water-unsuppressed MRSI of the whole prostate. The water signal enabled amelioration of spectral quality and absolute metabolite quantification. In this way, choline tissue levels were identified as tumor biomarker. Choline mapping may serve as a tool in prostate cancer localization and risk scoring in multi-parametric MRI for diagnosis and biopsy procedures.
Collapse
Affiliation(s)
- Nassim Tayari
- Department of Medical Imaging (Radiology)Radboud University Medical CenterNijmegenThe Netherlands
| | - Alan J. Wright
- Department of Medical Imaging (Radiology)Radboud University Medical CenterNijmegenThe Netherlands
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Arend Heerschap
- Department of Medical Imaging (Radiology)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
10
|
Liberini V, Morand GB, Rupp NJ, Orita E, Deandreis D, Broglie Däppen M, Hofbauer M, Maurer A, Husmann L, Mader CE, Grünig H, Alharbi AA, Messerli M, Huellner MW. Histopathological Features of Parathyroid Adenoma and 18F-Choline Uptake in PET/MR of Primary Hyperparathyroidism. Clin Nucl Med 2022; 47:101-107. [PMID: 35006103 DOI: 10.1097/rlu.0000000000003987] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The aim of this study was to assess the relationship between the histopathological properties of hyperfunctioning parathyroids and parathyroid 18F-choline uptake. PATIENTS AND METHODS A total of 31 parathyroid adenomas were retrospectively analyzed in patients with primary hyperparathyroidism and preoperative 18F-choline PET/MR. PET/MR parameters of parathyroid glands (SUVmax and target-to-background ratio in early-phase [EP] and late-phase [LP]), MRI volume, preoperative parathyroid hormone (PTH) serum concentration, and postoperative histopathology (predominant cell type and growth pattern of adenoma cells, location and size of adenoma) were assessed. The relationship of PET/MR parameters, PTH, and histological parameters was determined using linear regression, Spearman correlation and Kruskal-Wallis test. RESULTS The median volume of parathyroid adenoma was 421.78 ± 142.46 mm3 (46.39-4412.69). Adenomas were predominantly composed of chief, water-clear, and oncocytic/oxyphilic cells in 27/31, 2/31, and 2/31 cases, respectively. The growth pattern was predominantly solid, follicular, and trabecular in 18/31, 8/31, and 5/31, respectively. The SUVmax was 6.71 ± 3.39 in EP and 6.91 ± 3.97 in LP. Follicular growth pattern had slightly higher EP SUVmax (trabecular: 4.12 ± 0.56; solid: 6.62 ± 3.19; follicular: 8.56 ± 3.96; P = 0.046). Spearman correlation showed strong positive correlation between volume and both EP and LP SUVmax (0.626; P = 0.0001 and 0.576; P = 0.0001, respectively). Linear regression analysis revealed significant correlation between PTH level and EP and LP SUVmax (both P = 0.001); in contrast, no correlation was found between PTH level and both cell type and growth pattern. CONCLUSIONS Our findings suggest that 18F-choline uptake of parathyroid adenomas might be associated both with the histological growth pattern and adenoma volume, but not with a specific cell type.
Collapse
Affiliation(s)
| | | | | | | | - Désirée Deandreis
- Department of Medical Science, Nuclear Medicine Unit, University of Turin
| | | | - Marlena Hofbauer
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Alexander Maurer
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Lars Husmann
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Cäcilia E Mader
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Hannes Grünig
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Abdullah A Alharbi
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Michael Messerli
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Martin W Huellner
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Rise K, Tessem MB, Drabløs F, Rye MB. FunHoP: Enhanced Visualization and Analysis of Functionally Homologous Proteins in Complex Metabolic Networks. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:848-859. [PMID: 33741524 PMCID: PMC9170767 DOI: 10.1016/j.gpb.2021.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 05/08/2019] [Accepted: 08/18/2019] [Indexed: 11/28/2022]
Abstract
Cytoscape is often used for visualization and analysis of metabolic pathways. For example, based on KEGG data, a reader for KEGG Markup Language (KGML) is used to load files into Cytoscape. However, although multiple genes can be responsible for the same reaction, the KGML-reader KEGGScape only presents the first listed gene in a network node for a given reaction. This can lead to incorrect interpretations of the pathways. Our new method, FunHoP, shows all possible genes in each node, making the pathways more complete. FunHoP collapses all genes in a node into one measurement using read counts from RNA-seq. Assuming that activity for an enzymatic reaction mainly depends upon the gene with the highest number of reads, and weighting the reads on gene length and ratio, a new expression value is calculated for the node as a whole. Differential expression at node level is then applied to the networks. Using prostate cancer as model, we integrate RNA-seq data from two patient cohorts with metabolism data from literature. Here we show that FunHoP gives more consistent pathways that are easier to interpret biologically. Code and documentation for running FunHoP can be found at https://github.com/kjerstirise/FunHoP.
Collapse
Affiliation(s)
- Kjersti Rise
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Morten B Rye
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim NO-7491, Norway; Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim NO-7491, Norway.
| |
Collapse
|
12
|
Lee S, Ku JY, Kang BJ, Kim KH, Ha HK, Kim S. A Unique Urinary Metabolic Feature for the Determination of Bladder Cancer, Prostate Cancer, and Renal Cell Carcinoma. Metabolites 2021; 11:metabo11090591. [PMID: 34564407 PMCID: PMC8468099 DOI: 10.3390/metabo11090591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer (PCa), bladder cancer (BCa), and renal cell carcinoma (RCC) are the most prevalent cancer among urological cancers. However, there are no cancer-specific symptoms that can differentiate them as well as early clinical signs of urological malignancy. Furthermore, many metabolic studies have been conducted to discover their biomarkers, but the metabolic profiling study to discriminate between these cancers have not yet been described. Therefore, in this study, we aimed to investigate the urinary metabolic differences in male patients with PCa (n = 24), BCa (n = 29), and RCC (n = 12) to find the prominent combination of metabolites between cancers. Based on 1H NMR analysis, orthogonal partial least-squares discriminant analysis was applied to find distinct metabolites among cancers. Moreover, the ranked analysis of covariance by adjusting a potential confounding as age revealed that 4-hydroxybenzoate, N-methylhydantoin, creatinine, glutamine, and acetate had significantly different metabolite levels among groups. The receiver operating characteristic analysis created by prominent five metabolites showed the great discriminatory accuracy with area under the curve (AUC) > 0.7 for BCa vs. RCC, PCa vs. BCa, and RCC vs. PCa. This preliminary study compares the metabolic profiles of BCa, PCa, and RCC, and reinforces the exploratory role of metabolomics in the investigation of human urine.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Institute for Plastic Information and Energy Materials, Pusan National University, Busandaehak-ro 63, Geumjeong-gu, Busan 46241, Korea;
| | - Ja Yoon Ku
- Department of Urology, Dongnam Institute of Radiological & Medical Sciences Cancer Center, Busan 46033, Korea;
| | - Byeong Jin Kang
- Department of Urology, College of Medicine, Pusan National University, Busan 49241, Korea; (B.J.K.); (K.H.K.)
| | - Kyung Hwan Kim
- Department of Urology, College of Medicine, Pusan National University, Busan 49241, Korea; (B.J.K.); (K.H.K.)
| | - Hong Koo Ha
- Department of Urology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea;
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Institute for Plastic Information and Energy Materials, Pusan National University, Busandaehak-ro 63, Geumjeong-gu, Busan 46241, Korea;
- Correspondence: ; Tel.: +82-51-510-2240
| |
Collapse
|
13
|
Lima AR, Pinto J, Amaro F, Bastos MDL, Carvalho M, Guedes de Pinho P. Advances and Perspectives in Prostate Cancer Biomarker Discovery in the Last 5 Years through Tissue and Urine Metabolomics. Metabolites 2021; 11:181. [PMID: 33808897 PMCID: PMC8003702 DOI: 10.3390/metabo11030181] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in men worldwide. For its screening, serum prostate specific antigen (PSA) test has been largely performed over the past decade, despite its lack of accuracy and inability to distinguish indolent from aggressive disease. Metabolomics has been widely applied in cancer biomarker discovery due to the well-known metabolic reprogramming characteristic of cancer cells. Most of the metabolomic studies have reported alterations in urine of PCa patients due its noninvasive collection, but the analysis of prostate tissue metabolome is an ideal approach to disclose specific modifications in PCa development. This review aims to summarize and discuss the most recent findings from tissue and urine metabolomic studies applied to PCa biomarker discovery. Eighteen metabolites were found consistently altered in PCa tissue among different studies, including alanine, arginine, uracil, glutamate, fumarate, and citrate. Urine metabolomic studies also showed consistency in the dysregulation of 15 metabolites and, interestingly, alterations in the levels of valine, taurine, leucine and citrate were found in common between urine and tissue studies. These findings unveil that the impact of PCa development in human metabolome may offer a promising strategy to find novel biomarkers for PCa diagnosis.
Collapse
Affiliation(s)
- Ana Rita Lima
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Joana Pinto
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Filipa Amaro
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Márcia Carvalho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Praça Nove de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| |
Collapse
|
14
|
Yang M, Zhou M, Li Y, Huang H, Jia Y. Lipidomic analysis of facial skin surface lipid reveals the causes of pregnancy-related skin barrier weakness. Sci Rep 2021; 11:3229. [PMID: 33547383 PMCID: PMC7864992 DOI: 10.1038/s41598-021-82624-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Self-reported skin discomfort is a common problem during pregnancy, but it is not clear whether skin barrier function is altered in the process. Few studies have described the skin barrier function during pregnancy. In this work, we used highly sensitive and high-resolution ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) to distinguish skin surface lipid (SSL) combined with multivariate analysis of lipids and metabolic changes to determine the relationship between SSL changes and skin physiology during pregnancy in order to better understand the skin condition of pregnant women. The results showed a significant reduction in the total lipid content in pregnant women. A total of 2270 lipids were detected, and the relative abundances of fatty acyls and glycerolipids were significantly reduced, while glycerophospholipids (GPs), sphingolipids, and saccharolipids was significantly increased in the pregnancy group. Multivariate data analysis indicated that 23 entities constituted the most important individual species responsible for the discrimination and phosphatidylcholine was the most abundant lipid in pregnancy group. In addition, compared to SSL profile of control group, it was observed that the average chain length of ceramides and fatty acids both decreased in SSL profile of pregnancy group. The main and most commonly affected pathway was that of GP pathways. These findings indicate that skin lipids are significantly altered in mid-pregnancy compared to the control group. Changes in ostrogen during pregnancy also make the skin more susceptible to inflammatory factors and lead to more fragile and susceptible skin, weakening the skin barrier along with the lipid alterations.
Collapse
Affiliation(s)
- Manli Yang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.,Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Mingyue Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yuan Li
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hong Huang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China. .,Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
15
|
Aksoy O, Pencik J, Hartenbach M, Moazzami AA, Schlederer M, Balber T, Varady A, Philippe C, Baltzer PA, Mazumder B, Whitchurch JB, Roberts CJ, Haitel A, Herac M, Susani M, Mitterhauser M, Marculescu R, Stangl‐Kremser J, Hassler MR, Kramer G, Shariat SF, Turner SD, Tichy B, Oppelt J, Pospisilova S, Hartenbach S, Tangermann S, Egger G, Neubauer HA, Moriggl R, Culig Z, Greiner G, Hoermann G, Hacker M, Heery DM, Merkel O, Kenner L. Thyroid and androgen receptor signaling are antagonized by μ-Crystallin in prostate cancer. Int J Cancer 2021; 148:731-747. [PMID: 33034050 PMCID: PMC7756625 DOI: 10.1002/ijc.33332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 12/29/2022]
Abstract
Androgen deprivation therapy (ADT) remains a key approach in the treatment of prostate cancer (PCa). However, PCa inevitably relapses and becomes ADT resistant. Besides androgens, there is evidence that thyroid hormone thyroxine (T4) and its active form 3,5,3'-triiodo-L-thyronine (T3) are involved in the progression of PCa. Epidemiologic evidences show a higher incidence of PCa in men with elevated thyroid hormone levels. The thyroid hormone binding protein μ-Crystallin (CRYM) mediates intracellular thyroid hormone action by sequestering T3 and blocks its binding to cognate receptors (TRα/TRβ) in target tissues. We show in our study that low CRYM expression levels in PCa patients are associated with early biochemical recurrence and poor prognosis. Moreover, we found a disease stage-specific expression of CRYM in PCa. CRYM counteracted thyroid and androgen signaling and blocked intracellular choline uptake. CRYM inversely correlated with [18F]fluoromethylcholine (FMC) levels in positron emission tomography/magnetic resonance imaging of PCa patients. Our data suggest CRYM as a novel antagonist of T3- and androgen-mediated signaling in PCa. The role of CRYM could therefore be an essential control mechanism for the prevention of aggressive PCa growth.
Collapse
Affiliation(s)
- Osman Aksoy
- Department of PathologyMedical University ViennaViennaAustria
| | - Jan Pencik
- Department of PathologyMedical University ViennaViennaAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
- Present address: Jan Pencik, Molecular and Cell Biology LaboratoryThe Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Markus Hartenbach
- Department of Biomedical Imaging and Image Guided TherapyMedical University ViennaViennaAustria
| | - Ali A. Moazzami
- Department of Molecular Sciences, Uppsala BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| | | | - Theresa Balber
- Department of Biomedical Imaging and Image Guided TherapyMedical University ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsViennaAustria
- Department for Pharmaceutical Technology and BiopharmaceuticsUniversity of ViennaViennaAustria
| | - Adam Varady
- Department of PathologyMedical University ViennaViennaAustria
| | - Cecile Philippe
- Department of Biomedical Imaging and Image Guided TherapyMedical University ViennaViennaAustria
| | - Pascal A. Baltzer
- Department of Biomedical Imaging and Image Guided TherapyMedical University ViennaViennaAustria
| | | | | | | | - Andrea Haitel
- Department of PathologyMedical University ViennaViennaAustria
| | - Merima Herac
- Department of PathologyMedical University ViennaViennaAustria
| | - Martin Susani
- Department of PathologyMedical University ViennaViennaAustria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image Guided TherapyMedical University ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsViennaAustria
| | - Rodrig Marculescu
- Department of Laboratory MedicineMedical University ViennaViennaAustria
| | | | | | - Gero Kramer
- Department of UrologyMedical University ViennaViennaAustria
| | - Shahrokh F. Shariat
- Department of UrologyMedical University ViennaViennaAustria
- Division of Urology, Department of Special SurgeryJordan University Hospital, The University of JordanAmmanJordan
- Institute for Urology and Reproductive HealthSechenov UniversityMoscowRussia
- Departments of UrologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
- Department of UrologyUniversity of Texas SouthwesternDallasTexasUSA
- Department of Urology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Suzanne D. Turner
- Division of Cellular and Molecular Pathology, Department of PathologyUniversity of CambridgeCambridgeUK
- Center of Molecular Medicine, Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Boris Tichy
- Center of Molecular Medicine, Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Jan Oppelt
- Center of Molecular Medicine, Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Sarka Pospisilova
- Center of Molecular Medicine, Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Sabrina Hartenbach
- Histo Consulting Inc.UlmGermany
- Department of PathologyRudolfinerhaus Privatklinik GmbhViennaAustria
| | - Simone Tangermann
- Unit for Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Gerda Egger
- Department of PathologyMedical University ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsViennaAustria
| | - Heidi A. Neubauer
- Institute of Animal Breeding and GeneticsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Richard Moriggl
- Institute of Animal Breeding and GeneticsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Zoran Culig
- Department of UrologyInnsbruck Medical UniversityInnsbruckAustria
| | - Georg Greiner
- Department of Laboratory MedicineMedical University ViennaViennaAustria
| | - Gregor Hoermann
- Department of Laboratory MedicineMedical University ViennaViennaAustria
- MLL Munich Leukemia LaboratoryMunichGermany
| | - Marcus Hacker
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
- Department of Biomedical Imaging and Image Guided TherapyMedical University ViennaViennaAustria
| | | | - Olaf Merkel
- Department of PathologyMedical University ViennaViennaAustria
| | - Lukas Kenner
- Department of PathologyMedical University ViennaViennaAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
- Unit for Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
- Christian Doppler Laboratory for Applied Metabolomics (CDL‐AM)Medical University of ViennaViennaAustria
| |
Collapse
|
16
|
Giovanella L, Bacigalupo L, Treglia G, Piccardo A. Will 18F-fluorocholine PET/CT replace other methods of preoperative parathyroid imaging? Endocrine 2021; 71:285-297. [PMID: 32892309 DOI: 10.1007/s12020-020-02487-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Primary hyperparathyroidism (PHPT) is a common endocrine disorder usually due to hyperfunctioning parathyroid glands (HPs). Surgical removal of the HPs is the main treatment for PHPT, making the correct detection and localization of HPs crucial to guiding targeted and minimally invasive surgical treatment in patients with PHPT. To date, different imaging methods have been used to detect and localize HPs, including radiology, nuclear medicine, and hybrid techniques. METHODS The present work discusses the role and value of different imaging methods in PHPT and, particularly, evaluates the potential role of 18F-fluorcholine PET/CT as a "one-stop-shop" method for preoperative parathyroid localization in patients with PHPT. DISCUSSION Cervical ultrasound (US) and parathyroid scintigraphy using 99mTc-MIBI are the most commonly employed methods in clinical practice. More recently, four-dimensional computed tomography (4D CT) and positron emission tomography (PET) with radiolabeled choline have emerged as useful alternatives in cases of negative or discordant findings from first-line imaging methods. CONCLUSIONS Due to the excellent diagnostic performance of radiolabeled choline PET/CT and the low radiation burden, this technique seems to be an ideal candidate to substitute current imaging procedures including US, MIBI scintigraphy, 4D CT and MRI and perform a fast and reliable "one-stop-shop" preoperative localization of HP in patients with PHPT, including challenging cases of postoperative persistent/recurrent disease.
Collapse
Affiliation(s)
- Luca Giovanella
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Bellinzona, Switzerland.
- Clinic for Nuclear Medicine, University Hospital and University of Zurich, Zurich, Switzerland.
| | - Lorenzo Bacigalupo
- Department of Diagnostic Imaging, Radiology and Nuclear Medicine, Ente Ospedaliero Galliera, Genova, Italy
| | - Giorgio Treglia
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Research and Innovation Service, Academic Education, Research and Innovation Area, General Directorate, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Arnoldo Piccardo
- Department of Diagnostic Imaging, Radiology and Nuclear Medicine, Ente Ospedaliero Galliera, Genova, Italy
| |
Collapse
|
17
|
Andersen MK, Høiem TS, Claes BSR, Balluff B, Martin-Lorenzo M, Richardsen E, Krossa S, Bertilsson H, Heeren RMA, Rye MB, Giskeødegård GF, Bathen TF, Tessem MB. Spatial differentiation of metabolism in prostate cancer tissue by MALDI-TOF MSI. Cancer Metab 2021; 9:9. [PMID: 33514438 PMCID: PMC7847144 DOI: 10.1186/s40170-021-00242-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Prostate cancer tissues are inherently heterogeneous, which presents a challenge for metabolic profiling using traditional bulk analysis methods that produce an averaged profile. The aim of this study was therefore to spatially detect metabolites and lipids on prostate tissue sections by using mass spectrometry imaging (MSI), a method that facilitates molecular imaging of heterogeneous tissue sections, which can subsequently be related to the histology of the same section. Methods Here, we simultaneously obtained metabolic and lipidomic profiles in different prostate tissue types using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MSI. Both positive and negative ion mode were applied to analyze consecutive sections from 45 fresh-frozen human prostate tissue samples (N = 15 patients). Mass identification was performed with tandem MS. Results Pairwise comparisons of cancer, non-cancer epithelium, and stroma revealed several metabolic differences between the tissue types. We detected increased levels of metabolites crucial for lipid metabolism in cancer, including metabolites involved in the carnitine shuttle, which facilitates fatty acid oxidation, and building blocks needed for lipid synthesis. Metabolites associated with healthy prostate functions, including citrate, aspartate, zinc, and spermine had lower levels in cancer compared to non-cancer epithelium. Profiling of stroma revealed higher levels of important energy metabolites, such as ADP, ATP, and glucose, and higher levels of the antioxidant taurine compared to cancer and non-cancer epithelium. Conclusions This study shows that specific tissue compartments within prostate cancer samples have distinct metabolic profiles and pinpoint the advantage of methodology providing spatial information compared to bulk analysis. We identified several differential metabolites and lipids that have potential to be developed further as diagnostic and prognostic biomarkers for prostate cancer. Spatial and rapid detection of cancer-related analytes showcases MALDI-TOF MSI as a promising and innovative diagnostic tool for the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00242-z.
Collapse
Affiliation(s)
- Maria K Andersen
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| | - Therese S Høiem
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Britt S R Claes
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Marta Martin-Lorenzo
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Elin Richardsen
- Department of Medical Biology, UiT The Artic University of Norway, Tromsø, Norway.,Department of Clinical Pathology, University Hospital of North Norway, UNN, Tromsø, Norway
| | - Sebastian Krossa
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Helena Bertilsson
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Department of Urology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Morten B Rye
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,BioCore-Bioinformatics Core Facility, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Guro F Giskeødegård
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway. .,Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
18
|
Sharma U, Jagannathan NR. Metabolism of prostate cancer by magnetic resonance spectroscopy (MRS). Biophys Rev 2020; 12:1163-1173. [PMID: 32918707 DOI: 10.1007/s12551-020-00758-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the metabolism of prostate cancer (PCa) is important for developing better diagnostic approaches and also for exploring new therapeutic targets. Magnetic resonance spectroscopy (MRS) techniques have been shown to be useful in the detection and quantification of metabolites. PCa illustrates metabolic phenotype, showing lower levels of citrate (Cit), a key metabolite of oxidative phosphorylation and alteration in several metabolic pathways to sustain tumor growth. Recently, dynamic nuclear polarization (DNP) studies have documented high rates of glycolysis (Warburg phenomenon) in PCa. High-throughput metabolic profiling strategies using MRS on variety of samples including intact tissues, biofluids like prostatic fluid, seminal fluid, blood plasma/sera, and urine have also played a vital role in understanding the abnormal metabolic activity of PCa patients. The enhanced analytical potential of these techniques in the detection and quantification of a large number of metabolites provides an in-depth understanding of metabolic rewiring associated with the tumorigenesis. Metabolomics analysis offers dual advantages of identification of diagnostic and predictive biomarkers as well as in understanding the altered metabolic pathways which can be targeted for inhibiting the cancer progression. This review briefly describes the potential applications of in vivo 1H MRS, high-resolution magic angle spinning spectroscopy (HRMAS) and in vitro MRS methods in understanding the metabolic changes of PCa and its usefulness in the management of PCa patients.
Collapse
Affiliation(s)
- Uma Sharma
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Naranamangalam R Jagannathan
- Department of Radiology, Chettinad Hospital & Research Institute, Chettinad Academy of Research & Education, Kelambakkam, TN, 603103, India.
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India.
- Department of Electrical Engineering, Indian Institute Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
19
|
Lulijwa R, Alfaro AC, Merien F, Burdass M, Meyer J, Venter L, Young T. Metabolic and immune responses of Chinook salmon (Oncorhynchus tshawytscha) smolts to a short-term poly (I:C) challenge. JOURNAL OF FISH BIOLOGY 2020; 96:731-746. [PMID: 31995234 DOI: 10.1111/jfb.14266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Polyinosinic:polycytidylic acid [poly (I:C)] was administered in vivo to Chinook salmon (Oncorhynchus tshawytscha) post-smolts to determine the immune responses on haematological and cellular functional parameters, including spleen (SP), head kidney (HK) and red blood cell (RBC) cytokine expression, as well as serum metabolomics. Poly (I:C) in vivo (24 h exposure) did not affect fish haematological parameters, leucocyte phagocytic activity and phagocytic index, reactive oxygen species and nitric oxide production. Gas chromatography-mass spectrometry-based metabolomics revealed that poly (I:C) significantly altered the serum biochemistry profile of 25 metabolites. Metabolites involved in the branched-chain amino acid/glutathione and transsulphuration pathways and phospholipid metabolism accumulated in poly (I:C)-treated fish, whereas those involved in the glycolytic and energy metabolism pathways were downregulated. At cytokine transcript level, poly (I:C) induced a significant upregulation of antiviral ifnγ in HK and Mx1 protein in HK, SP and RBCs. This study provides evidence for poly (I:C)-induced, immune-related biomarkers at metabolic and molecular levels in farmed O. tshawytscha in vivo. These findings provide insights into short-term effects of poly (I:C) at haematological, innate and adaptive immunity and metabolic levels, setting the stage for future studies.
Collapse
Affiliation(s)
- Ronald Lulijwa
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- National Agricultural Research Organisation (NARO), Rwebitaba Zonal Agricultural Research and Development Institute (Rwebitaba-ZARDI), Fort Portal, Uganda
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Fabrice Merien
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Mark Burdass
- Nelson Marlborough Institute of Technology (NMIT), Nelson, New Zealand
| | - Jill Meyer
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
20
|
Yang L, Wang Y, Cai H, Wang S, Shen Y, Ke C. Application of metabolomics in the diagnosis of breast cancer: a systematic review. J Cancer 2020; 11:2540-2551. [PMID: 32201524 PMCID: PMC7066003 DOI: 10.7150/jca.37604] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) remains the most frequent type of cancer in females worldwide. However, the pathogenesis of BC is still under the cloud, along with the huge challenge of early diagnosis, which is widely acknowledged as the key to a successful therapy. Metabolomics, a newborn innovative technique in recent years, has demonstrated great potential in cancer-related researches. The aim of this review is to look back on clinical and cellular metabolomic studies in the diagnosis of BC over the past decade, and provide a systematic summary of metabolic biomarkers and pathways related to BC diagnosis.
Collapse
Affiliation(s)
- Liqing Yang
- Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Ying Wang
- Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Haishan Cai
- Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Shuang Wang
- Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Yueping Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Chaofu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| |
Collapse
|
21
|
Gholizadeh N, Pundavela J, Nagarajan R, Dona A, Quadrelli S, Biswas T, Greer PB, Ramadan S. Nuclear magnetic resonance spectroscopy of human body fluids and in vivo magnetic resonance spectroscopy: Potential role in the diagnosis and management of prostate cancer. Urol Oncol 2020; 38:150-173. [PMID: 31937423 DOI: 10.1016/j.urolonc.2019.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/22/2019] [Accepted: 10/31/2019] [Indexed: 01/17/2023]
Abstract
Prostate cancer is the most common solid organ cancer in men, and the second most common cause of male cancer-related mortality. It has few effective therapies, and is difficult to diagnose accurately. Prostate-specific antigen (PSA), which is currently the most effective diagnostic tool available, cannot reliably discriminate between different pathologies, and in fact only around 30% of patients found to have elevated levels of PSA are subsequently confirmed to actually have prostate cancer. As such, there is a desperate need for more reliable diagnostic tools that will allow the early detection of prostate cancer so that the appropriate interventions can be applied. Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance spectroscopy (MRS) are 2 high throughput, noninvasive analytical procedures that have the potential to enable differentiation of prostate cancer from other pathologies using metabolomics, by focusing specifically on certain metabolites which are associated with the development of prostate cancer cells and its progression. The value that this type of approach has for the early detection, diagnosis, prognosis, and personalized treatment of prostate cancer is becoming increasingly apparent. Recent years have seen many promising developments in the fields of NMR spectroscopy and MRS, with improvements having been made to hardware as well as to techniques associated with the acquisition, processing, and analysis of related data. This review focuses firstly on proton NMR spectroscopy of blood serum, urine, and expressed prostatic secretions in vitro, and then on 1- and 2-dimensional proton MRS of the prostate in vivo. Major advances in these fields and methodological principles of data collection, acquisition, processing, and analysis are described along with some discussion of related challenges, before prospects that proton MRS has for future improvements to the clinical management of prostate cancer are considered.
Collapse
Affiliation(s)
- Neda Gholizadeh
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Jay Pundavela
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts Amherst, MA, USA
| | - Anthony Dona
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - Scott Quadrelli
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia; Radiology Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Tapan Biswas
- Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, India
| | - Peter B Greer
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia; Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia; Imaging Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
22
|
Sonkar K, Ayyappan V, Tressler CM, Adelaja O, Cai R, Cheng M, Glunde K. Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer. NMR IN BIOMEDICINE 2019; 32:e4112. [PMID: 31184789 PMCID: PMC6803034 DOI: 10.1002/nbm.4112] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 05/02/2023]
Abstract
Activated choline metabolism is a hallmark of carcinogenesis and tumor progression, which leads to elevated levels of phosphocholine and glycerophosphocholine in all types of cancer tested so far. Magnetic resonance spectroscopy applications have played a key role in detecting these elevated choline phospholipid metabolites. To date, the majority of cancer-related studies have focused on phosphocholine and the Kennedy pathway, which constitutes the biosynthesis pathway for membrane phosphatidylcholine. Fewer and more recent studies have reported on the importance of glycerophosphocholine in cancer. In this review article, we summarize the recent literature on glycerophosphocholine metabolism with respect to its cancer biology and its detection by magnetic resonance spectroscopy applications.
Collapse
Affiliation(s)
- Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oluwatobi Adelaja
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruoqing Cai
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Menglin Cheng
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Philips BWJ, van Uden MJ, Rietsch SHG, Orzada S, Scheenen TWJ. A multitransmit external body array combined with a 1 H and 31 P endorectal coil to enable a multiparametric and multimetabolic MRI examination of the prostate at 7T. Med Phys 2019; 46:3893-3905. [PMID: 31274201 PMCID: PMC6852321 DOI: 10.1002/mp.13696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/15/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose In vivo1H and 31P magnetic resonance spectroscopic imaging (MRSI) provide complementary information on the biology of prostate cancer. In this work we demonstrate the feasibility of performing multiparametric imaging (mpMRI) and 1H and 31P spectroscopic imaging of the prostate using a 31P and 1H endorectal radiofrequency coil (ERC) in combination with a multitransmit body array at 7 Tesla (T). Methods An ERC with a 31P transceiver loop coil and 1H receive (Rx) asymmetric microstrip (31P/1H ERC) was designed, constructed and tested in combination with an external 8‐channel 1H transceiver body array coil (8CH). Electromagnetic field simulations and measurements and in vivo temperature measurements of the ERC were performed for safety validation. In addition, the signal‐to‐noise (SNR) benefit of the 1H microstrip with respect to the 8CH was evaluated. Finally, the feasibility of the setup was tested in one volunteer and three patients with prostate cancer by performing T2‐weighted and diffusion‐weighted imaging in combination with 1H and 31P spectroscopic imaging. Results Electromagnetic field simulations of the 31P loop coil showed no differences in the E‐ and B‐fields of the 31P/1H ERC compared with a previously safety validated ERC without 1H microstrip. The hotspot of the specific absorption rate (SAR) at the feed point of the 31P/1H ERC loop coil was 9.42 W/kg when transmitting on 31P at 1 W. Additional in vivo measurements showed a maximum temperature increase at the SAR hotspot of 0.7°C over 6 min on 31P at 1.9 W transmit (Tx) power, indicating safe maximum power levels. When transmitting with the external 1H body array at 40W for 2:30 min, the temperature increase around the ERC was < 0.3°C. Up to 3.5 cm into the prostate the 1H microstrip of the ERC provided higher SNR than the 8CH. The total coil combination allowed acquisition of an mpMRI protocol and the assessment of 31P and 1H metabolites of the prostate in all test subjects. Conclusion We developed a setup with a 31P transceiver and 1H Rx endorectal coil in combination with an 8‐channel transceiver external body array coil and demonstrated its safety and feasibility for obtaining multiparametric imaging and 1H and 31P MRSI at 7T in patients with prostate cancer within one MR examination.
Collapse
Affiliation(s)
- Bart W J Philips
- Department of Radiology and Nuclear Medicine (766), Radboud university medical center, P.O. Box 9101, Nijmegen, The Netherlands
| | - Mark J van Uden
- Department of Radiology and Nuclear Medicine (766), Radboud university medical center, P.O. Box 9101, Nijmegen, The Netherlands
| | - Stefan H G Rietsch
- Erwin L Hahn Institute for Magnetic Resonance Imaging, UNESCO World Cultural, Heritage Zollverein, Kokereiallee 7, Building C84, D-45141, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, D-45147, Essen, Germany
| | - Stephan Orzada
- Erwin L Hahn Institute for Magnetic Resonance Imaging, UNESCO World Cultural, Heritage Zollverein, Kokereiallee 7, Building C84, D-45141, Essen, Germany
| | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine (766), Radboud university medical center, P.O. Box 9101, Nijmegen, The Netherlands.,Erwin L Hahn Institute for Magnetic Resonance Imaging, UNESCO World Cultural, Heritage Zollverein, Kokereiallee 7, Building C84, D-45141, Essen, Germany
| |
Collapse
|
24
|
MacKinnon N, Ge W, Han P, Siddiqui J, Wei JT, Raghunathan T, Chinnaiyan AM, Rajendiran TM, Ramamoorthy A. NMR-Based Metabolomic Profiling of Urine: Evaluation for Application in Prostate Cancer Detection. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19849978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Detection of prostate cancer (PCa) and distinguishing indolent versus aggressive forms of the disease is a critical clinical challenge. The current clinical test is circulating prostate-specific antigen levels, which faces particular challenges in cancer diagnosis in the range of 4 to 10 ng/mL. Thus, a concerted effort toward building a noninvasive biomarker panel has developed. In this report, the hypothesis that nuclear magnetic resonance (NMR)-derived metabolomic profiles measured in the urine of biopsy-negative versus biopsy-positive individuals would nominate a selection of potential biomarker signals was investigated. 1H NMR spectra of urine samples from 317 individuals (111 biopsy-negative, 206 biopsy-positive) were analyzed. A double cross-validation partial least squares-discriminant analysis modeling technique was utilized to nominate signals capable of distinguishing the two classes. It was observed that after variable selection protocols were applied, a subset of 29 variables produced an area under the curve (AUC) value of 0.94 after logistic regression analysis, whereas a “master list” of 18 variables produced a receiver operating characteristic ROC) AUC of 0.80. As proof of principle, this study demonstrates the utility of NMR-based metabolomic profiling of urine biospecimens in the nomination of PCa-specific biomarker signals and suggests that further investigation is certainly warranted.
Collapse
Affiliation(s)
- Neil MacKinnon
- Biophysics, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Wencheng Ge
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Peisong Han
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - John T. Wei
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trivellore Raghunathan
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thekkelnaycke M. Rajendiran
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Bancroft Brown J, Sriram R, VanCriekinge M, Delos Santos R, Sun J, Delos Santos J, Tabatabai ZL, Shinohara K, Nguyen H, Peehl DM, Kurhanewicz J. NMR quantification of lactate production and efflux and glutamate fractional enrichment in living human prostate biopsies cultured with [1,6- 13 C 2 ]glucose. Magn Reson Med 2019; 82:566-576. [PMID: 30924180 DOI: 10.1002/mrm.27739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Image-guided prostate biopsies are routinely acquired in the diagnosis and treatment monitoring of prostate cancer, yielding useful tissue for identifying metabolic biomarkers and therapeutic targets. We developed an optimized biopsy tissue culture protocol in combination with [1,6-13 C2 ]glucose labeling and quantitative high-resolution NMR to measure glycolysis and tricarboxcylic acid (TCA) cycle activity in freshly acquired living human prostate biopsies. METHODS We acquired 34 MRI-ultrasound fusion-guided prostate biopsies in vials on ice from 22 previously untreated patients. Within 15 min, biopsies were transferred to rotary tissue culture in 37°C prostate medium containing [1,6-13 C2 ]glucose. Following 24 h of culture, tissue lactate and glutamate pool sizes and fractional enrichments were quantified using quantitative 1 H high resolution magic angle spinning Carr-Purcell-Meiboom-Gill (CPMG) spectroscopy at 1°C with and without 13 C decoupling. Lactate effluxed from the biopsy tissue was quantified in the culture medium using quantitative solution-state high-resolution NMR. RESULTS Lactate concentration in low-grade cancer (1.15 ± 0.78 nmol/mg) and benign (0.74 ± 0.15 nmol/mg) biopsies agreed with prior published measurements of snap-frozen biopsies. There was substantial fractional enrichment of [3-13 C]lactate (≈70%) and [4-13 C]glutamate (≈24%) in both low-grade cancer and benign biopsies. Although a significant difference in tissue [3-13 C]lactate fractional enrichment was not observed, lactate efflux was significantly higher (P < 0.05) in low-grade cancer biopsies (0.55 ± 0.14 nmol/min/mg) versus benign biopsies (0.31 ± 0.04 nmol/min/mg). CONCLUSION A protocol was developed for quantification of lactate production-efflux and TCA cycle activity in single living human prostate biopsies, allowing metabolic labeling on a wide spectrum of human tissues (e.g., metastatic, post-non-surgical therapy) from patients not receiving surgery.
Collapse
Affiliation(s)
- Jeremy Bancroft Brown
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Mark VanCriekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Jinny Sun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Justin Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Z Laura Tabatabai
- Department of Anatomic Pathology, University of California, San Francisco, California
| | - Katsuto Shinohara
- Department of Urology, University of California, San Francisco, California
| | - Hao Nguyen
- Department of Urology, University of California, San Francisco, California
| | - Donna M Peehl
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
26
|
Lin C, Salzillo TC, Bader DA, Wilkenfeld SR, Awad D, Pulliam TL, Dutta P, Pudakalakatti S, Titus M, McGuire SE, Bhattacharya PK, Frigo DE. Prostate Cancer Energetics and Biosynthesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:185-237. [PMID: 31900911 PMCID: PMC8096614 DOI: 10.1007/978-3-030-32656-2_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers must alter their metabolism to satisfy the increased demand for energy and to produce building blocks that are required to create a rapidly growing tumor. Further, for cancer cells to thrive, they must also adapt to an often changing tumor microenvironment, which can present new metabolic challenges (ex. hypoxia) that are unfavorable for most other cells. As such, altered metabolism is now considered an emerging hallmark of cancer. Like many other malignancies, the metabolism of prostate cancer is considerably different compared to matched benign tissue. However, prostate cancers exhibit distinct metabolic characteristics that set them apart from many other tumor types. In this chapter, we will describe the known alterations in prostate cancer metabolism that occur during initial tumorigenesis and throughout disease progression. In addition, we will highlight upstream regulators that control these metabolic changes. Finally, we will discuss how this new knowledge is being leveraged to improve patient care through the development of novel biomarkers and metabolically targeted therapies.
Collapse
Affiliation(s)
- Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis C Salzillo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas L Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
27
|
Lima AR, Pinto J, Bastos MDL, Carvalho M, Guedes de Pinho P. NMR-based metabolomics studies of human prostate cancer tissue. Metabolomics 2018; 14:88. [PMID: 30830350 DOI: 10.1007/s11306-018-1384-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide. Serum prostate-specific antigen (PSA) remains the most used biomarker in the detection and management of patients with PCa, in spite of the problems related with its low specificity, false positive rate and overdiagnosis. Furthermore, PSA is unable to discriminate indolent from aggressive PCa, which can lead to overtreatment. Early diagnosed and treated PCa can have a good prognosis and is potentially curable. Therefore, the discovery of new biomarkers able to detect clinically significant aggressive PCa is urgently needed. METHODS This revision was based on an electronic literature search, using Pubmed, with Nuclear Magnetic Resonance (NMR), tissue and prostate cancer as keywords. All metabolomic studies performed in PCa tissues by NMR spectroscopy, from 2007 until March 2018, were included in this review. RESULTS In the context of cancer, metabolomics allows the analysis of the entire metabolic profile of cancer cells. Several metabolic alterations occur in cancer cells to sustain their abnormal rates of proliferation. NMR proved to be a suitable methodology for the evaluation of these metabolic alterations in PCa tissues, allowing to unveil alterations in citrate, spermine, choline, choline-related compounds, lactate, alanine and glutamate. CONCLUSION The study of the metabolic alterations associated with PCa progression, accomplished by the analysis of PCa tissue by NMR, offers a promising approach for elucidating biochemical pathways affected by PCa and also for discovering new clinical biomarkers. The main metabolomic alterations associated with PCa development and promising biomarker metabolites for diagnosis of PCa were outlined.
Collapse
Affiliation(s)
- Ana Rita Lima
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Joana Pinto
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Márcia Carvalho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
28
|
Metabolomic Prediction of Human Prostate Cancer Aggressiveness: Magnetic Resonance Spectroscopy of Histologically Benign Tissue. Sci Rep 2018; 8:4997. [PMID: 29581441 PMCID: PMC5980000 DOI: 10.1038/s41598-018-23177-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/07/2018] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer alters cellular metabolism through events potentially preceding cancer morphological formation. Magnetic resonance spectroscopy (MRS)-based metabolomics of histologically-benign tissues from cancerous prostates can predict disease aggressiveness, offering clinically-translatable prognostic information. This retrospective study of 185 patients (2002-2009) included prostate tissues from prostatectomies (n = 365), benign prostatic hyperplasia (BPH) (n = 15), and biopsy cores from cancer-negative patients (n = 14). Tissues were measured with high resolution magic angle spinning (HRMAS) MRS, followed by quantitative histology using the Prognostic Grade Group (PGG) system. Metabolic profiles, measured solely from 338 of 365 histologically-benign tissues from cancerous prostates and divided into training-testing cohorts, could identify tumor grade and stage, and predict recurrence. Specifically, metabolic profiles: (1) show elevated myo-inositol, an endogenous tumor suppressor and potential mechanistic therapy target, in patients with highly-aggressive cancer, (2) identify a patient sub-group with less aggressive prostate cancer to avoid overtreatment if analysed at biopsy; and (3) subdivide the clinicopathologically indivisible PGG2 group into two distinct Kaplan-Meier recurrence groups, thereby identifying patients more at-risk for recurrence. Such findings, achievable by biopsy or prostatectomy tissue measurement, could inform treatment strategies. Metabolomics information can help transform a morphology-based diagnostic system by invoking cancer biology to improve evaluation of histologically-benign tissues in cancer environments.
Collapse
|
29
|
GC-MS-Based Endometabolome Analysis Differentiates Prostate Cancer from Normal Prostate Cells. Metabolites 2018; 8:metabo8010023. [PMID: 29562689 PMCID: PMC5876012 DOI: 10.3390/metabo8010023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) is an important health problem worldwide. Diagnosis and management of PCa is very complex because the detection of serum prostate specific antigen (PSA) has several drawbacks. Metabolomics brings promise for cancer biomarker discovery and for better understanding PCa biochemistry. In this study, a gas chromatography–mass spectrometry (GC-MS) based metabolomic profiling of PCa cell lines was performed. The cell lines include 22RV1 and LNCaP from PCa with androgen receptor (AR) expression, DU145 and PC3 (which lack AR expression), and one normal prostate cell line (PNT2). Regarding the metastatic potential, PC3 is from an adenocarcinoma grade IV with high metastatic potential, DU145 has a moderate metastatic potential, and LNCaP has a low metastatic potential. Using multivariate analysis, alterations in levels of several intracellular metabolites were detected, disclosing the capability of the endometabolome to discriminate all PCa cell lines from the normal prostate cell line. Discriminant metabolites included amino acids, fatty acids, steroids, and sugars. Six stood out for the separation of all the studied PCa cell lines from the normal prostate cell line: ethanolamine, lactic acid, β-Alanine, L-valine, L-leucine, and L-tyrosine.
Collapse
|
30
|
Dietz C, Ehret F, Palmas F, Vandergrift LA, Jiang Y, Schmitt V, Dufner V, Habbel P, Nowak J, Cheng LL. Applications of high-resolution magic angle spinning MRS in biomedical studies II-Human diseases. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3784. [PMID: 28915318 PMCID: PMC5690552 DOI: 10.1002/nbm.3784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 05/06/2023]
Abstract
High-resolution magic angle spinning (HRMAS) MRS is a powerful method for gaining insight into the physiological and pathological processes of cellular metabolism. Given its ability to obtain high-resolution spectra of non-liquid biological samples, while preserving tissue architecture for subsequent histopathological analysis, the technique has become invaluable for biochemical and biomedical studies. Using HRMAS MRS, alterations in measured metabolites, metabolic ratios, and metabolomic profiles present the possibility to improve identification and prognostication of various diseases and decipher the metabolomic impact of drug therapies. In this review, we evaluate HRMAS MRS results on human tissue specimens from malignancies and non-localized diseases reported in the literature since the inception of the technique in 1996. We present the diverse applications of the technique in understanding pathological processes of different anatomical origins, correlations with in vivo imaging, effectiveness of therapies, and progress in the HRMAS methodology.
Collapse
Affiliation(s)
- Christopher Dietz
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Felix Ehret
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Francesco Palmas
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Sardinia, 09042 Italy
| | - Lindsey A. Vandergrift
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| | - Yanni Jiang
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029 China
| | - Vanessa Schmitt
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Vera Dufner
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Johannes Nowak
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
31
|
Zheng H, Cai A, Zhou Q, Xu P, Zhao L, Li C, Dong B, Gao H. Optimal preprocessing of serum and urine metabolomic data fusion for staging prostate cancer through design of experiment. Anal Chim Acta 2017; 991:68-75. [DOI: 10.1016/j.aca.2017.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/17/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022]
|
32
|
Tayari N, Heerschap A, Scheenen TW, Kobus T. In vivo MR spectroscopic imaging of the prostate, from application to interpretation. Anal Biochem 2017; 529:158-170. [DOI: 10.1016/j.ab.2017.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 12/23/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022]
|
33
|
Simões RV, Veeraperumal S, Serganova IS, Kruchevsky N, Varshavsky J, Blasberg RG, Ackerstaff E, Koutcher JA. Inhibition of prostate cancer proliferation by Deferiprone. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3712. [PMID: 28272795 PMCID: PMC5505495 DOI: 10.1002/nbm.3712] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 05/22/2023]
Abstract
Cancer growth and proliferation rely on intracellular iron availability. We studied the effects of Deferiprone (DFP), a chelator of intracellular iron, on three prostate cancer cell lines: murine, metastatic TRAMP-C2; murine, non-metastatic Myc-CaP; and human, non-metastatic 22rv1. The effects of DFP were evaluated at different cellular levels: cell culture proliferation and migration; metabolism of live cells (time-course multi-nuclear magnetic resonance spectroscopy cell perfusion studies, with 1-13 C-glucose, and extracellular flux analysis); and expression (Western blot) and activity of mitochondrial aconitase, an iron-dependent enzyme. The 50% and 90% inhibitory concentrations (IC50 and IC90 , respectively) of DFP for the three cell lines after 48 h of incubation were within the ranges 51-67 μM and 81-186 μM, respectively. Exposure to 100 μM DFP led to: (i) significant inhibition of cell migration after different exposure times, ranging from 12 h (TRAMP-C2) to 48 h (22rv1), in agreement with the respective cell doubling times; (ii) significantly decreased glucose consumption and glucose-driven tricarboxylic acid cycle activity in metastatic TRAMP-C2 cells, during the first 10 h of exposure, and impaired cellular bioenergetics and membrane phospholipid turnover after 23 h of exposure, consistent with a cytostatic effect of DFP. At this time point, all cell lines studied showed: (iii) significant decreases in mitochondrial functional parameters associated with the oxygen consumption rate, and (iv) significantly lower mitochondrial aconitase expression and activity. Our results indicate the potential of DFP to inhibit prostate cancer proliferation at clinically relevant doses and plasma concentrations.
Collapse
Affiliation(s)
- Rui V. Simões
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center
| | | | | | | | - Joseph Varshavsky
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center
| | - Ronald G. Blasberg
- Department of Neurology, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center
| | - Jason A. Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center
- Department of Radiology, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center
- Weill Cornell Medical College, Cornell University. New York, NY 10065, USA
| |
Collapse
|
34
|
Ramachandran GK, Yeow CH. Proton NMR characterization of intact primary and metastatic melanoma cells in 2D & 3D cultures. Biol Res 2017; 50:12. [PMID: 28302167 PMCID: PMC5353880 DOI: 10.1186/s40659-017-0117-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/02/2017] [Indexed: 12/30/2022] Open
Abstract
Objective To characterize the differences between the primary and metastatic melanoma cell lines grown in 2D cultures and 3D cultures. Methods Primary melanoma cells (WM115) and metastatic melanoma cells (WM266) extracted from a single donor was cultured in 2D as well as 3D cultures. These cells were characterized using proton NMR spectrometry, and the qualitative chemical shifts markers were identified and discussed. Results In monolayer culture (2D), we observed one qualitative chemical shift marker for primary melanoma cells. In spheroid cultures (3D), we observed nine significant chemical shifts, of which eight markers were specific for primary melanoma spheroids, whereas the other one marker was specific to metastatic melanoma spheroids. This study suggests that the glucose accumulation and phospholipid composition vary significantly between the primary and metastatic cells lines that are obtained from a single donor and also with the cell culturing methods. 14 qualitative chemical shift markers were obtained in the comparison between monolayer culture and spheroids cultures irrespective of the differences in the cell lines. Among which 4 were unique to monolayer cultures whereas 10 chemical shifts were unique to the spheroid cultures. This study also shows that the method of cell culture would drastically affect the phospholipid composition of the cells and also depicts that the cells in spheroid culture closely resembles the cells in vivo. Conclusion This study shows the high specificity of proton NMR spectrometry in characterizing cancer cell lines and also shows the variations in the glucose accumulation and phospholipid composition between the primary and metastatic melanoma cell lines from the same donor. Differences in the cell culture method does plays an important role in phospholipid composition of the cells. Electronic supplementary material The online version of this article (doi:10.1186/s40659-017-0117-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gokula Krishnan Ramachandran
- Department of Biomedical Engineering, National University of Singapore, E1-08-016, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Chen Hua Yeow
- Department of Biomedical Engineering, National University of Singapore, E1-08-016, 9 Engineering Drive 1, Singapore, 117575, Singapore.
| |
Collapse
|
35
|
Piert M, Shao X, Raffel D, Davenport MS, Montgomery J, Kunju LP, Hockley BG, Siddiqui J, Scott PJH, Chinnaiyan AM, Rajendiran T. Preclinical Evaluation of 11C-Sarcosine as a Substrate of Proton-Coupled Amino Acid Transporters and First Human Application in Prostate Cancer. J Nucl Med 2017; 58:1216-1223. [PMID: 28302759 DOI: 10.2967/jnumed.116.173179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/14/2017] [Indexed: 12/14/2022] Open
Abstract
Sarcosine is a known substrate of proton-coupled amino acid transporters (PATs), which are overexpressed in selected tissues and solid tumors. Sarcosine, an N-methyl derivative of the amino acid glycine and a metabolic product of choline, plays an important role for prostate cancer aggressiveness and progression. Methods:11C-radiolabeled sarcosine was tested as a new PET imaging probe in comparison with 11C-choline in 2 prostate cancer tumor xenograft models (DU-145 and PC-3). We characterized 11C-sarcosine transport in PC-3 and LNCaP tumor cells and performed 11C-sarcosine PET with CT in the first human subject with localized Gleason 4 + 3 prostate cancer. Target metabolite analyses of sarcosine and its natural precursors, glycine and choline, were performed from independent human prostate tissues. Results: In vitro assays indicated blockage of 11C-sarcosine uptake into PC-3 and LNCaP tumor cells by excess unlabeled (cold) sarcosine. 5-hydroxy-l-tryptophan, but not 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid, competitively inhibited 11C-sarcosine tumor cell uptake, confirming PAT-mediated transport. In vivo tumor-to-background ratios (TBRs) obtained from 11C-sarcosine PET were significantly elevated compared with 11C-choline in DU-145 (TBR: 1.92 ± 0.11 for 11C-sarcosine vs. 1.41 ± 0.13 for 11C-choline [n = 10; P < 0.002]) and PC-3 tumors (TBR: 1.89 ± 0.2 for 11C-sarcosine vs. 1.34 ± 0.16 for 11C-choline [n = 7; P < 0.002]). 11C-sarcosine produced high-contrast images in 1 case of localized clinically significant prostate cancer. Target metabolite analyses revealed significant stepwise increases of sarcosine, glycine, and choline tissue levels from benign prostate tissue to localized prostate cancer and subsequently metastatic disease. 11C-sarcosine showed a favorable radiation dosimetry with an effective dose estimate of 0.0045 mSv/MBq, resulting in 2.68 mSv for a human subject (600-MBq dose). Conclusion:11C-sarcosine is a novel radiotracer for PATs and shows initial utility for prostate cancer imaging, with potential benefit over commonly used 11C-choline.
Collapse
Affiliation(s)
- Morand Piert
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Xia Shao
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - David Raffel
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | | | | | | | - Brian G Hockley
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Javed Siddiqui
- Pathology Department, University of Michigan, Ann Arbor, Michigan; and.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Arul M Chinnaiyan
- Pathology Department, University of Michigan, Ann Arbor, Michigan; and.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Thekkelnaycke Rajendiran
- Pathology Department, University of Michigan, Ann Arbor, Michigan; and.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
36
|
Screening and Detection of Prostate Cancer-Review of Literature and Current Perspective. Indian J Surg Oncol 2017; 8:160-168. [PMID: 28546712 DOI: 10.1007/s13193-016-0584-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022] Open
Abstract
Screening of prostatic cancer is a matter of debate among uro-oncologist. With many new screening modalities like prostatic health index (PHI), 4K testing the role of screening has increased as one is able to stratify patients with serum prostate specific antigen level in a grey zone of 4-10 ng/ml and normal digital rectal examination into various risk groups, thus avoiding unnecessary biopsy which was the pitfalls of routine screening practice. PHI is better at predicting malignancy while 4K is better at predicting high-grade disease. This in combination with multiparametric MRI especially with prostate imaging reporting and data system score has made screening less difficult and more meaningful for a practising uro-oncologist.
Collapse
|
37
|
Dereziński P, Klupczynska A, Sawicki W, Pałka JA, Kokot ZJ. Amino Acid Profiles of Serum and Urine in Search for Prostate Cancer Biomarkers: a Pilot Study. Int J Med Sci 2017; 14:1-12. [PMID: 28138303 PMCID: PMC5278653 DOI: 10.7150/ijms.15783] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022] Open
Abstract
There is a great interest in searching for diagnostic biomarkers in prostate cancer patients. The aim of the pilot study was to evaluate free amino acid profiles in their serum and urine. The presented paper shows the first comprehensive analysis of a wide panel of amino acids in two different physiological fluids obtained from the same groups of prostate cancer patients (n = 49) and healthy men (n = 40). The potential of free amino acids, both proteinogenic and non-proteinogenic, as prostate cancer biomarkers and their utility in classification of study participants have been assessed. Several metabolites, which deserve special attention in the further metabolomic investigations on searching for prostate cancer markers, were indicated. Moreover, free amino acid profiles enabled to classify samples to one of the studied groups with high sensitivity and specificity. The presented research provides a strong evidence that ethanolamine, arginine and branched-chain amino acids metabolic pathways can be a valuable source of markers for prostate cancer. The altered concentrations of the above-mentioned metabolites suggest their role in pathogenesis of prostate cancer and they should be further evaluated as clinically useful markers of prostate cancer.
Collapse
Affiliation(s)
- Paweł Dereziński
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Agnieszka Klupczynska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Wojciech Sawicki
- Ward of Urology, The Holy Family Hospital, 18 Jarochowskiego Street, 60-235 Poznań, Poland
| | - Jerzy A. Pałka
- Department of Medicinal Chemistry, Medical University of Bialystok, 2d Mickiewicza Street, 15-222 Białystok, Poland
| | - Zenon J. Kokot
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| |
Collapse
|
38
|
GDPD5, a choline-generating enzyme and its novel role in tumor cell migration. Arch Toxicol 2016; 90:3143-3144. [DOI: 10.1007/s00204-016-1847-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022]
|
39
|
Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies. Transl Oncol 2016; 9:357-70. [PMID: 27567960 PMCID: PMC5006818 DOI: 10.1016/j.tranon.2016.05.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/21/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer death among men in Western countries. Current screening techniques are based on the measurement of serum prostate specific antigen (PSA) levels and digital rectal examination. A decisive diagnosis of PCa is based on prostate biopsies; however, this approach can lead to false-positive and false-negative results. Therefore, it is important to discover new biomarkers for the diagnosis of PCa, preferably noninvasive ones. Metabolomics is an approach that allows the analysis of the entire metabolic profile of a biological system. As neoplastic cells have a unique metabolic phenotype related to cancer development and progression, the identification of dysfunctional metabolic pathways using metabolomics can be used to discover cancer biomarkers and therapeutic targets. In this study, we review several metabolomics studies performed in prostatic fluid, blood plasma/serum, urine, tissues and immortalized cultured cell lines with the objective of discovering alterations in the metabolic phenotype of PCa and thus discovering new biomarkers for the diagnosis of PCa. Encouraging results using metabolomics have been reported for PCa, with sarcosine being one of the most promising biomarkers identified to date. However, the use of sarcosine as a PCa biomarker in the clinic remains a controversial issue within the scientific community. Beyond sarcosine, other metabolites are considered to be biomarkers for PCa, but they still need clinical validation. Despite the lack of metabolomics biomarkers reaching clinical practice, metabolomics proved to be a powerful tool in the discovery of new biomarkers for PCa detection.
Collapse
|
40
|
Shah T, Wildes F, Kakkad S, Artemov D, Bhujwalla ZM. Lymphatic endothelial cells actively regulate prostate cancer cell invasion. NMR IN BIOMEDICINE 2016; 29:904-911. [PMID: 27149683 DOI: 10.1002/nbm.3543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Lymphatic vessels serve as the primary route for metastatic spread to lymph nodes. However, it is not clear how interactions between cancer cells and lymphatic endothelial cells (LECs), especially within hypoxic microenvironments, affect the invasion of cancer cells. Here, using an MR compatible cell perfusion assay, we investigated the role of LEC-prostate cancer (PCa) cell interaction in the invasion and degradation of the extracellular matrix (ECM) by two human PCa cell lines, PC-3 and DU-145, under normoxia and hypoxia, and determined the metabolic changes that occurred under these conditions. We observed a significant increase in the invasion of ECM by invasive PC-3 cells, but not poorly invasive DU-145 cells when human dermal lymphatic microvascular endothelial cells (HMVEC-dlys) were present. Enhanced degradation of ECM by PC-3 cells in the presence of HMVEC-dlys identified interactions between HMVEC-dlys and PCa cells influencing cancer cell invasion. The enhanced ECM degradation was partly attributed to increased MMP-9 enzymatic activity in PC-3 cells when HMVEC-dlys were in close proximity. Significantly higher uPAR and MMP-9 expression levels observed in PC-3 cells compared to DU-145 cells may be one mechanism for increased invasion and degradation of matrigel by these cells irrespective of the presence of HMVEC-dlys. Hypoxia significantly decreased invasion by PC-3 cells, but this decrease was significantly attenuated when HMVEC-dlys were present. Significantly higher phosphocholine was observed in invasive PC-3 cells, while higher glycerophosphocholine was observed in DU-145 cells. These metabolites were not altered in the presence of HMVEC-dlys. Significantly increased lipid levels and lipid droplets were observed in PC-3 and DU-145 cells under hypoxia reflecting an adaptive survival response to oxidative stress. These results suggest that in vivo, invasive cells in or near lymphatic endothelial cells are likely to be more invasive and degrade the ECM to influence the metastatic cascade. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tariq Shah
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Flonne Wildes
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samata Kakkad
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dmitri Artemov
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Madhu B, Shaw GL, Warren AY, Neal DE, Griffiths JR. Response of Degarelix treatment in human prostate cancer monitored by HR-MAS 1H NMR spectroscopy. Metabolomics 2016; 12:120. [PMID: 27429605 PMCID: PMC4927592 DOI: 10.1007/s11306-016-1055-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/11/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The androgen receptor (AR) is the master regulator of prostate cancer cell metabolism. Degarelix is a novel gonadotrophin-releasing hormone blocker, used to decrease serum androgen levels in order to treat advanced human prostate cancer. Little is known of the rapid metabolic response of the human prostate cancer tissue samples to the decreased androgen levels. OBJECTIVES To investigate the metabolic responses in benign and cancerous tissue samples from patients after treatment with Degarelix by using HRMAS 1H NMR spectroscopy. METHODS Using non-destructive HR-MAS 1H NMR spectroscopy we analysed the metabolic changes induced by decreased AR signalling in human prostate cancer tissue samples. Absolute concentrations of the metabolites alanine, lactate, glutamine, glutamate, citrate, choline compounds [t-choline = choline + phosphocholine (PC) + glycerophosphocholine (GPC)], creatine compounds [t-creatine = creatine (Cr) + phosphocreatine (PCr)], taurine, myo-inositol and polyamines were measured in benign prostate tissue samples (n = 10), in prostate cancer specimens from untreated patients (n = 7) and prostate cancer specimens from patients treated with Degarelix (n = 6). RESULTS Lactate, alanine and t-choline concentrations were significantly elevated in high-grade prostate cancer samples when compared to benign samples in untreated patients. Decreased androgen levels resulted in significant decreases of lactate and t-choline concentrations in human prostate cancer biopsies. CONCLUSIONS The reduced concentrations of lactate and t-choline metabolites due to Degarelix could in principle be monitored by in vivo 1H MRS, which suggests that it would be possible to monitor the effects of physical or chemical castration in patients by that non-invasive method.
Collapse
Affiliation(s)
- Basetti Madhu
- />Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE UK
| | - Greg L. Shaw
- />Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE UK
- />Department of Urology, Cambridge University Hospitals NHS Trust, Cambridge, UK
- />University College London Hospitals NHS Foundation Trust, London, UK
| | - Anne Y. Warren
- />Department of Pathology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - David E. Neal
- />Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE UK
- />Department of Urology, Cambridge University Hospitals NHS Trust, Cambridge, UK
- />Nuffield Department of Surgery, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | - John R. Griffiths
- />Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE UK
| |
Collapse
|
42
|
Mirkes C, Shajan G, Chadzynski G, Buckenmaier K, Bender B, Scheffler K. (31)P CSI of the human brain in healthy subjects and tumor patients at 9.4 T with a three-layered multi-nuclear coil: initial results. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:579-89. [PMID: 26811174 DOI: 10.1007/s10334-016-0524-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/20/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Investigation of the feasibility and performance of phosphorus ((31)P) magnetic resonance spectroscopic imaging (MRSI) at 9.4 T with a three-layered phosphorus/proton coil in human normal brain tissue and tumor. MATERIALS AND METHODS A multi-channel (31)P coil was designed to enable MRSI of the entire human brain. The performance of the coil was evaluated by means of electromagnetic field simulations and actual measurements. A 3D chemical shift imaging approach with a variable repetition time and flip angle was used to increase the achievable signal-to-noise ratio of the acquired (31)P spectra. The impact of the resulting k-space modulation was investigated by simulations. Three tumor patients and three healthy volunteers were scanned and differences between spectra from healthy and cancerous tissue were evaluated qualitatively. RESULTS The high sensitivity provided by the 27-channel (31)P coil allowed acquiring CSI data in 22 min with a nominal voxel size of 15 × 15 × 15 mm(3). Shimming and anatomical localization could be performed with the integrated four-channel proton dipole array. The amplitudes of the phosphodiesters and phosphoethanolamine appeared reduced in tumorous tissue for all three patients. A neutral or slightly alkaline pH was measured within the brain lesions. CONCLUSION These initial results demonstrate that (31)P 3D CSI is feasible at 9.4 T and could be performed successfully in healthy subjects and tumor patients in under 30 min.
Collapse
Affiliation(s)
- Christian Mirkes
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany. .,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany.
| | - Gunamony Shajan
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Grzegorz Chadzynski
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Kai Buckenmaier
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| |
Collapse
|
43
|
Lucarelli G, Rutigliano M, Galleggiante V, Giglio A, Palazzo S, Ferro M, Simone C, Bettocchi C, Battaglia M, Ditonno P. Metabolomic profiling for the identification of novel diagnostic markers in prostate cancer. Expert Rev Mol Diagn 2015; 15:1211-24. [PMID: 26174441 DOI: 10.1586/14737159.2015.1069711] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metabolomic profiling offers a powerful methodology for understanding the perturbations of biochemical systems occurring during a disease process. During neoplastic transformation, prostate cells undergo metabolic reprogramming to satisfy the demands of growth and proliferation. An early event in prostate cell transformation is the loss of capacity to accumulate zinc. This change is associated with a higher energy efficiency and increased lipid biosynthesis for cellular proliferation, membrane formation and cell signaling. Moreover, recent studies have shown that sarcosine, an N-methyl derivative of glycine, was significantly increased during disease progression from normal to localized to metastatic prostate cancer. Mapping the metabolomic profiles to their respective biochemical pathways showed an upregulation of androgen-induced protein synthesis, an increased amino acid metabolism and a perturbation of nitrogen breakdown pathways, along with high total choline-containing compounds and phosphocholine levels. In this review, the role of emerging biomarkers is summarized, based on the current understanding of the prostate cancer metabolome.
Collapse
Affiliation(s)
- Giuseppe Lucarelli
- a 1 Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lagemaat MW, Breukels V, Vos EK, Kerr AB, van Uden MJ, Orzada S, Bitz AK, Maas MC, Scheenen TWJ. (1)H MR spectroscopic imaging of the prostate at 7T using spectral-spatial pulses. Magn Reson Med 2015; 75:933-45. [PMID: 25943445 DOI: 10.1002/mrm.25569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE To assess the feasibility of prostate (1)H MR spectroscopic imaging (MRSI) using low-power spectral-spatial (SPSP) pulses at 7T, exploiting accurate spectral selection and spatial selectivity simultaneously. METHODS A double spin-echo sequence was equipped with SPSP refocusing pulses with a spectral selectivity of 1 ppm. Three-dimensional prostate (1)H-MRSI at 7T was performed with the SPSP-MRSI sequence using an 8-channel transmit array coil and an endorectal receive coil in three patients with prostate cancer and in one healthy subject. No additional water or lipid suppression pulses were used. RESULTS Prostate (1)H-MRSI could be obtained well within specific absorption rate (SAR) limits in a clinically feasible time (10 min). Next to the common citrate signals, the prostate spectra exhibited high spermine signals concealing creatine and sometimes also choline. Residual lipid signals were observed at the edges of the prostate because of limitations in spectral and spatial selectivity. CONCLUSION It is possible to perform prostate (1)H-MRSI at 7T with a SPSP-MRSI sequence while using separate transmit and receive coils. This low-SAR MRSI concept provides the opportunity to increase spatial resolution of MRSI within reasonable scan times.
Collapse
Affiliation(s)
- Miriam W Lagemaat
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vincent Breukels
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eline K Vos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Adam B Kerr
- Magnetic Resonance Systems Research Lab, Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Mark J van Uden
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephan Orzada
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany.,Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Marnix C Maas
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
McDunn JE, Stirdivant SM, Ford LA, Wolfert RL. Metabolomics and its Application to the Development of Clinical Laboratory Tests for Prostate Cancer. EJIFCC 2015; 26:92-104. [PMID: 27683485 PMCID: PMC4975355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION There is a critical need to develop clinical laboratory assays that provide risk assessment for men at elevated risk for prostate cancer, and once diagnosed, could further identify those men with clinically significant disease. METHODS Recent advancements in analytical instrumentation have enabled mass spectrometry-based metabolomics methodologies. Further advancements in chromatographic techniques have facilitated high throughput, quantitative assays for a broad spectrum of biochemicals. RESULTS Screening metabolomics techniques have been applied to biospecimens from large cohorts of men comparing those individuals with prostate cancer to those with no evidence of malignancy. Work beginning in tissues has identified biochemical profiles that correlate with disease and disease severity, including tumor grade and stage. Some of these metabolic abnormalities, such as dramatic elevations in sarcosine, have been found to translate into biological fluids, especially blood and urine, which can be sampled in a minimally invasive manner. DISCUSSION The differential abundances of these tumor-associated metabolites have been found to improve the performance of clinical prognostic/diagnostic tools. CONCLUSION The outlook is bright for metabolomic technology to address clinical diagnostic needs for prostate cancer patient management. Early validation of specific clinical tests provides a preview of further successes in this area. Metabolomics has shown its utility to complement and augment traditional clinical approaches as well as emerging genomic, transcriptomic and proteomic methodologies, and is expected to play a key role in the precision medicine-based management of the prostate cancer patient.
Collapse
|
46
|
Abstract
High-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy is a nondestructive technique that is used to obtain the metabolite profile of a tissue sample. This method requires minimal sample preparation. However, it is important to handle the sample with care and keep it frozen during preparation to minimize degradation. Here, we describe a typical protocol for HR-MAS analysis of intact tissue. We also include examples of typical pulse sequence programs and quantification methods that are used today.
Collapse
|
47
|
Phorbol ester stimulates ethanolamine release from the metastatic basal prostate cancer cell line PC3 but not from prostate epithelial cell lines LNCaP and P4E6. Br J Cancer 2014; 111:1646-56. [PMID: 25137020 PMCID: PMC4200097 DOI: 10.1038/bjc.2014.457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 12/11/2022] Open
Abstract
Background: Malignancy alters cellular complex lipid metabolism and membrane lipid composition and turnover. Here, we investigated whether tumorigenesis in cancer-derived prostate epithelial cell lines influences protein kinase C-linked turnover of ethanolamine phosphoglycerides (EtnPGs) and alters the pattern of ethanolamine (Etn) metabolites released to the medium. Methods: Prostate epithelial cell lines P4E6, LNCaP and PC3 were models of prostate cancer (PCa). PNT2C2 and PNT1A were models of benign prostate epithelia. Cellular EtnPGs were labelled with [1-3H]-Etn hydrochloride. PKC was activated with phorbol ester (TPA) and inhibited with Ro31-8220 and GF109203X. D609 was used to inhibit PLD (phospholipase D). [3H]-labelled Etn metabolites were resolved by ion-exchange chromatography. Sodium oleate and mastoparan were tested as activators of PLD2. Phospholipase D activity was measured by a transphosphatidylation reaction. Cells were treated with ionomycin to raise intracellular Ca2+ levels. Results: Unstimulated cell lines release mainly Etn and glycerylphosphorylEtn (GPEtn) to the medium. Phorbol ester treatment over 3h increased Etn metabolite release from the metastatic PC3 cell line and the benign cell lines PNT2C2 and PNT1A but not from the tumour-derived cell lines P4E6 and LNCaP; this effect was blocked by Ro31-8220 and GF109203X as well as by D609, which inhibited PLD in a transphosphatidylation reaction. Only metastatic PC3 cells specifically upregulated Etn release in response to TPA treatment. Oleate and mastoparan increased GPEtn release from all cell lines at the expense of Etn. Ionomycin stimulated GPEtn release from benign PNT2C2 cells but not from cancer-derived cell lines P4E6 or PC3. Ethanolamine did not stimulate the proliferation of LNCaP or PC3 cell lines but decreased the uptake of choline (Cho). Conclusions: Only the metastatic basal PC3 cell line specifically increased the release of Etn on TPA treatment most probably by PKC activation of PLD1 and increased turnover of EtnPGs. The phosphatidic acid formed will maintain a cancer phenotype through the regulation of mTOR. Ethanolamine released from cells may reduce Cho uptake, regulating the membrane PtdEtn:PtdCho ratio and influencing the action of PtdEtn-binding proteins such as RKIP and the anti-apoptotic hPEBP4. The work highlights a difference between LNCaP cells used as a model of androgen-dependent early stage PCa and androgen-independent PC3 cells used to model later refractory stage disease.
Collapse
|
48
|
Novel tools for prostate cancer prognosis, diagnosis, and follow-up. BIOMED RESEARCH INTERNATIONAL 2014; 2014:890697. [PMID: 24877145 PMCID: PMC4024423 DOI: 10.1155/2014/890697] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/09/2014] [Indexed: 12/18/2022]
Abstract
Prostate-specific antigen (PSA) is the main diagnostic tool when it comes to prostate cancer but it possesses serious limitations. Therefore, there is an urgent need for more sensitive and specific biomarkers for prostate cancer prognosis and patient follow-up. Recent advances led to the discovery of many novel diagnostic/prognostic techniques and provided us with many worthwhile candidates. This paper briefly reviews the most promising biomarkers with respect to their implementation in screening, early detection, diagnostic confirmation, prognosis, and prediction of therapeutic response or monitoring disease and recurrence; and their use as possible therapeutic targets. This review also examines the possible future directions in the field of prostate cancer marker research.
Collapse
|
49
|
Phosphorus Magnetic Resonance Spectroscopic Imaging at 7 T in Patients With Prostate Cancer. Invest Radiol 2014; 49:363-72. [DOI: 10.1097/rli.0000000000000012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Lagemaat MW, Maas MC, Vos EK, Bitz AK, Orzada S, Weiland E, van Uden MJ, Kobus T, Heerschap A, Scheenen TWJ. (31) P MR spectroscopic imaging of the human prostate at 7 T: T1 relaxation times, Nuclear Overhauser Effect, and spectral characterization. Magn Reson Med 2014; 73:909-20. [PMID: 24677408 DOI: 10.1002/mrm.25209] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 11/06/2022]
Abstract
PURPOSE Optimization of phosphorus ((31) P) MR spectroscopic imaging (MRSI) of the human prostate at 7 T by the evaluation of T1 relaxation times and the Nuclear Overhauser Effect (NOE) of phosphorus-containing metabolites. METHODS Twelve patients with prostate cancer and one healthy volunteer were scanned on a 7 T whole-body system using a (31) P endorectal coil combined with an eight-channel (1) H body array coil. T1 relaxation times were measured using progressive saturation in a two-dimensional localization sequence. (31) P MRSI was performed twice: once without NOE and once with NOE using low-power continuous wave (1) H irradiation to determine NOE enhancements. RESULTS T1 relaxation times of (31) P metabolites in the human prostate at 7 T varied between 3.0 and 8.3 s. Positive but variable NOE enhancements were measured for most metabolites. Remarkably, the (31) P MR spectra showed two peaks in chemical shift range of inorganic phosphate. CONCLUSION Knowledge of T1 relaxation times and NOE enhancements enables protocol optimization for (31) P MRSI of the prostate at 7 T. With a strongly reduced (31) P flip angle (≤ 45°), a (31) P MRSI dataset with optimal signal-to-noise ratio per unit time can be obtained within 15 minutes. The NOE enhancement can improve fitting accuracy, but its variability requires further investigation.
Collapse
Affiliation(s)
- Miriam W Lagemaat
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|