1
|
Sollmann N, Löffler MT, Kronthaler S, Böhm C, Dieckmeyer M, Ruschke S, Kirschke JS, Carballido-Gamio J, Karampinos DC, Krug R, Baum T. MRI-Based Quantitative Osteoporosis Imaging at the Spine and Femur. J Magn Reson Imaging 2020; 54:12-35. [PMID: 32584496 DOI: 10.1002/jmri.27260] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease with a high prevalence worldwide, characterized by low bone mass and microarchitectural deterioration, predisposing an individual to fragility fractures. Dual-energy X-ray absorptiometry (DXA) has been the clinical reference standard for diagnosing osteoporosis and for assessing fracture risk for decades. However, other imaging modalities are of increasing importance to investigate the etiology, treatment, and fracture risk. The purpose of this work is to review the available literature on quantitative magnetic resonance imaging (MRI) methods and related findings in osteoporosis at the spine and proximal femur as the clinically most important fracture sites. Trabecular bone microstructure analysis at the proximal femur based on high-resolution MRI allows for a better prediction of osteoporotic fracture risk than DXA-based bone mineral density (BMD) alone. In the 1990s, T2 * mapping was shown to correlate with the density and orientation of the trabecular bone. Recently, quantitative susceptibility mapping (QSM), which overcomes some of the limitations of T2 * mapping, has been applied for trabecular bone quantifications at the spine, whereas ultrashort echo time (UTE) imaging provides valuable surrogate markers of cortical bone quantity and quality. Magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) enable the quantitative assessment of the nonmineralized bone compartment through extraction of the bone marrow fat fraction (BMFF). Furthermore, CSE-MRI allows for the differentiation of osteoporotic vs. pathologic fractures, which is of high clinical relevance. Lastly, advanced postprocessing and image analysis tools, particularly considering statistical parametric mapping and region-specific BMFF distributions, have high potential to further improve MRI-based fracture risk assessments at the spine and hip. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian T Löffler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christof Böhm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Julio Carballido-Gamio
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
2
|
Di Iorgi N, Maruca K, Patti G, Mora S. Update on bone density measurements and their interpretation in children and adolescents. Best Pract Res Clin Endocrinol Metab 2018; 32:477-498. [PMID: 30086870 DOI: 10.1016/j.beem.2018.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Following the increased awareness about the central role of the pediatric age in building bone for life, clinicians face more than ever the necessity of assessing bone health in pediatric subjects at risk for early bone mass derangements or in healthy children, in order to optimize their bone mass accrual and prevent osteoporosis. Although the diagnosis of osteoporosis is not made solely upon bone mineral density measurements during growth, such determination can be very useful in the follow-up of pediatric patients with primary and secondary osteoporosis. The ideal instrument would give information on the mineral content and density of the bone, and on its architecture. It should be able to perform the measurements on the skeletal sites where fractures are more frequent, and it should be minimally invasive, accurate, precise and rapid. Unfortunately, none of the techniques currently utilized fulfills all requirements. In the present review, we focus on the pediatric use of dual-energy X-ray absorptiometry (DXA), quantitative computed tomography (QCT), peripheral QCT (pQCT), and magnetic resonance imaging (MRI), highlighting advantages and limits for their use and providing indications for bone densitometry interpretation and of vertebral fractures diagnosis in pediatric subjects.
Collapse
Affiliation(s)
- Natascia Di Iorgi
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy.
| | - Katia Maruca
- Pediatric Bone Densitormetry Service and Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Institute, Milano, Italy
| | - Giuseppa Patti
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Stefano Mora
- Pediatric Bone Densitormetry Service and Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Institute, Milano, Italy.
| |
Collapse
|
3
|
Chang G, Boone S, Martel D, Rajapakse CS, Hallyburton RS, Valko M, Honig S, Regatte RR. MRI assessment of bone structure and microarchitecture. J Magn Reson Imaging 2017; 46:323-337. [PMID: 28165650 PMCID: PMC5690546 DOI: 10.1002/jmri.25647] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a disease of weak bone and increased fracture risk caused by low bone mass and microarchitectural deterioration of bone tissue. The standard-of-care test used to diagnose osteoporosis, dual-energy x-ray absorptiometry (DXA) estimation of areal bone mineral density (BMD), has limitations as a tool to identify patients at risk for fracture and as a tool to monitor therapy response. Magnetic resonance imaging (MRI) assessment of bone structure and microarchitecture has been proposed as another method to assess bone quality and fracture risk in vivo. MRI is advantageous because it is noninvasive, does not require ionizing radiation, and can evaluate both cortical and trabecular bone. In this review article, we summarize and discuss research progress on MRI of bone structure and microarchitecture over the last decade, focusing on in vivo translational studies. Single-center, in vivo studies have provided some evidence for the added value of MRI as a biomarker of fracture risk or treatment response. Larger, prospective, multicenter studies are needed in the future to validate the results of these initial translational studies. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. MAGN. RESON. IMAGING 2017;46:323-337.
Collapse
Affiliation(s)
- Gregory Chang
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Sean Boone
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Dimitri Martel
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Chamith S Rajapakse
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert S Hallyburton
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Mitch Valko
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Stephen Honig
- Osteoporosis Center, Hospital for Joint Diseases, NYU Langone Medical Center, New York, New York, USA
| | - Ravinder R Regatte
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
4
|
Fernandez J, Zhang J, Heidlauf T, Sartori M, Besier T, Röhrle O, Lloyd D. Multiscale musculoskeletal modelling, data-model fusion and electromyography-informed modelling. Interface Focus 2016; 6:20150084. [PMID: 27051510 DOI: 10.1098/rsfs.2015.0084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This paper proposes methods and technologies that advance the state of the art for modelling the musculoskeletal system across the spatial and temporal scales; and storing these using efficient ontologies and tools. We present population-based modelling as an efficient method to rapidly generate individual morphology from only a few measurements and to learn from the ever-increasing supply of imaging data available. We present multiscale methods for continuum muscle and bone models; and efficient mechanostatistical methods, both continuum and particle-based, to bridge the scales. Finally, we examine both the importance that muscles play in bone remodelling stimuli and the latest muscle force prediction methods that use electromyography-assisted modelling techniques to compute musculoskeletal forces that best reflect the underlying neuromuscular activity. Our proposal is that, in order to have a clinically relevant virtual physiological human, (i) bone and muscle mechanics must be considered together; (ii) models should be trained on population data to permit rapid generation and use underlying principal modes that describe both muscle patterns and morphology; and (iii) these tools need to be available in an open-source repository so that the scientific community may use, personalize and contribute to the database of models.
Collapse
Affiliation(s)
- J Fernandez
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - J Zhang
- Auckland Bioengineering Institute , University of Auckland , Auckland , New Zealand
| | - T Heidlauf
- Institut für Mechanik (Bau) , University of Stuttgart , Stuttgart , Germany
| | - M Sartori
- Department of Neurorehabilitation Engineering , University Medical Center Göttingen , Göttingen , Germany
| | - T Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - O Röhrle
- Institut für Mechanik (Bau) , University of Stuttgart , Stuttgart , Germany
| | - D Lloyd
- Centre for Musculoskeletal Research, Menzies Health Institute Queensland, Griffith University, Queensland, Australia; School of Rehabilitation Sciences, Griffith University, Queensland, Australia
| |
Collapse
|
5
|
|
6
|
Jabłoński M, Gun'ko VM, Golovan AP, Leboda R, Skubiszewska-Zięba J, Pluta R, Turov VV. Textural characteristics of model and natural bone tissues and interfacial behavior of bound water. J Colloid Interface Sci 2012; 392:446-462. [PMID: 23142010 DOI: 10.1016/j.jcis.2012.08.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 11/29/2022]
Abstract
Water, as a probe liquid bound in model systems (highly disperse hydroxyapatite - protein composites as a model of the main components of bones) and rat bone tissues healthy and affected by osteoporosis occurred due to experimental Alzheimer's disease (EAD), has been investigated using low-temperature (1)H NMR spectroscopy, NMR cryoporometry, TG/DTG/DTA, DSC, and TG and DSC thermoporometry. The textural characteristics of these intact systems cannot be studied using the standard adsorption methods, but the cryoporometry and thermoporometry methods give these characteristics. The (1)H NMR spectra of water bound in model and natural bone tissues include signals, which can be assigned to strongly associated (typical) water (SAW, chemical shift of proton resonance δ(H)=5-6 ppm) and weakly associated (atypical) water (WAW) at δ(H)=1-2 ppm. Contributions of SAW and WAW give information on textural organization of both model and natural bones. The influence of such co-adsorbates as HCl, CDCl(3), CD(3)CN, C(6)D(6), and (CD(3))(2)SO on the interfacial behavior and clustering of bound water depends on their polarity, amounts of components, and textural and structural features of the materials analyzed with the (1)H NMR spectroscopy and cryoporometry methods. According to the NMR cryoporometry data, the EAD causes an increase in nanoporosity of the bone tissues. The total porosity and the specific surface area of biostructures (accessible for water molecules and estimated using NMR cryoporometry and TG thermoporometry methods with a model of cylindrical pores) are larger for the EAD sample. Weakly polar chloroform-d has a significant influence on the organization of water in the bone tissue, and this effect is greater for the EAD sample as more porous material.
Collapse
Affiliation(s)
- Miroslaw Jabłoński
- Department of Orthopaedics and Rehabilitation, Lublin Medical University, 20-094 Lublin, Poland
| | - Vladimir M Gun'ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine.
| | - Alina P Golovan
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Roman Leboda
- Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | | | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Vladimir V Turov
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine
| |
Collapse
|
7
|
Pialat JB, Vilayphiou N, Boutroy S, Gouttenoire PJ, Sornay-Rendu E, Chapurlat R, Peyrin F. Local topological analysis at the distal radius by HR-pQCT: Application to in vivo bone microarchitecture and fracture assessment in the OFELY study. Bone 2012; 51:362-8. [PMID: 22728912 DOI: 10.1016/j.bone.2012.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/25/2012] [Accepted: 06/12/2012] [Indexed: 01/31/2023]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) is an in-vivo technique used to analyze the distal radius and tibia. It provides a voxel size of 82μm. In addition to providing the usual microarchitecture parameters, local topological analysis (LTA) depicting rod- and plate-like trabeculae may improve prediction of bone fragility. Thirty-three women with prevalent wrist fractures from the OFELY cohort were compared with age-matched controls. Bone microarchitecture, including the structural model index (SMI), was assessed by HR-pQCT, and micro-finite element analysis (μFE) was computed on trabecular bone images of the distal radius (XtremeCT, Scanco Medical AG). A new LTA method was applied to label each bone voxel as a rod, plate or node. Then the bone volume fraction (BV/TV*), the rod, plate and node ratios over bone volume (RV/BV*, PV/BV*, NV/BV*) or total volume (RV/TV*, PV/TV*, NV/TV*) and the rod to plate ratio (RV/PV*) were calculated. Associations between LTA parameters and wrist fractures were computed in a conditional logistic regression model. Multivariate models were tested to predict the μFE-derived trabecular bone stiffness. RV/TV* (OR=4.41 [1.05-18.62]) and BV/TV* (OR=6.45 [1.06-39.3]), were significantly associated with prevalent wrist fracture, after adjustment for ultra distal radius aBMD. Multivariate linear models including PV/TV* or BV/TV*+RV/PV* predicted trabecular stiffness with the same magnitude as those including SMI. Conversion from plates into rods was significantly associated with bone fragility, with a negative correlation between RV/PV* and trabecular bone stiffness (r=-0.63, p<0.0001). We conclude that our local topological analysis is feasible for a voxel size of 82μm. After further validation, it may improve bone fragility description.
Collapse
|
8
|
Jones EF, Schooler J, Miller DC, Drake CR, Wahnishe H, Siddiqui S, Li X, Majumdar S. Characterization of human osteoarthritic cartilage using optical and magnetic resonance imaging. Mol Imaging Biol 2012; 14:32-9. [PMID: 21384207 PMCID: PMC3258397 DOI: 10.1007/s11307-011-0480-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose Osteoarthritis (OA) is a degenerative disease starting with key molecular events that ultimately lead to the breakdown of the cartilage. The purpose of this study is to use two imaging methods that are sensitive to molecular and macromolecular changes in OA to better characterize the disease process in human osteoarthritic cartilage. Procedures Human femoral condyles were collected from patients diagnosed with severe OA during total knee replacement surgeries. T1ρ and T2 magnetic resonance measurements were obtained using a 3-Tesla whole body scanner to assess macromolecular changes in the damaged cartilage matrix. Optical imaging was performed on specimens treated with MMPSense 680 to assess the matrix metalloproteinase (MMP) activity. A linear regression model was used to assess the correlation of MMP optical data with T1ρ magnetic resonance (MR) measurements. Slices from a representative specimen were removed from regions with high and low optical signals for subsequent histological analysis. Results All specimens exhibit high T1ρ and T2 measurements in the range of 48–75 ms and 36–69 ms, respectively. They also show intense photon signals (0.376 to 7.89 × 10−4 cm2) from the activated MMPSense 680 probe, indicative of high MMP activity. The analysis of variance test of the regression model indicates a positive correlation between the MMP optical signal and T1ρ measurements (R2 = 0.8936, P = 0.0044). Histological data also confirmed that regions with high MMP optical signal and intense T1ρ relaxation exhibit severe clefting, abnormal tidemarks, and irregular cellularity. Conclusions The high T1ρ and T2 measurements suggest that there is a severe loss of proteoglycans with high water mobility in the damaged cartilage. The intense optical signals found in these specimens indicate the presence of active MMPs, and the positive correlation with T1ρ measurements implicates MMP’s involvement in OA progression, characterized by a severe loss of proteoglycans in the cartilage matrix. The bimodal approach using optical and MR imaging may provide key molecular and macromolecular information of the disease pathway, offering insights toward the development of new tools for the early detection, treatment, and/or prevention of OA.
Collapse
Affiliation(s)
- Ella F Jones
- Department of Radiology and Biomedical Imaging, Center for Molecular and Functional Imaging, University of California, 185 Berry Street, Suite 350, Box 0946, San Francisco, CA 94107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Carballido-Gamio J, Folkesson J, Karampinos DC, Baum T, Link TM, Majumdar S, Krug R. Generation of an atlas of the proximal femur and its application to trabecular bone analysis. Magn Reson Med 2011; 66:1181-91. [PMID: 21432904 PMCID: PMC3596104 DOI: 10.1002/mrm.22885] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/06/2011] [Accepted: 01/30/2011] [Indexed: 12/22/2022]
Abstract
Automatic placement of anatomically corresponding volumes of interest and comparison of parameters against a standard of reference are essential components in studies of trabecular bone. Only recently, in vivo MR images of the proximal femur, an important fracture site, could be acquired with high-spatial resolution. The purpose of this MRI trabecular bone study was two-fold: (1) to generate an atlas of the proximal femur to automatically place anatomically corresponding volumes of interest in a population study and (2) to demonstrate how mean models of geodesic topological analysis parameters can be generated to be used as potential standard of reference. Ten females were used to generate the atlas and geodesic topological analysis models, and 10 females were used to demonstrate the atlas-based trabecular bone analysis. All alignments were based on three-dimensional (3D) multiresolution affine transformations followed by 3D multiresolution free-form deformations. Mean distances less than 1 mm between aligned femora, and sharp edges in the atlas and in fused gray-level images of registered femora indicated that the anatomical variability was well accommodated and explained by the free-form deformations.
Collapse
|
10
|
Lam SCB, Wald MJ, Rajapakse CS, Liu Y, Saha PK, Wehrli FW. Performance of the MRI-based virtual bone biopsy in the distal radius: serial reproducibility and reliability of structural and mechanical parameters in women representative of osteoporosis study populations. Bone 2011; 49:895-903. [PMID: 21784189 PMCID: PMC3167016 DOI: 10.1016/j.bone.2011.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/14/2011] [Accepted: 07/08/2011] [Indexed: 11/25/2022]
Abstract
Serial reproducibility and reliability critically determine sensitivity to detect changes in response to intervention and provide a basis for sample size estimates. Here, we evaluated the performance of the MRI-based virtual bone biopsy in terms of 26 structural and mechanical parameters in the distal radius of 20 women in the age range of 50 to 75 years (mean=62.0 years, S.D.=8.1 years), representative of typical study populations in drug intervention trials and fracture studies. Subjects were examined three times at average intervals of 20.2 days (S.D.=14.5 days) by MRI at 1.5 T field strength at a voxel size of 137×137×410 μm(3). Methods involved prospective and retrospective 3D image registration and auto-focus motion correction. Analyses were performed from a central 5×5×5 mm(3) cuboid subvolume and trabecular volume consisting of a 13 mm axial slab encompassing the entire medullary cavity. Whole-volume axial stiffness and sub-regional Young's and shear moduli were computed by finite-element analysis. Whole-volume-derived aggregate mean coefficient of variation of all structural parameters was 4.4% (range 1.8% to 7.7%) and 4.0% for axial stiffness; corresponding data in the subvolume were 6.5% (range 1.6% to 13.0%) for structural, and 5.5% (range 4.6% to 6.5%) for mechanical parameters. Aggregate ICC was 0.976 (range 0.947 to 0.986) and 0.992 for whole-volume-derived structural parameters and axial stiffness, and 0.946 (range 0.752 to 0.991) and 0.974 (range 0.965 to 0.978) for subvolume-derived structural and mechanical parameters, respectively. The strongest predictors of whole-volume axial stiffness were BV/TV, junction density, skeleton density and Tb.N (R(2) 0.79-0.87). The same parameters were also highly predictive of sub-regional axial modulus (R(2) 0.88-0.91). The data suggest that the method is suited for longitudinal assessment of the response to therapy. The underlying technology is portable and should be compatible with all general-purpose MRI scanners, which is appealing considering the very large installed base of this modality.
Collapse
Affiliation(s)
- Shing Chun Benny Lam
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Folkesson J, Goldenstein J, Carballido-Gamio J, Kazakia G, Burghardt AJ, Rodriguez A, Krug R, de Papp AE, Link TM, Majumdar S. Longitudinal evaluation of the effects of alendronate on MRI bone microarchitecture in postmenopausal osteopenic women. Bone 2011; 48:611-21. [PMID: 21059422 PMCID: PMC4461063 DOI: 10.1016/j.bone.2010.10.179] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 10/28/2010] [Accepted: 10/28/2010] [Indexed: 11/24/2022]
Abstract
UNLABELLED We evaluated longitudinal effects of alendronate on MRI-based trabecular bone structure parameters derived from dual thresholding and fuzzy clustering (BE-FCM) trabecular bone segmentation. Treatment effects were observed in the distal tibia after 24 months. The BE-FCM method increased correlations to HR-pQCT-based parameters. INTRODUCTION High-resolution magnetic resonance imaging (MRI) allows for non-invasive bone microarchitecture analysis. The goal of this study was to examine the potential of MRI-based trabecular bone structure parameters to monitor effects of alendronate in humans in vivo, and to compare the results to HR-pQCT and DXA measurements. MATERIALS AND METHODS Postmenopausal osteopenic women were divided into alendronate treatment and control groups, and imaged at baseline, 12 months, and 24 months (n = 52 at baseline) using 3T MRI, HR-pQCT, and DXA. Image acquisition sites included distal tibia (MRI and HR-pQCT), distal radius (MRI, DXA, and HR-pQCT), and the proximal femur (MRI and DXA). Two different regions of interest were evaluated. One contained the trabecular bone region within the entire MRI acquisition, and the second contained a subregion matched to the region contained in the HR-pQCT acquisition. The trabecular bone was segmented using two different methods; dual thresholding and BE-FCM. Trabecular bone structure parameters included bone volume fraction (BV/TV), number (Tb.N), spacing (Tb.Sp), and thickness (Tb.Th), along with seven geodesic topological analysis (GTA) parameters. Longitudinal changes and correlations to HR-pQCT and DXA measurements were evaluated. RESULTS Apparent Tb.N and four GTA parameters showed treatment effects (p < 0.05) in the distal tibia after 24 months in the entire MRI region using BE-FCM, as well as Tb.N using dual thresholding. No treatment effects after 24 months were observed in the HR-pQCT or in MRI analysis for the HR-pQCT-matched regions. Apparent BV/TV and Tb.N from BE-FCM had significantly higher correlations to HR-pQCT values compared to those derived from thresholding. CONCLUSIONS This study demonstrates the influence of computational methods and region of interest definitions on measurements of trabecular bone structure, and the feasibility of MRI-based quantification of longitudinal changes in bone microarchitecture due to bisphosphonate therapy. The results suggest that there may be a need to reevaluate the current standard HR-pQCT region definition for increased treatment sensitivity.
Collapse
Affiliation(s)
- Jenny Folkesson
- Musculoskeletal Quantitative Imaging Research Group (MQIR), Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Huber MB, Lancianese SL, Nagarajan MB, Ikpot IZ, Lerner AL, Wismuller A. Prediction of biomechanical properties of trabecular bone in MR images with geometric features and support vector regression. IEEE Trans Biomed Eng 2011; 58:1820-6. [PMID: 21356612 DOI: 10.1109/tbme.2011.2119484] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Whole knee joint MR image datasets were used to compare the performance of geometric trabecular bone features and advanced machine learning techniques in predicting biomechanical strength properties measured on the corresponding ex vivo specimens. Changes of trabecular bone structure throughout the proximal tibia are indicative of several musculoskeletal disorders involving changes in the bone quality and the surrounding soft tissue. Recent studies have shown that MR imaging also allows non-invasive 3-D characterization of bone microstructure. Sophisticated features like the scaling index method (SIM) can estimate local structural and geometric properties of the trabecular bone and may improve the ability of MR imaging to determine local bone quality in vivo. A set of 67 bone cubes was extracted from knee specimens and their biomechanical strength estimated by the yield stress (YS) [in MPa] was determined through mechanical testing. The regional apparent bone volume fraction (BVF) and SIM derived features were calculated for each bone cube. A linear multiregression analysis (MultiReg) and a optimized support vector regression (SVR) algorithm were used to predict the YS from the image features. The prediction accuracy was measured by the root mean square error (RMSE) for each image feature on independent test sets. The best prediction result with the lowest prediction error of RMSE = 1.021 MPa was obtained with a combination of BVF and SIM features and by using SVR. The prediction accuracy with only SIM features and SVR (RMSE = 1.023 MPa) was still significantly better than BVF alone and MultiReg (RMSE = 1.073 MPa). The current study demonstrates that the combination of sophisticated bone structure features and supervised learning techniques can improve MR-based determination of trabecular bone quality.
Collapse
Affiliation(s)
- Markus B Huber
- Department of Imaging Sciences, University of Rochester, NY 14627, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Saha PK, Xu Y, Duan H, Heiner A, Liang G. Volumetric topological analysis: a novel approach for trabecular bone classification on the continuum between plates and rods. IEEE TRANSACTIONS ON MEDICAL IMAGING 2010; 29:1821-1838. [PMID: 20562041 PMCID: PMC3113685 DOI: 10.1109/tmi.2010.2050779] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Trabecular bone (TB) is a complex quasi-random network of interconnected plates and rods. TB constantly remodels to adapt to the stresses to which it is subjected (Wolff's Law). In osteoporosis, this dynamic equilibrium between bone formation and resorption is perturbed, leading to bone loss and structural deterioration. Both bone loss and structural deterioration increase fracture risk. Bone's mechanical behavior can only be partially explained by variations in bone mineral density, which led to the notion of bone structural quality. Previously, we developed digital topological analysis (DTA) which classifies plates, rods, profiles, edges, and junctions in a TB skeletal representation. Although the method has become quite popular, a major limitation of DTA is that it provides only hard classifications of different topological entities, failing to distinguish between narrow and wide plates. Here, we present a new method called volumetric topological analysis (VTA) for regional quantification of TB topology. At each TB location, the method uniquely classifies its topology on the continuum between perfect plates and perfect rods, facilitating early detections of TB alterations from plates to rods according to the known etiology of osteoporotic bone loss. Several new ideas, including manifold distance transform, manifold scale, and feature propagation have been introduced here and combined with existing DTA and distance transform methods, leading to the new VTA technology. This method has been applied to multidetector computed tomography (CT) and micro-computed tomography ( μCT) images of four cadaveric distal tibia and five distal radius specimens. Both intra- and inter-modality reproducibility of the method has been examined using repeat CT and μCT scans of distal tibia specimens. Also, the method's ability to predict experimental biomechanical properties of TB via CT imaging under in vivo conditions has been quantitatively examined and the results found are very encouraging.
Collapse
Affiliation(s)
- Punam K Saha
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
14
|
Alberich-Bayarri A, Marti-Bonmati L, Pérez MA, Sanz-Requena R, Lerma-Garrido JJ, García-Martí G, Moratal D. Assessment of 2D and 3D fractal dimension measurements of trabecular bone from high-spatial resolution magnetic resonance images at 3 T. Med Phys 2010; 37:4930-7. [DOI: 10.1118/1.3481509] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Krug R, Burghardt AJ, Majumdar S, Link TM. High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am 2010; 48:601-21. [PMID: 20609895 DOI: 10.1016/j.rcl.2010.02.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The importance of assessing the bone's microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in several publications. The high spatial resolution required to resolve the bone's microstructure in a clinically feasible scan time is challenging. At present, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition, multidetector computed tomography has been used for high-resolution imaging of trabecular bone structure; however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements, and recent developments in this emerging field. Details regarding imaging protocols as well as image postprocessing methods for bone structure quantification are discussed.
Collapse
Affiliation(s)
- Roland Krug
- MQIR, Department of Radiology and Biomedical Imaging, University of California-San Francisco, UCSF China Basin Landing, 185 Berry Street, San Francisco, CA 94107, USA.
| | | | | | | |
Collapse
|