1
|
Bae WC, Malis V, Yamashita Y, Mesa A, Vucevic D, Miyazaki M. Bone Imaging of the Knee Using Short-Interval Delta Ultrashort Echo Time and Field Echo Imaging. J Clin Med 2024; 13:4595. [PMID: 39200736 PMCID: PMC11354598 DOI: 10.3390/jcm13164595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Computed tomography (CT) is the preferred imaging modality for bone evaluation of the knee, while MRI of the bone is actively being developed. We present three techniques using short-interval delta ultrashort echo time (δUTE), field echo (FE), and FE with high resolution-deep learning reconstruction (HR-DLR) for direct bone MRI. Methods: Knees of healthy volunteers (n = 5, 3 females, 38 ± 17.2 years old) were imaged. CT-like images were generated by averaging images from multiple echoes and inverting. The bone signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were determined. Results: The δUTE depicted a cortical bone with high signal intensity but could not resolve trabeculae. In contrast, both the FE and FE HR-DLR images depicted cortical and trabecular bone with high signal. Quantitatively, while δUTE had a good bone SNR of ~100 and CNR of ~40 for the cortical bone, the SNR for the FE HR-DLR was significantly higher (p < 0.05), at over 400, and CNR at over 200. Conclusions: For 3D rendering of the bone surfaces, the δUTE provided better image contrast and separation of bone from ligaments and tendons than the FE sequences. While there still is no MRI technique that provides a perfect CT-like contrast, continued advancement of MRI techniques may provide benefits for specific use cases.
Collapse
Affiliation(s)
- Won C. Bae
- Department of Radiology, University of California—San Diego, San Diego, CA 92093, USA; (W.C.B.)
| | - Vadim Malis
- Department of Radiology, University of California—San Diego, San Diego, CA 92093, USA; (W.C.B.)
| | | | - Anya Mesa
- Department of Radiology, University of California—San Diego, San Diego, CA 92093, USA; (W.C.B.)
| | - Diana Vucevic
- Department of Radiology, University of California—San Diego, San Diego, CA 92093, USA; (W.C.B.)
| | - Mitsue Miyazaki
- Department of Radiology, University of California—San Diego, San Diego, CA 92093, USA; (W.C.B.)
| |
Collapse
|
2
|
Jerban S, Moazamian D, Mohammadi HS, Ma Y, Jang H, Namiranian B, Shin SH, Alenezi S, Shah SB, Chung CB, Chang EY, Du J. More accurate trabecular bone imaging using UTE MRI at the resonance frequency of fat. Bone 2024; 184:117096. [PMID: 38631596 PMCID: PMC11357721 DOI: 10.1016/j.bone.2024.117096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
High-resolution magnetic resonance imaging (HR-MRI) has been increasingly used to assess the trabecular bone structure. High susceptibility at the marrow/bone interface may significantly reduce the marrow's apparent transverse relaxation time (T2*), overestimating trabecular bone thickness. Ultrashort echo time MRI (UTE-MRI) can minimize the signal loss caused by susceptibility-induced T2* shortening. However, UTE-MRI is sensitive to chemical shift artifacts, which manifest as spatial blurring and ringing artifacts partially due to non-Cartesian sampling. In this study, we proposed UTE-MRI at the resonance frequency of fat to minimize marrow-related chemical shift artifacts and the overestimation of trabecular thickness. Cubes of trabecular bone from six donors (75 ± 4 years old) were scanned using a 3 T clinical scanner at the resonance frequencies of fat and water, respectively, using 3D UTE sequences with five TEs (0.032, 1.1, 2.2, 3.3, and 4.4 ms) and a clinical 3D gradient echo (GRE) sequence at 0.2 × 0.2 × 0.4 mm3 voxel size. Trabecular bone thickness was measured in 30 regions of interest (ROIs) per sample. MRI results were compared with thicknesses obtained from micro-computed tomography (μCT) at 50 μm3 voxel size. Linear regression models were used to calculate the coefficient of determination between MRI- and μCT-based trabecular thickness. All MRI-based trabecular thicknesses showed significant correlations with μCT measurements. The correlations were higher (examined with paired Student's t-test, P < 0.01) for 3D UTE images performed at the fat frequency (R2 = 0.59-0.74, P < 0.01) than those at the water frequency (R2 = 0.18-0.52, P < 0.01) and clinical GRE images (R2 = 0.39-0.47, P < 0.01). Significantly reduced correlations were observed with longer TEs. This study highlighted the feasibility of UTE-MRI at the fat frequency for a more accurate assessment of trabecular bone thickness.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | | | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Behnam Namiranian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Soo Hyun Shin
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Sameer B Shah
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA; Orthopaedic Research, University of California, San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Vu BTD, Jones BC, Lee H, Kamona N, Deshpande RS, Wehrli FW, Rajapakse CS. Six-minute, in vivo MRI quantification of proximal femur trabecular bone 3D microstructure. Bone 2023; 177:116900. [PMID: 37714503 DOI: 10.1016/j.bone.2023.116900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Assessment of proximal femur trabecular bone microstructure in vivo by magnetic resonance imaging has recently been validated for acquiring information independent of bone mineral density in osteoporotic patients. However, the requisite signal-to-noise ratio (SNR) and resolution for interrogation of the trabecular microstructure at this anatomical location prolongs the scan duration and renders the imaging protocol clinically infeasible. Parallel imaging and compressed sensing (PICS) techniques can reduce the scan duration of the imaging protocol without substantially compromising image quality. The present work investigates the limits of acceleration for a commonly used PICS technique, ℓ1-ESPIRiT, for the purpose of quantifying measures of trabecular bone microarchitecture. Based on a desired error tolerance, a six-minute, prospectively accelerated variant of the imaging protocol was developed and assessed for intersession reproducibility and agreement with the longer reference scan. PURPOSE To investigate the limits of acceleration for MRI-based trabecular bone quantification by parallel imaging and compressed sensing reconstruction, and to develop a prototypical imaging protocol for assessing the proximal femur microstructure in a clinically practical scan time. METHODS Healthy participants (n = 11) were scanned by a 3D balanced steady-state free precession (bSSFP) sequence satisfying the Nyquist criterion with a scan duration of about 18 min. The raw data were retrospectively undersampled and reconstructed to mimic various acceleration factors ranging from 2 to 6. Trabecular volumes-of-interest in four major femoral regions (greater trochanter, intertrochanteric region, femoral neck, and femoral head) were analyzed and six relevant measures of trabecular bone microarchitecture (bone volume fraction, surface-to-curve ratio, erosion index, elastic modulus, trabecular thickness, plates-to-rods ratio) were obtained for images of all accelerations. To assess agreement, median percent error and intraclass correlation coefficients (ICCs) were computed using the fully-sampled data as reference. Based on this analysis, a prospectively 3-fold accelerated sequence with a duration of about 6 min was developed and the analysis was repeated. RESULTS A prospective acceleration factor of 3 demonstrated comparable performance in reproducibility and absolute agreement to the fully-sampled scan. The median CoV over all image-derived metrics was generally <6 % and ICCs >0.70. Also, measurements from prospectively 3-fold accelerated scans demonstrated in general median percent errors of <7 % and ICCs >0.70. CONCLUSION The present work proposes a method to make in vivo quantitative assessment of proximal femur trabecular microstructure with a clinically practical scan duration of about 6 min.
Collapse
Affiliation(s)
- Brian-Tinh Duc Vu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Brandon C Jones
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America
| | - Hyunyeol Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; School of Electronics Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, South Korea
| | - Nada Kamona
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America
| | - Rajiv S Deshpande
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America
| | - Chamith S Rajapakse
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, United States of America
| |
Collapse
|
4
|
Soldati E, Vicente J, Guenoun D, Bendahan D, Pithioux M. Validation and Optimization of Proximal Femurs Microstructure Analysis Using High Field and Ultra-High Field MRI. Diagnostics (Basel) 2021; 11:1603. [PMID: 34573945 PMCID: PMC8466948 DOI: 10.3390/diagnostics11091603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022] Open
Abstract
Trabecular bone could be assessed non-invasively using MRI. However, MRI does not yet provide resolutions lower than trabecular thickness and a comparative analysis between different MRI sequences at different field strengths and X-ray microtomography (μCT) is still missing. In this study, we compared bone microstructure parameters and bone mineral density (BMD) computed using various MRI approaches, i.e., turbo spin echo (TSE) and gradient recalled echo (GRE) images used at different magnetic fields, i.e., 7T and 3T. The corresponding parameters computed from μCT images and BMD derived from dual-energy X-ray absorptiometry (DXA) were used as the ground truth. The correlation between morphological parameters, BMD and fracture load assessed by mechanical compression tests was evaluated. Histomorphometric parameters showed a good agreement between 7T TSE and μCT, with 8% error for trabecular thickness with no significative statistical difference and a good intraclass correlation coefficient (ICC > 0.5) for all the extrapolated parameters. No correlation was found between DXA-BMD and all morphological parameters, except for trabecular interconnectivity (R2 > 0.69). Good correlation (p-value < 0.05) was found between failure load and trabecular interconnectivity (R2 > 0.79). These results suggest that MRI could be of interest for bone microstructure assessment. Moreover, the combination of morphological parameters and BMD could provide a more comprehensive view of bone quality.
Collapse
Affiliation(s)
- Enrico Soldati
- Aix Marseille Univ, CNRS, IUSTI, 13453 Marseille, France;
- Aix Marseille Univ, CNRS, CRMBM, 13385 Marseille, France;
- Aix Marseille Univ, CNRS, ISM, 13288 Marseille, France; (D.G.); (M.P.)
| | - Jerome Vicente
- Aix Marseille Univ, CNRS, IUSTI, 13453 Marseille, France;
| | - Daphne Guenoun
- Aix Marseille Univ, CNRS, ISM, 13288 Marseille, France; (D.G.); (M.P.)
- Department of Radiology, Institute for Locomotion, Sainte-Marguerite Hospital, Aix Marseille Univ, APHM, CNRS, ISM, 13274 Marseille, France
| | - David Bendahan
- Aix Marseille Univ, CNRS, CRMBM, 13385 Marseille, France;
| | - Martine Pithioux
- Aix Marseille Univ, CNRS, ISM, 13288 Marseille, France; (D.G.); (M.P.)
- Department of Orthopaedics and Traumatology, Institute for Locomotion, Sainte-Marguerite Hospital, Aix Marseille Univ, APHM, CNRS, ISM, 13274 Marseille, France
| |
Collapse
|
5
|
Leonard MB, Wehrli FW, Ziolkowski SL, Billig E, Long J, Nickolas TL, Magland JF, Nihtianova S, Zemel BS, Herskovitz R, Rajapakse CS. A multi-imaging modality study of bone density, bone structure and the muscle - bone unit in end-stage renal disease. Bone 2019; 127:271-279. [PMID: 31158505 DOI: 10.1016/j.bone.2019.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/10/2023]
Abstract
End stage renal disease (ESRD) is associated with sarcopenia and skeletal fragility. The objectives of this cross-sectional study were to (1) characterize body composition, bone mineral density (BMD) and bone structure in hemodialysis patients compared with controls, (2) assess whether DXA areal BMD (aBMD) correlates with peripheral quantitative CT (pQCT) measures of volumetric BMD (vBMD), cortical dimensions and MRI measures of trabecular microarchitecture, and (3) determine the magnitude of bone deficits in ESRD after adjustment for muscle mass. Thirty ESRD participants, ages 25 to 64 years, were compared with 403 controls for DXA and pQCT outcomes and 104 controls for MRI outcomes; results were expressed as race- and sex- specific Z-scores relative to age. DXA appendicular lean mass index (ALMI kg/m2) and total hip, femoral neck, ultradistal and 1/3rd radius aBMD were significantly lower in ESRD, vs. controls (all p < 0.01). pQCT trabecular vBMD (p < 0.01), cortical vBMD (p < 0.001) and cortical thickness (due to a greater endosteal circumference, p < 0.02) and MRI measures of trabecular number, trabecular thickness, and whole bone stiffness were lower (all p < 0.01) in ESRD, vs. controls. ALMI was positively associated with total hip, femoral neck, ultradistal radius and 1/3rd radius aBMD and with tibia cortical thickness (R = 0.46 to 0.64). Adjustment for ALMI significantly attenuated bone deficits at these sites: e.g. mean femoral neck aBMD was 0.79 SD lower in ESRD, compared with controls and this was attenuated to 0.33 with adjustment for ALMI. In multivariate models within the dialysis participants, pQCT trabecular vBMD and cortical area Z-scores were significant and independently (all p < 0.02) associated with DXA femoral neck, total hip, and ultradistal radius aBMD Z-scores. Cortical vBMD (p = 0.01) and cortical area (p < 0.001) Z-scores were significantly and independently associated with 1/3rd radius areal aBMD Z-scores (R2 = 0.62). These data demonstrate that DXA aBMD captures deficits in trabecular and cortical vBMD and cortical area. The strong associations with ALMI, as an index of skeletal muscle, highlight the importance of considering the role of sarcopenia in skeletal fragility in patients with ESRD.
Collapse
Affiliation(s)
- Mary B Leonard
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America; Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America.
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Susan L Ziolkowski
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Erica Billig
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jin Long
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Thomas L Nickolas
- Department of Medicine, Columbia University, New York, NY, United States of America
| | - Jeremy F Magland
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Snejana Nihtianova
- Susanne M. Glasscock School of Continuing Studies, Rice University, Houston, TX, United States of America
| | - Babette S Zemel
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Rita Herskovitz
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
6
|
West SL, Rajapakse CS, Rayner T, Miller R, Slinger MA, Wells GD. The reproducibility of measuring trabecular bone parameters using a commercially available high-resolution magnetic resonance imaging approach: A pilot study. Bone Rep 2018; 8:180-186. [PMID: 29955637 PMCID: PMC6020268 DOI: 10.1016/j.bonr.2018.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 04/09/2018] [Accepted: 04/23/2018] [Indexed: 02/02/2023] Open
Abstract
Bone imaging is currently the best non-invasive way to assess changes to bone associated with aging or chronic disease. However, common imaging techniques such as dual energy x-ray absorptiometry are associated with limitations. Magnetic resonance imaging (MRI) is a radiation-free technique that can measure bone microarchitecture. However, published MRI bone assessment protocols use specialized MRI coils and sequences and therefore have limited transferability across institutions. We developed a protocol on a Siemens 3 Tesla MRI machine, using a commercially available coil (Siemens 15 CH knee coil), and manufacturer supplied sequences to acquire images at the tibia. We tested the reproducibility of the FSE and the GE Axial sequences and hypothesized that both would generate reproducible trabecular bone parameters. Eight healthy adults (age 25.5 ± 5.4 years) completed three measurements of each MRI sequence at the tibia. Each of the images was processed for 8 different bone parameters (such as volumetric bone volume fraction). We computed the coefficient of variation (CV) and intraclass correlation coefficients (ICC) to assess reproducibility and reliability. Both sequences resulted in trabecular parameters that were reproducible (CV <5% for most) and reliable (ICC >80% for all). Our study is one of the first to report that a commercially available MRI protocol can result in reproducible data, and is significant as MRI may be an accessible method to measure bone microarchitecture in clinical or research environments. This technique requires further testing, including validation and evaluation in other populations. Trabecular bone is difficult to measure using commercial MRI techniques Reproducibility of a MRI protocol measuring trabecular bone was assessed Tibia trabecular bone was reproducible using a knee coil and a FSE Axial sequence Tibia trabecular bone was reproducible using a knee coil and a GE Axial sequence
Collapse
Affiliation(s)
- Sarah L West
- Department of Biology, Trent/Fleming School of Nursing, Trent University, Peterborough, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Tammy Rayner
- Radiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rhiannon Miller
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Michelle A Slinger
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Greg D Wells
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Rajapakse CS, Kobe EA, Batzdorf AS, Hast MW, Wehrli FW. Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing. Bone 2018; 108:71-78. [PMID: 29278746 PMCID: PMC5803422 DOI: 10.1016/j.bone.2017.12.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 11/28/2022]
Abstract
High-resolution MRI-derived finite element analysis (FEA) has been used in translational research to estimate the mechanical competence of human bone. However, this method has yet to be validated adequately under in vivo imaging spatial resolution or signal-to-noise conditions. We therefore compared MRI-based metrics of bone strength to those obtained from direct, mechanical testing. The study was conducted on tibiae from 17 human donors (12 males and five females, aged 33 to 88years) with no medical history of conditions affecting bone mineral homeostasis. A 25mm segment from each distal tibia underwent MR imaging in a clinical 3-Tesla scanner using a fast large-angle spin-echo (FLASE) sequence at 0.137mm×0.137mm×0.410mm voxel size, in accordance with in vivo scanning protocol. The resulting high-resolution MR images were processed and used to generate bone volume fraction maps, which served as input for the micro-level FEA model. Simulated compression was applied to compute stiffness, yield strength, ultimate strength, modulus of resilience, and toughness, which were then compared to metrics obtained from mechanical testing. Moderate to strong positive correlations were found between computationally and experimentally derived values of stiffness (R2=0.77, p<0.0001), yield strength (R2=0.38, p=0.0082), ultimate strength (R2=0.40, p=0.0067), and resilience (R2=0.46, p=0.0026), but only a weak, albeit significant, correlation was found for toughness (R2=0.26, p=0.036). Furthermore, experimentally derived yield strength and ultimate strength were moderately correlated with MRI-derived stiffness (R2=0.48, p=0.0022 and R2=0.58, p=0.0004, respectively). These results suggest that high-resolution MRI-based finite element (FE) models are effective in assessing mechanical parameters of distal skeletal extremities.
Collapse
Affiliation(s)
- Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, United States; Department of Orthopaedic Surgery, University of Pennsylvania, United States.
| | - Elizabeth A Kobe
- Department of Radiology, University of Pennsylvania, United States
| | | | - Michael W Hast
- Department of Orthopaedic Surgery, University of Pennsylvania, United States
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, United States
| |
Collapse
|
8
|
Rajapakse CS, Leonard MB, Kobe EA, Slinger MA, Borges KA, Billig E, Rubin CT, Wehrli FW. The Efficacy of Low-intensity Vibration to Improve Bone Health in Patients with End-stage Renal Disease Is Highly Dependent on Compliance and Muscle Response. Acad Radiol 2017; 24:1332-1342. [PMID: 28652048 DOI: 10.1016/j.acra.2017.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022]
Abstract
RATIONAL AND OBJECTIVES Low intensity vibration (LIV) may represent a nondrug strategy to mitigate bone deficits in patients with end-stage renal disease. MATERIALS AND METHODS Thirty end-stage renal patients on maintenance hemodialysis were randomized to stand for 20 minutes each day on either an active or placebo LIV device. Analysis at baseline and completion of 6-month intervention included magnetic resonance imaging (tibia and fibula stiffness; trabecular thickness, number, separation, bone volume fraction, plate-to-rod ratio; and cortical bone porosity), dual-energy X-ray absorptiometry (hip and spine bone mineral density [BMD]), and peripheral quantitative computed tomography (tibia trabecular and cortical BMD; calf muscle cross-sectional area). RESULTS Intention-to-treat analysis did not show any significant changes in outcomes associated with LIV. Subjects using the active device and with greater than the median adherence (70%) demonstrated an increase in distal tibia stiffness (5.3%), trabecular number (1.7%), BMD (2.3%), and plate-to-rod ratio (6.5%), and a decrease in trabecular separation (-1.8%). Changes in calf muscle cross-sectional area were associated with changes in distal tibia stiffness (R = 0.85), trabecular bone volume/total volume (R = 0.91), number (R = 0.92), and separation (R = -0.94) in the active group but not in the placebo group. Baseline parathyroid hormone levels were positively associated with increased cortical bone porosity over the 6-month study period in the placebo group (R = 0.55) but not in the active group (R = 0.01). No changes were observed in the nondistal tibia locations for either group except a decrease in hip BMD in the placebo group (-1.7%). CONCLUSION Outcomes and adherence thresholds identified from this pilot study could guide future longitudinal studies involving vibration therapy.
Collapse
|
9
|
Magland JF, Li C, Langham MC, Wehrli FW. Pulse sequence programming in a dynamic visual environment: SequenceTree. Magn Reson Med 2015; 75:257-65. [PMID: 25754837 DOI: 10.1002/mrm.25640] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/09/2014] [Accepted: 01/07/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE To describe SequenceTree, an open source, integrated software environment for implementing MRI pulse sequences and, ideally, exporting them to actual MRI scanners. The software is a user-friendly alternative to vendor-supplied pulse sequence design and editing tools and is suited for programmers and nonprogrammers alike. METHODS The integrated user interface was programmed using the Qt4/C++ toolkit. As parameters and code are modified, the pulse sequence diagram is automatically updated within the user interface. Several aspects of pulse programming are handled automatically, allowing users to focus on higher-level aspects of sequence design. Sequences can be simulated using a built-in Bloch equation solver and then exported for use on a Siemens MRI scanner. Ideally, other types of scanners will be supported in the future. RESULTS SequenceTree has been used for 8 years in our laboratory and elsewhere and has contributed to more than 50 peer-reviewed publications in areas such as cardiovascular imaging, solid state and nonproton NMR, MR elastography, and high-resolution structural imaging. CONCLUSION SequenceTree is an innovative, open source, visual pulse sequence environment for MRI combining simplicity with flexibility and is ideal both for advanced users and users with limited programming experience.
Collapse
Affiliation(s)
- Jeremy F Magland
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cheng Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael C Langham
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
Zhang N, Magland JF, Song HK, Wehrli FW. Registration-based autofocusing technique for automatic correction of motion artifacts in time-series studies of high-resolution bone MRI. J Magn Reson Imaging 2014; 41:954-63. [PMID: 24803089 DOI: 10.1002/jmri.24646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/28/2014] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To develop a registration-based autofocusing (RAF) motion correction technique for high-resolution trabecular bone (TB) imaging and to evaluate its performance on in vivo MR data. MATERIALS AND METHODS The technique combines serial registration with a previously developed motion correction technique - autofocusing - for automatic correction of subject movement degradation of MR images acquired in longitudinal studies. The method was tested on in vivo images of the distal radius to measure improvements in serial reproducibility of parameters in 12 women (ages 50-75 years), and to compare with the navigator echo-based correction and autofocusing. Furthermore, the technique's ability to optimize the sensitivity to detect simulated bone loss was ascertained. RESULTS The new technique yielded superior reproducibility of image-derived structural and mechanical parameters. Average coefficient of variation across all parameters improved by 12.5%, 27.0%, 33.5%, and 37.0%, respectively, following correction by navigator echoes, autofocusing, and the RAF technique (without and with correction for rotational motion); average intra-class correlation coefficient increased by 1.2%, 2.2%, 2.8%, and 3.2%, respectively. Furthermore, simulated bone loss (5%) was well recovered independent of the choice of reference image (4.71% or 4.86% with respect to using either the original or the image subjected to bone loss) in the time series. CONCLUSION The data suggest that our technique simultaneously corrects for intra-scan motion corruption while improving inter-scan registration. Furthermore, the technique is not biased by small changes in bone architecture between time-points.
Collapse
Affiliation(s)
- Ning Zhang
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
11
|
Al Mukaddam M, Rajapakse CS, Bhagat YA, Wehrli FW, Guo W, Peachey H, LeBeau SO, Zemel BS, Wang C, Swerdloff RS, Kapoor SC, Snyder PJ. Effects of testosterone and growth hormone on the structural and mechanical properties of bone by micro-MRI in the distal tibia of men with hypopituitarism. J Clin Endocrinol Metab 2014; 99:1236-44. [PMID: 24423356 PMCID: PMC3973782 DOI: 10.1210/jc.2013-3665] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Severe deficiencies of testosterone (T) and GH are associated with low bone mineral density (BMD) and increased fracture risk. Replacement of T in hypogonadal men improves several bone parameters. Replacement of GH in GH-deficient men improves BMD. OBJECTIVE Our objective was to determine whether T and GH treatment together improves the structural and mechanical parameters of bone more than T alone in men with hypopituitarism. DESIGN AND SUBJECTS This randomized, prospective, 2-year study included 32 men with severe deficiencies of T and GH due to panhypopituitarism. INTERVENTION Subjects were randomized to receive T alone (n = 15) or T and GH (n = 17) for 2 years. MAIN OUTCOME MEASURES We evaluated magnetic resonance microimaging-derived structural (bone volume fraction [BVF] and trabecular thickness) and mechanical (axial stiffness [AS], a measure of bone strength) properties of the distal tibia at baseline and after 1 and 2 years of treatment. RESULTS Treatment with T and GH did not affect BVF, thickness, or AS differently from T alone. T treatment in all subjects for 2 years increased trabecular BVF by 9.6% (P < .0001), trabecular thickness by 2.6% (P < .001), and trabecular AS by 9.8% (P < .001). In contrast, testosterone treatment in all subjects significantly increased cortical thickness by 2.4% (P < .01) but decreased cortical BVF by -4.7% (P < .01) and cortical AS by -6.9% (P < .01). CONCLUSION Combined T and GH treatment of men with hypopituitarism for 2 years did not improve the measured structural or mechanical parameters of the distal tibia more than T alone. However, testosterone significantly increased the structural and mechanical properties of trabecular bone but decreased most of these properties of cortical bone, illustrating the potential importance of assessing trabecular and cortical bone separately in future studies of the effect of testosterone on bone.
Collapse
Affiliation(s)
- Mona Al Mukaddam
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine (M.A.M., H.P., S.O.L., P.J.S.); Laboratory of Structural NMR Imaging, Department of Radiology (C.S.R., Y.A.B., F.W.W.), Department of Biostatistics and Epidemiology (W.G.), and the Clinical and Translational Research Center (S.C.K.), Raymond and Ruth Perelman School of Medicine, University of Pennsylvania; and the Division of Gastroenterology, Hepatology, and Nutrition (B.S.Z.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Metabolism (C.W., R.S.S.), Harbor-University of California at Los Angeles Medical Center and Los Angeles Biomedical Research Institute, Torrance, California 90509
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang N, Magland JF, Rajapakse CS, Bhagat YA, Wehrli FW. Potential of in vivo MRI-based nonlinear finite-element analysis for the assessment of trabecular bone post-yield properties. Med Phys 2013; 40:052303. [PMID: 23635290 DOI: 10.1118/1.4802085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Bone strength is the key factor impacting fracture risk. Assessment of bone strength from high-resolution (HR) images have largely relied on linear micro-finite element analysis (μFEA) even though failure always occurs beyond the yield point, which is outside the linear regime. Nonlinear μFEA may therefore be more informative in predicting failure behavior. However, existing nonlinear models applied to trabecular bone (TB) have largely been confined to micro-computed tomography (μCT) and, more recently, HR peripheral quantitative computed tomography (HR-pQCT) images, and typically have ignored evaluation of the post-yield behavior. The primary purpose of this work was threefold: (1) to provide an improved algorithm and program to assess TB yield as well as post-yield properties; (2) to explore the potential benefits of nonlinear μFEA beyond its linear counterpart; and (3) to assess the feasibility and practicality of performing nonlinear analysis on desktop computers on the basis of micro-magnetic resonance (μMR) images obtained in vivo in patients. METHODS A method for nonlinear μFE modeling of TB yield as well as post-yield behavior has been designed where material nonlinearity is captured by adjusting the tissue modulus iteratively according to the tissue-level effective strain obtained from linear analysis using a computationally optimized algorithm. The software allows for images at in vivo μMRI resolution as input with retention of grayscale information. Associations between axial stiffness estimated from linear analysis and yield as well as post-yield parameters from nonlinear analysis were investigated from in vivo μMR images of the distal tibia (N = 20; ages: 58-84) and radius (N = 20; ages: 50-75). RESULTS All simulations were completed in 1 h or less for 61 strain levels using a desktop computer (dual quad-core Xeon 3.16 GHz CPUs equipped with 40 GB of RAM). Although yield stress and ultimate stress correlated strongly (R(2) > 0.95, p < 0.001) with axial stiffness, toughness correlated moderately at the distal tibia (R(2) = 0.81, p < 0.001) and only weakly at the distal radius (R(2) = 0.34, p = 0.007). Further, toughness was found to vary by up to 16% for bone of very similar axial stiffness (<2%). CONCLUSIONS The work demonstrates the practicality of nonlinear μFE simulations at in vivo μMRI resolution, as well as its potential for providing additional information beyond that obtainable from linear analysis. The data suggest that a direct assessment of toughness may provide information not captured by stiffness.
Collapse
Affiliation(s)
- Ning Zhang
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
13
|
Zhang N, Magland JF, Rajapakse CS, Lam SB, Wehrli FW. Assessment of trabecular bone yield and post-yield behavior from high-resolution MRI-based nonlinear finite element analysis at the distal radius of premenopausal and postmenopausal women susceptible to osteoporosis. Acad Radiol 2013; 20:1584-91. [PMID: 24200486 DOI: 10.1016/j.acra.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 08/12/2013] [Accepted: 09/04/2013] [Indexed: 11/15/2022]
Abstract
RATIONALE AND OBJECTIVES To assess the performance of a nonlinear microfinite element model on predicting trabecular bone yield and post-yield behavior based on high-resolution in vivo magnetic resonance images via the serial reproducibility. MATERIALS AND METHODS The nonlinear model captures material nonlinearity by iteratively adjusting tissue-level modulus based on tissue-level effective strain. It enables simulations of trabecular bone yield and post-yield behavior from micro magnetic resonance images at in vivo resolution by solving a series of nonlinear systems via an iterative algorithm on a desktop computer. Measures of mechanical competence (yield strain/strength, ultimate strain/strength, modulus of resilience, and toughness) were estimated at the distal radius of premenopausal and postmenopausal women (N = 20, age range 50-75) in whom osteoporotic fractures typically occur. Each subject underwent three scans (20.2 ± 14.5 days). Serial reproducibility was evaluated via coefficient of variation (CV) and intraclass correlation coefficient (ICC). RESULTS Nonlinear simulations were completed in an average of 14 minutes per three-dimensional image data set involving analysis of 61 strain levels. The predicted yield strain/strength, ultimate strain/strength, modulus of resilience, and toughness had a mean value of 0.78%, 3.09 MPa, 1.35%, 3.48 MPa, 14.30 kPa, and 32.66 kPa, respectively, covering a substantial range by a factor of up to 4. Intraclass correlation coefficient ranged from 0.986 to 0.994 (average 0.991); CV ranged from 1.01% to 5.62% (average 3.6%), with yield strain and toughness having the lowest and highest CV values, respectively. CONCLUSIONS The data suggest that the yield and post-yield parameters have adequate reproducibility to evaluate treatment effects in interventional studies within short follow-up periods.
Collapse
Affiliation(s)
- Ning Zhang
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, 3400 Spruce St, Philadelphia, PA 19104
| | | | | | | | | |
Collapse
|
14
|
Zhang B, Lee JS, Khitrin A, Jerschow A. Long lived NMR signal in bone. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 231:1-4. [PMID: 23562664 PMCID: PMC3660456 DOI: 10.1016/j.jmr.2013.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 06/02/2023]
Abstract
Solids and rigid tissues, such as bone, ligaments, and tendons, typically appear dark in MRI, which is due to the extremely short-lived proton nuclear magnetic resonance signals. This short lifetime is due to strong dipolar interactions between immobilized proton spins, which render it challenging to detect these signals with sufficient resolution and sensitivity. Here we show the possibility of exciting long-lived signals in cortical bone tissue with a signature consistent with that of bound water signals. It is further shown that dipolar coupling networks are an integral requirement for the excitation of these long-lived signals. The use of these signals could enhance the ability to visualize rigid tissues and solid samples with high resolution and sensitivity via MRI.
Collapse
Affiliation(s)
- Boyang Zhang
- Chemistry Department, New York University, New York, NY 10003
| | - Jae-Seung Lee
- Chemistry Department, New York University, New York, NY 10003
- Center for Biomedical Imaging, Radiology Department, New York University, New York, NY 10003
| | - Anatoly Khitrin
- Department of Chemistry, Kent State University, Kent, OH 44242
| | - Alexej Jerschow
- Chemistry Department, New York University, New York, NY 10003
| |
Collapse
|
15
|
Gordon KE, Wald MJ, Schnitzer TJ. Effect of Parathyroid Hormone Combined With Gait Training on Bone Density and Bone Architecture in People With Chronic Spinal Cord Injury. PM R 2013; 5:663-71. [DOI: 10.1016/j.pmrj.2013.03.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 03/14/2013] [Accepted: 03/23/2013] [Indexed: 10/27/2022]
|
16
|
Kijowski R, Tuite M, Kruger D, Munoz Del Rio A, Kleerekoper M, Binkley N. Evaluation of trabecular microarchitecture in nonosteoporotic postmenopausal women with and without fracture. J Bone Miner Res 2012; 27:1494-500. [PMID: 22407970 PMCID: PMC3377771 DOI: 10.1002/jbmr.1595] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study compared microscopic magnetic resonance imaging (µMRI) parameters of trabecular microarchitecture between postmenopausal women with and without fracture who have normal or osteopenic bone mineral density (BMD) on dual-energy X-ray absorptiometry (DXA). It included 36 postmenopausal white women 50 years of age and older with normal or osteopenic BMD (T-scores better than -2.5 at the lumbar spine, proximal femur, and one-third radius on DXA). Eighteen women had a history of low-energy fracture, whereas 18 women had no history of fracture and served as an age, race, and ultradistal radius BMD-matched control group. A three-dimensional fast large-angle spin-echo (FLASE) sequence with 137 µm × 137 µm × 400 µm resolution was performed through the nondominant wrist of all 36 women using the same 1.5T scanner. The high-resolution images were used to measure trabecular bone volume fraction, trabecular thickness, surface-to-curve ratio, and erosion index. Wilcoxon signed-rank tests were used to compare differences in BMD and µMRI parameters between postmenopausal women with and without fracture. Post-menopausal women with fracture had significantly lower (p < 0.05) trabecular bone volume fraction and surface-to-curve ratio and significantly higher (p < 0.05) erosion index than postmenopausal women without fracture. There was no significant difference between postmenopausal women with and without fracture in trabecular thickness (p = 0.80) and BMD of the spine (p = 0.21), proximal femur (p = 0.19), one-third radius (p = 0.47), and ultradistal radius (p = 0.90). Postmenopausal women with normal or osteopenic BMD who had a history of low-energy fracture had significantly different (p < 0.05) µMRI parameters than an age, race, and ultradistal radius BMD-matched control group of postmenopausal women with no history of fracture. Our study suggests that µMRI can be used to identify individuals without a DXA-based diagnosis of osteoporosis who have impaired trabecular microarchitecture and thus a heretofore-unappreciated elevated fracture risk.
Collapse
Affiliation(s)
- Richard Kijowski
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792-3252, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Rajapakse CS, Leonard MB, Bhagat YA, Sun W, Magland JF, Wehrli FW. Micro-MR imaging-based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation. Radiology 2012; 262:912-20. [PMID: 22357891 DOI: 10.1148/radiol.11111044] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To examine the ability of three-dimensional micro-magnetic resonance (MR) imaging-based computational biomechanics to detect mechanical alterations in trabecular bone and cortical bone in the distal tibia of incident renal transplant recipients 6 months after renal transplantation and compare them with bone mineral density (BMD) outcomes. MATERIALS AND METHODS The study was approved by the institutional review board and complied with HIPAA guidelines. Written informed consent was obtained from all subjects. Micro-MR imaging of distal tibial metaphysis was performed within 2 weeks after renal transplantation (baseline) and 6 months later in 49 participants (24 female; median age, 44 years; range, 19-61 years) with a clinical 1.5-T whole-body imager using a modified three-dimensional fast large-angle spin-echo pulse sequence. Micro-finite-element models for cortical bone, trabecular bone, and whole-bone section were generated from each image by delineating the endosteal and periosteal boundaries. Mechanical parameters (stiffness and failure load) were estimated with simulated uniaxial compression tests on the micro-finite-element models. Structural parameters (trabecular bone volume fraction [BV/TV, bone volume to total volume ratio], trabecular thickness [TbTh], and cortical thickness [CtTh]) were computed from micro-MR images. Total hip and spine areal BMD were determined with dual-energy x-ray absorptiometry (DXA). Parameters obtained at the follow-up were compared with the baseline values by using parametric or nonparametric tests depending on the normality of data. RESULTS All mechanical parameters were significantly lower at 6 months compared with baseline. Decreases in cortical bone, trabecular bone, and whole-bone stiffness were 3.7% (P = .03), 4.9% (P = .03), and 4.3% (P = .003), respectively. Decreases in cortical bone, trabecular bone, and whole-bone failure strength were 7.6% (P = .0003), 6.0% (P = .004), and 5.6% (P = .0004), respectively. Conventional structural measures, BV/TV, TbTh, and CtTh, did not change significantly. Spine BMD decreased by 2.9% (P < .0001), while hip BMD did not change significantly at DXA. CONCLUSION MR imaging-based micro-finite-element analysis suggests that stiffness and failure strength of the distal tibia decrease over a 6-month interval after renal transplantation.
Collapse
Affiliation(s)
- Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, 1 Founders, 3400 Spruce St, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Bhagat YA, Rajapakse CS, Magland JF, Wald MJ, Song HK, Leonard MB, Wehrli FW. On the significance of motion degradation in high-resolution 3D μMRI of trabecular bone. Acad Radiol 2011; 18:1205-16. [PMID: 21816638 DOI: 10.1016/j.acra.2011.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/26/2011] [Accepted: 06/22/2011] [Indexed: 11/17/2022]
Abstract
RATIONALE AND OBJECTIVES Subtle subject movement during high-resolution three-dimensional micro-magnetic resonance imaging of trabecular bone (TB) causes blurring, thereby rendering the data unreliable for quantitative analysis. In this work, the effects of translational and rotational motion displacements were evaluated qualitatively and quantitatively. MATERIALS AND METHODS In experiment 1, motion was induced by applying various simulated and previously observed in vivo trajectories as phase shifts to k-space or rotation angles to k-space segments of a virtually motion-free data set. In experiment 2, images that were visually free of motion artifacts from two groups of 10 healthy individuals, differing in age, were selected to probe the effects of motion on TB parameters. In both experiments, images were rated for motion severity, and the scores were compared to a focus criterion, the normalized gradient squared. RESULTS Strong correlations were observed between the motion quality scores and the corresponding normalized gradient squared values (R(2) = 0.52-0.64, P < .01). The results from experiment 1 demonstrated consistently lower image quality and alterations in structural parameters of 9% to 45% with increased amplitude of displacements. In experiment 2, the significant differences in structural parameter group means of the motion-free images were lost upon motion degradation. Autofocusing, a postprocessing correction method, partially recovered the sharpness of the original motion-free images in 13 of 20 subjects. CONCLUSIONS Quantitative TB structural measures are highly sensitive to subtle motion-induced degradation, which adversely affects precision and statistical power. The results underscore the influence of subject movement in high-resolution three-dimensional micro-magnetic resonance imaging and its correction for TB structure analysis.
Collapse
Affiliation(s)
- Yusuf A Bhagat
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, 19104, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Lam SCB, Wald MJ, Rajapakse CS, Liu Y, Saha PK, Wehrli FW. Performance of the MRI-based virtual bone biopsy in the distal radius: serial reproducibility and reliability of structural and mechanical parameters in women representative of osteoporosis study populations. Bone 2011; 49:895-903. [PMID: 21784189 PMCID: PMC3167016 DOI: 10.1016/j.bone.2011.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/14/2011] [Accepted: 07/08/2011] [Indexed: 11/25/2022]
Abstract
Serial reproducibility and reliability critically determine sensitivity to detect changes in response to intervention and provide a basis for sample size estimates. Here, we evaluated the performance of the MRI-based virtual bone biopsy in terms of 26 structural and mechanical parameters in the distal radius of 20 women in the age range of 50 to 75 years (mean=62.0 years, S.D.=8.1 years), representative of typical study populations in drug intervention trials and fracture studies. Subjects were examined three times at average intervals of 20.2 days (S.D.=14.5 days) by MRI at 1.5 T field strength at a voxel size of 137×137×410 μm(3). Methods involved prospective and retrospective 3D image registration and auto-focus motion correction. Analyses were performed from a central 5×5×5 mm(3) cuboid subvolume and trabecular volume consisting of a 13 mm axial slab encompassing the entire medullary cavity. Whole-volume axial stiffness and sub-regional Young's and shear moduli were computed by finite-element analysis. Whole-volume-derived aggregate mean coefficient of variation of all structural parameters was 4.4% (range 1.8% to 7.7%) and 4.0% for axial stiffness; corresponding data in the subvolume were 6.5% (range 1.6% to 13.0%) for structural, and 5.5% (range 4.6% to 6.5%) for mechanical parameters. Aggregate ICC was 0.976 (range 0.947 to 0.986) and 0.992 for whole-volume-derived structural parameters and axial stiffness, and 0.946 (range 0.752 to 0.991) and 0.974 (range 0.965 to 0.978) for subvolume-derived structural and mechanical parameters, respectively. The strongest predictors of whole-volume axial stiffness were BV/TV, junction density, skeleton density and Tb.N (R(2) 0.79-0.87). The same parameters were also highly predictive of sub-regional axial modulus (R(2) 0.88-0.91). The data suggest that the method is suited for longitudinal assessment of the response to therapy. The underlying technology is portable and should be compatible with all general-purpose MRI scanners, which is appealing considering the very large installed base of this modality.
Collapse
Affiliation(s)
- Shing Chun Benny Lam
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Bhagat YA, Rajapakse CS, Magland JF, Love JH, Wright AC, Wald MJ, Song HK, Wehrli FW. Performance of μMRI-Based virtual bone biopsy for structural and mechanical analysis at the distal tibia at 7T field strength. J Magn Reson Imaging 2011; 33:372-81. [PMID: 21274979 DOI: 10.1002/jmri.22439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To assess the performance of a 3D fast spin echo (FSE) pulse sequence utilizing out-of-slab cancellation through phase alternation and micro-magnetic resonance imaging (μMRI)-based virtual bone biopsy processing methods to probe the serial reproducibility and sensitivity of structural and mechanical parameters of the distal tibia at 7.0T. MATERIALS AND METHODS The distal tibia of five healthy subjects was imaged at three timepoints with a 3D FSE sequence at 137 × 137 × 410 μm(3) voxel size. Follow-up images were retrospectively 3D registered to baseline images. Coefficients of variation (CV) and intraclass correlation coefficients (ICCs) for measures of scale and topology of the whole tibial trabecular bone (TB) cross-section as well as finite-element-derived Young's and shear moduli of central cuboidal TB subvolumes (8 × 8 × 5 mm(3) ) were evaluated as measures of reproducibility and reliability. Four additional cubic TB subregions (anterior, medial, lateral, and posterior) of similar dimensions were extracted and analyzed to determine associations between whole cross-section and subregional structural parameters. RESULTS The mean signal-to-noise ratio (SNR) over the 15 image acquisitions was 27.5 ± 2.1. Retrospective registration yielded an average common analysis volume of 67% across the three exams per subject. Reproducibility (mean CV = 3.6%; range, 1.5%-5%) and reliability (ICCs, 0.95-0.99) of all parameters permitted parameter-based discrimination of the five subjects in spite of the narrow age range (26-36 years) covered. Parameters characterizing topology were better able to distinguish two individuals who demonstrated similar values for scalar measurements (≈ 34% difference, P < 0.001). Whole-section axial stiffness encompassing the cortex was superior at distinguishing two individuals relative to its central subregional TB counterpart (≈ 8% difference; P < 0.05). Interregion comparisons showed that although all parameters were correlated (mean R(2) = 0.78; range 0.57-0.99), the strongest associations observed were those for the erosion index (mean R(2) = 0.95, P ≤ 0.01). CONCLUSION The reproducibility and structural and mechanical parameter-based discriminative ability achieved in five healthy subjects suggests that 7T-derived μMRI of TB can be applied towards serial patient studies of osteoporosis and may enable earlier detection of disease or treatment-based effects.
Collapse
Affiliation(s)
- Yusuf A Bhagat
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, MRI Education Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wright AC, Lemdiasov R, Connick TJ, Bhagat YA, Magland JF, Song HK, Toddes SP, Ludwig R, Wehrli FW. Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 210:113-22. [PMID: 21402488 PMCID: PMC3085966 DOI: 10.1016/j.jmr.2011.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/31/2010] [Accepted: 02/18/2011] [Indexed: 05/17/2023]
Abstract
A Helmholtz-pair local transmit RF coil with an integrated four-element receive array RF coil and foot immobilization platform was designed and constructed for imaging the distal tibia in a whole-body 7T MRI scanner. Simulations and measurements of the B(1) field distribution of the transmit coil are described, along with SAR considerations for operation at 7T. Results of imaging the trabecular bone of three volunteers at 1.5T, 3T and 7T are presented, using identical 1.5T and 3T versions of the 7T four-element receive array. The spatially registered images reveal improved visibility for individual trabeculae and show average gains in SNR of 2.8× and 4.9× for imaging at 7T compared to 3T and 1.5T, respectively. The results thus display an approximately linear dependence of SNR with field strength and enable the practical utility of 7T scanners for micro-MRI of trabecular bone.
Collapse
Affiliation(s)
- Alexander C Wright
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Barral JK, Santos JM, Damrose EJ, Fischbein NJ, Nishimura DG. Real-time motion correction for high-resolution larynx imaging. Magn Reson Med 2011; 66:174-9. [PMID: 21695722 DOI: 10.1002/mrm.22773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/16/2010] [Accepted: 11/24/2010] [Indexed: 11/11/2022]
Abstract
Motion--both rigid-body and nonrigid--is the main limitation to in vivo, high-resolution larynx imaging. In this work, a new real-time motion compensation algorithm is introduced. Navigator data are processed in real time to compute the displacement information, and projections are corrected using phase modulation in k-space. Upon automatic feedback, the system immediately reacquires the data most heavily corrupted by nonrigid motion, i.e., the data whose corresponding projections could not be properly corrected. This algorithm overcomes the shortcomings of the so-called diminishing variance algorithm by combining it with navigator-based rigid-body motion correction. Because rigid-body motion correction is performed first, continual bulk motion no longer impedes nor prevents the convergence of the algorithm. Phantom experiments show that the algorithm properly corrects for translations and reacquires data corrupted by nonrigid motion. Larynx imaging was performed on healthy volunteers, and substantial reduction of motion artifacts caused by bulk shift, swallowing, and coughing was achieved.
Collapse
Affiliation(s)
- Joëlle K Barral
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA.
| | | | | | | | | |
Collapse
|
23
|
Nicolella DP, Ni Q, Chan KS. Non-destructive characterization of microdamage in cortical bone using low field pulsed NMR. J Mech Behav Biomed Mater 2010; 4:383-91. [PMID: 21316626 DOI: 10.1016/j.jmbbm.2010.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 11/04/2010] [Accepted: 11/13/2010] [Indexed: 11/19/2022]
Abstract
The microcracking and damage accumulation process in human cortical bone was characterized by performing cyclic loading under four-point bending at ambient temperature. A non-destructive nuclear magnetic resonance (NMR) spin-spin (T(2)) relaxation technique was applied to quantify the apparent changes in bone porosity as a function of cyclic loading and prior damage accumulation, first to unloaded cortical bone to quantify the initial porosity and then to fatigued cortical bone that was subjected to cyclic loading to various levels of modulus degradation and microdamage in the form of microcracks. The NMR T(2) relaxation time and amplitude data of the fatigued bone were compared against the undamaged state. The difference in the T(2) relaxation time data was taken as a measure of the increase in pore size, bone porosity or microcrack density due to microdamage induced by cyclic loading. A procedure was developed to deduce the number and size distributions of microcracks formed in cortical bone. Serial sectioning of the fatigued bone showed the formation of microcracks along the cement lines or within the interstitial tissue. The results on the evolution of microdamage derived from NMR measurements were verified by independent experimental measurements of microcrack density using histological characterization techniques. The size distribution and population of the microcracks were then utilized in conjunction with an analytical model to predict the degradation of the elastic modulus of cortical bone as a function of damage accumulation.
Collapse
Affiliation(s)
- Daniel P Nicolella
- Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78230, USA
| | | | | |
Collapse
|
24
|
Liu XS, Zhang XH, Rajapakse CS, Wald MJ, Magland J, Sekhon KK, Adam MF, Sajda P, Wehrli FW, Guo XE. Accuracy of high-resolution in vivo micro magnetic resonance imaging for measurements of microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res 2010; 25:2039-50. [PMID: 20499379 PMCID: PMC3118020 DOI: 10.1002/jbmr.92] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Micro magnetic resonance imaging (µMRI) is an in vivo imaging method that permits 3D quantification of cortical and trabecular bone microstructure. µMR images can also be used for building microstructural finite element (µFE) models to assess bone stiffness, which highly correlates with bone's resistance to fractures. In order for µMRI-based microstructural and µFE analyses to become standard clinical tools for assessing bone quality, validation with a current gold standard, namely, high-resolution micro computed tomography (µCT), is required. Microstructural measurements of 25 human cadaveric distal tibias were performed for the registered µMR and µCT images, respectively. Next, whole bone stiffness, trabecular bone stiffness, and elastic moduli of cubic subvolumes of trabecular bone in both µMR and µCT images were determined by voxel-based µFE analysis. The bone volume fraction (BV/TV), trabecular number (Tb.N*), trabecular spacing (Tb.Sp*), cortical thickness (Ct.Th), and structure model index (SMI) based on µMRI showed strong correlations with µCT measurements (r(2) = 0.67 to 0.97), and bone surface-to-volume ratio (BS/BV), connectivity density (Conn.D), and degree of anisotropy (DA) had significant but moderate correlations (r(2) = 0.33 to 0.51). Each of these measurements also contributed to one or many of the µFE-predicted mechanical properties. However, model-independent trabecular thickness (Tb.Th*) based on µMRI had no correlation with the µCT measurement and did not contribute to any mechanical measurement. Furthermore, the whole bone and trabecular bone stiffness based on µMRI were highly correlated with those of µCT images (r(2) = 0.86 and 0.96), suggesting that µMRI-based µFE analyses can directly and accurately quantify whole bone mechanical competence. In contrast, the elastic moduli of the µMRI trabecular bone subvolume had significant but only moderate correlations with their gold standards (r(2) = 0.40 to 0.58). We conclude that most microstructural and mechanical properties of the distal tibia can be derived efficiently from µMR images and can provide additional information regarding bone quality.
Collapse
Affiliation(s)
- X Sherry Liu
- Division of Endocrinology, Department of Medicine, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rajapakse CS, Magland JF, Wald MJ, Liu XS, Zhang XH, Guo XE, Wehrli FW. Computational biomechanics of the distal tibia from high-resolution MR and micro-CT images. Bone 2010; 47:556-63. [PMID: 20685323 PMCID: PMC2926228 DOI: 10.1016/j.bone.2010.05.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 04/03/2010] [Accepted: 05/26/2010] [Indexed: 11/18/2022]
Abstract
The mechanical properties of bone estimated by micro-finite element (microFE) analysis on the basis of in vivo micro-MR images (microMRIs) of the distal extremities provide a new tool for direct assessment of the mechanical consequences of intervention. However, the accuracy of the method has not previously been investigated. Here, we compared microFE-derived mechanical parameters obtained from microMRIs at 160 microm isotropic voxel size now achievable in vivo with those derived from 25 microm isotropic (reference) microCT images of 30 cadaveric tibiae from 15 donors (4 females and 11 males, aged 55-84 years). Elastic and shear moduli estimated from 5mm(3) subvolumes of trabecular bone (TB) derived from microMRIs were significantly correlated with those derived from volume-matched reference microCT images (R(2)=0.60-0.67). Axial stiffness of whole-bone sections (including both cortical and trabecular compartments) derived from microMR-based models were highly correlated (R(2)=0.85) with those from high-resolution reference images. Further, microFE models generated from microCT images after downsampling to lower resolutions relevant to in vivo microMRI (100-160 microm) showed mechanical parameters to be strongly correlated (R(2)>0.93) with those derived at reference resolution (25 microm). Incorporation of grayscale image information into the microMR-based microFE model yielded slopes closer to unity than binarized models (1.07+/-0.15 vs. 0.71+/-0.11) when correlated with reference subregional elastic and shear moduli. This work suggests that elastic properties of distal tibia can be reliably estimated by microFE analysis from microMRIs obtainable at in vivo resolution.
Collapse
Affiliation(s)
- Chamith S. Rajapakse
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy F. Magland
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J. Wald
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - X. Sherry Liu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - X. Henry Zhang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - X. Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Felix W. Wehrli
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Wald MJ, Magland JF, Rajapakse CS, Wehrli FW. Structural and mechanical parameters of trabecular bone estimated from in vivo high-resolution magnetic resonance images at 3 tesla field strength. J Magn Reson Imaging 2010; 31:1157-68. [PMID: 20432352 DOI: 10.1002/jmri.22158] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the performance of a new 3 Tesla (T) high-resolution trabecular bone (TB) imaging technique at two resolution regimens in terms of serial reproducibility and sensitivity. MATERIALS AND METHODS The left distal tibial metaphysis of seven healthy volunteers was imaged at three time-points using a FLASE (fast large-angle spin-echo) pulse sequence at 137 x 137 x 410 mum(3) and (160 mum)(3) voxel sizes. Image artifacts, motion degradation, and serial image volume misalignments were controlled to maximize reproducibility of image-derived measures of scale, topology, orientation in terms of structural anisotropy, and finite-element derived Young's and shear moduli. Coefficients of variation (CV) and intraclass correlation coefficients (ICC) for structural and mechanical parameters were evaluated as measures of reproducibility and reliability. The ability of structural and mechanical parameters to distinguish between subjects was tested by analysis of variance. RESULTS Reproducibility was generally higher in the anisotropic data (CVs 1-5% versus 1-9% for isotropic images). Anisotropic voxel size yielded greater measurement reliability (ICCs 0.75-0.99, mean = 0.92 versus 0.62-0.99, mean = 0.86) and better discrimination of the seven subjects (75% versus 50% of the possible comparisons were significantly different [P < 0.05]) except for measures of structural anisotropy and topology. Isotropic resolution improved detection of structural orientation and permitted visualization of small perforations in longitudinal trabecular plates not detected at anisotropic resolution. CONCLUSION Improved image acquisition and processing techniques enhance reproducibility of structural and mechanical parameters derived from high-resolution MRI of metaphyseal bone in the distal tibia.
Collapse
Affiliation(s)
- Michael Jeffrey Wald
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
27
|
Magland JF, Rajapakse CS, Wright AC, Acciavatti R, Wehrli FW. 3D fast spin echo with out-of-slab cancellation: a technique for high-resolution structural imaging of trabecular bone at 7 Tesla. Magn Reson Med 2010; 63:719-27. [PMID: 20187181 DOI: 10.1002/mrm.22213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spin-echo-based pulse sequences are desirable for the application of high-resolution imaging of trabecular bone but tend to involve high-power deposition. Increased availability of ultrahigh field scanners has opened new possibilities for imaging with increased signal-to-noise ratio (SNR) efficiency, but many pulse sequences that are standard at 1.5 and 3 T exceed specific absorption rate limits at 7 T. A modified, reduced specific absorption rate, three-dimensional, fast spin-echo pulse sequence optimized specifically for in vivo trabecular bone imaging at 7 T is introduced. The sequence involves a slab-selective excitation pulse, low-power nonselective refocusing pulses, and phase cycling to cancel undesired out-of-slab signal. In vivo images of the distal tibia were acquired using the technique at 1.5, 3, and 7 T field strengths, and SNR was found to increase at least linearly using receive coils of identical geometry. Signal dependence on the choice of refocusing flip angles in the echo train was analyzed experimentally and theoretically by combining the signal from hundreds of coherence pathways, and it is shown that a significant specific absorption rate reduction can be achieved with negligible SNR loss.
Collapse
Affiliation(s)
- Jeremy F Magland
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
28
|
Barral JK, Bangerter NK, Hu BS, Nishimura DG. In vivo high-resolution magnetic resonance skin imaging at 1.5 T and 3 T. Magn Reson Med 2010; 63:790-6. [PMID: 20146351 DOI: 10.1002/mrm.22271] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As a noninvasive modality, MR is attractive for in vivo skin imaging. Its unique soft tissue contrast makes it an ideal imaging modality to study the skin water content and to resolve the different skin layers. In this work, the challenges of in vivo high-resolution skin imaging are addressed. Three 3D Cartesian sequences are customized to achieve high-resolution imaging and their respective performance is evaluated. The balanced steady-state free precession (bSSFP) and gradient echo (GRE) sequences are fast but can be sensitive to off-resonance artifacts. The fast large-angle spin echo (FLASE) sequence provides a sharp depiction of the hypodermis structures but results in more specific absorption rate (SAR). The effect of increasing the field strength is assessed. As compared to 1.5 T, signal-to-noise ratio at 3 T slightly increases in the hypodermis and almost doubles in the dermis. The need for fat/water separation is acknowledged and a solution using an interleaved three-point Dixon method and an iterative reconstruction is shown to be effective. The effects of motion are analyzed and two techniques to prevent motion and correct for it are evaluated. Images with 117 x 117 x 500 microm(3) resolution are obtained in imaging times under 6 min.
Collapse
Affiliation(s)
- Joëlle K Barral
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.
| | | | | | | |
Collapse
|
29
|
Friedrich KM, Reiter G, Kaiser B, Mayerhöfer M, Deimling M, Jellus V, Horger W, Trattnig S, Schweitzer M, Salomonowitz E. High-resolution cartilage imaging of the knee at 3T: basic evaluation of modern isotropic 3D MR-sequences. Eur J Radiol 2010; 78:398-405. [PMID: 20138723 DOI: 10.1016/j.ejrad.2010.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/11/2010] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate qualitative and quantitative image quality parameters of isotropic three-dimensional (3D) cartilage-imaging magnetic resonance (MR)-sequences at 3T. MATERIALS AND METHODS The knees of 10 healthy volunteers (mean age, 24.4±5.6 years) were scanned at a 3T MR scanner with water-excited 3D Fast-Low Angle Shot (FLASH), True Fast Imaging with Steady-state Precession (TrueFISP), Sampling Perfection with Application-optimized Contrast using different flip-angle Evolutions (SPACE) as well as conventional and two individually weighted Double-Echo Steady-State (DESS) sequences. The MR images were evaluated qualitatively and quantitatively (signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), SNR efficiency, CNR efficiency). Quantitative parameters were compared by means of a Tukey-test and sequences were ranked according to SNR/CNR, SNR/CNR efficiency and qualitative image grading. RESULTS The highest SNR was measured for SPACE (34.0±5.6), the highest CNR/CNR efficiency (cartilage/fluid) for the individually weighted DESS (46.9±18.0/2.18±0.84). SPACE, individually weighted and conventional DESS were ranked best with respect to SNR/CNR and SNR/CNR efficiency. The DESS sequences also performed best in the qualitative evaluation. TrueFISP performed worse, FLASH worst. The individually weighted DESS sequences were generally better than the conventional DESS with the significant increase of cartilage-fluid contrast (46.9±18.0/31.9±11.4 versus 22.0±7.3) as main advantage. CONCLUSION Individually weighted DESS is the most promising candidate; all tested sequences performed better than FLASH.
Collapse
Affiliation(s)
- Klaus M Friedrich
- MR Centre of Excellence, Division of Neuroradiology and Musculoskeletal Radiology, Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|