1
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Wong A, Lucas-Torres C. High-resolution Magic-angle Spinning (HR-MAS) NMR Spectroscopy. NMR-BASED METABOLOMICS 2018. [DOI: 10.1039/9781782627937-00133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Since the beginning of high-resolution magic-angle spinning (HR-MAS) NMR spectroscopy in 1990s, we have witnessed tremendous instrumentation and methodological advancements in the HR-MAS NMR technique for semisolids. With HR-MAS, it is now possible to acquire reliable high-quality spectra in a routine and high-throughput fashion, and it has become a well-integrated metabolic screening tool for ex vivo biospecimens such as tissue biopsies, cells and organisms for NMR-based metabolomics research. This chapter provides the basic principles of HR-MAS and describes a few recent noteworthy developments that could strengthen the role of HR-MAS as a frontline NMR technique for metabolomics.
Collapse
Affiliation(s)
- Alan Wong
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette France
| | | |
Collapse
|
3
|
Duong NT, Yamato M, Nakano M, Kume S, Tamura Y, Kataoka Y, Wong A, Nishiyama Y. Capillary-Inserted Rotor Design for HRµMASNMR-Based Metabolomics on Mass-Limited Neurospheres. Molecules 2017; 22:E1289. [PMID: 28771206 PMCID: PMC6152061 DOI: 10.3390/molecules22081289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 07/30/2017] [Indexed: 11/17/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique and has been widely used in metabolomics. However, the intrinsic low sensitivity of NMR prevents its applications to systems with limited sample availabilities. In this study, a new experimental approach is presented to analyze mass-scarce samples in limited volumes of less than 300 nL with simple handling. The sample is loaded into the glass capillary, and this capillary is then inserted into a Kel-F rotor. The experimental performance of the capillary-inserted rotor (capillary-insert) is investigated on an isotropic solution of sucrose by the use of a high-resolution micro-sized magic angle spinning (HRµMAS) probe. The acquired NMR signal's sensitivity to a given sample amount is comparable or even higher in comparison to that recorded by the standard solution NMR probe. More importantly, this capillary-insert coupled with the HRµMAS probe allows in-depth studies of heterogeneous samples as the MAS removes the line broadening caused by the heterogeneity. The NMR analyses of mass-limited cultured neurospheres have been demonstrated, resulting in high quality spectra where numerous metabolites are unambiguously identified.
Collapse
Affiliation(s)
- Nghia Tuan Duong
- Advanced Solid-State NMR Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan.
| | - Masanori Yamato
- Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, Kobe, Hyogo 650-0047, Japan.
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan.
| | - Masayuki Nakano
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan.
- Department of Physiology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan.
| | - Satoshi Kume
- Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, Kobe, Hyogo 650-0047, Japan.
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan.
| | - Yasuhisa Tamura
- Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, Kobe, Hyogo 650-0047, Japan.
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan.
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, Kobe, Hyogo 650-0047, Japan.
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan.
- Department of Physiology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan.
| | - Alan Wong
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Yusuke Nishiyama
- Advanced Solid-State NMR Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan.
- Engineering Division, JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
4
|
Kruk J, Doskocz M, Jodłowska E, Zacharzewska A, Łakomiec J, Czaja K, Kujawski J. NMR Techniques in Metabolomic Studies: A Quick Overview on Examples of Utilization. APPLIED MAGNETIC RESONANCE 2017; 48:1-21. [PMID: 28111499 PMCID: PMC5222922 DOI: 10.1007/s00723-016-0846-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/10/2016] [Indexed: 05/08/2023]
Abstract
Metabolomics is a rapidly developing branch of science that concentrates on identifying biologically active molecules with potential biomarker properties. To define the best biomarkers for diseases, metabolomics uses both models (in vitro, animals) and human, as well as, various techniques such as mass spectroscopy, gas chromatography, liquid chromatography, infrared and UV-VIS spectroscopy and nuclear magnetic resonance. The last one takes advantage of the magnetic properties of certain nuclei, such as 1H, 13C, 31P, 19F, especially their ability to absorb and emit energy, what is crucial for analyzing samples. Among many spectroscopic NMR techniques not only one-dimensional (1D) techniques are known, but for many years two-dimensional (2D, for example, COSY, DOSY, JRES, HETCORE, HMQS), three-dimensional (3D, DART-MS, HRMAS, HSQC, HMBC) and solid-state NMR have been used. In this paper, authors taking apart fundamental division of nuclear magnetic resonance techniques intend to shown their wide application in metabolomic studies, especially in identifying biomarkers.
Collapse
Affiliation(s)
- Joanna Kruk
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznan, Poland
| | - Marek Doskocz
- RootInnovation Sp. z o.o., Jana Matejki 11 Str., 50-333 Wrocław, Poland
| | - Elżbieta Jodłowska
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznan, Poland
| | - Anna Zacharzewska
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznan, Poland
| | - Joanna Łakomiec
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznan, Poland
| | - Kornelia Czaja
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznan, Poland
| | - Jacek Kujawski
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznan, Poland
- Foundation for Development of Science and Business on Medical and Exact Sciences Area, Legnicka 65 Str., 54-206 Wrocław, Poland
| |
Collapse
|
5
|
Nishiyama Y, Endo Y, Nemoto T, Bouzier-Sore AK, Wong A. High-resolution NMR-based metabolic detection of microgram biopsies using a 1 mm HRμMAS probe. Analyst 2016; 140:8097-100. [PMID: 26563772 DOI: 10.1039/c5an01810b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A prototype 1 mm High-Resolution micro-Magic Angle Spinning (HRμMAS) probe is described. High quality (1)H NMR spectra were obtained from 490 μg of heterogeneous biospecimens, offering a rich-metabolite profiling. The results demonstrate the potential of HRμMAS as a new NMR analytical tool in metabolomics.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan and RIKEN CLST-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yuki Endo
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Takahiro Nemoto
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-Université de Bordeaux, UMR5536, Bordeaux, France
| | - Alan Wong
- CEA Saclay, DSM, IRAMIS, CEA/CNRS UMR3685-NIMBE, Laboratoire Structure et Dynamiquepar Reśonance Magnetique, F-91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
6
|
Perras FA, Kobayashi T, Pruski M. Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:125-130. [PMID: 26920838 DOI: 10.1016/j.jmr.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 05/13/2023]
Abstract
Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI-MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP-MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that the largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. The STRAFI-MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP-MAS NMR.
Collapse
Affiliation(s)
| | | | - Marek Pruski
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA.
| |
Collapse
|
7
|
André M, Dumez JN, Rezig L, Shintu L, Piotto M, Caldarelli S. Complete protocol for slow-spinning high-resolution magic-angle spinning NMR analysis of fragile tissues. Anal Chem 2014; 86:10749-54. [PMID: 25286333 DOI: 10.1021/ac502792u] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
High-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) is an essential tool to characterize a variety of semisolid systems, including biological tissues, with virtually no sample preparation. The "non-destructive" nature of NMR is typically compromised, however, by the extreme centrifugal forces experienced under conventional HR-MAS frequencies of several kilohertz. These features limit the usefulness of current HR-MAS approaches for fragile samples. Here, we introduce a full protocol for acquiring high-quality HR-MAS NMR spectra of biological tissues at low spinning rates (down to a few hundred hertz). The protocol first consists of a carefully designed sample preparation, which yields spectra without significant spinning sidebands at low spinning frequency for several types of sample holders, including the standard disposable inserts classically used in HR-MAS NMR-based metabolomics. Suppression of broad spectral features is then achieved using a modified version of the recently introduced PROJECT experiment with added water suppression and rotor synchronization, which deposits limited power in the sample and which can be suitably rotor-synchronized at low spinning rates. The performance of the slow HR-MAS NMR procedure is demonstrated on conventional (liver tissue) and very delicate (fish eggs) samples, for which the slow-spinning conditions are shown to preserve the structural integrity and to minimize intercompartmental leaks of metabolites. Taken together, these results expand the applicability and reliability of HR-MAS NMR spectroscopy. These results have been obtained at 400 and 600 MHz and suggest that high-quality slow HR-MAS spectra can be expected at higher magnetic fields using the described protocol.
Collapse
Affiliation(s)
- Marion André
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 , Avenue de la Terrasse, 91190 Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
8
|
Wong A, Boutin C, Aguiar PM. (1)H high resolution magic-angle coil spinning (HR-MACS) μNMR metabolic profiling of whole Saccharomyces cervisiae cells: a demonstrative study. Front Chem 2014; 2:38. [PMID: 24971307 PMCID: PMC4053607 DOI: 10.3389/fchem.2014.00038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/28/2014] [Indexed: 11/17/2022] Open
Abstract
The low sensitivity and thus need for large sample volume is one of the major drawbacks of Nuclear Magnetic Resonance (NMR) spectroscopy. This is especially problematic for performing rich metabolic profiling of scarce samples such as whole cells or living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volumes (250 nl) of whole cells. We have applied an emerging micro-NMR technology, high-resolution magic-angle coil spinning (HR-MACS), to study whole Saccharomyces cervisiae cells. We find that high-resolution high-sensitivity spectra can be obtained with only 19 million cells and, as a demonstration of the metabolic profiling potential, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.
Collapse
Affiliation(s)
- Alan Wong
- CEA Saclay, DSM, IRAMIS, UMR CEA/CNRS 3299 - NIMBE, Laboratoire Structure et Dynamique par Résonance Magnétique Gif-sur-Yvette, France
| | - Céline Boutin
- CEA Saclay, DSM, IRAMIS, UMR CEA/CNRS 3299 - NIMBE, Laboratoire Structure et Dynamique par Résonance Magnétique Gif-sur-Yvette, France
| | - Pedro M Aguiar
- Department of Chemistry, University of York Heslington, York, UK
| |
Collapse
|
9
|
Bonhomme C, Gervais C, Laurencin D. Recent NMR developments applied to organic-inorganic materials. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 77:1-48. [PMID: 24411829 DOI: 10.1016/j.pnmrs.2013.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/17/2013] [Indexed: 06/03/2023]
Abstract
In this contribution, the latest developments in solid state NMR are presented in the field of organic-inorganic (O/I) materials (or hybrid materials). Such materials involve mineral and organic (including polymeric and biological) components, and can exhibit complex O/I interfaces. Hybrids are currently a major topic of research in nanoscience, and solid state NMR is obviously a pertinent spectroscopic tool of investigation. Its versatility allows the detailed description of the structure and texture of such complex materials. The article is divided in two main parts: in the first one, recent NMR methodological/instrumental developments are presented in connection with hybrid materials. In the second part, an exhaustive overview of the major classes of O/I materials and their NMR characterization is presented.
Collapse
Affiliation(s)
- Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Christel Gervais
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR5253, CNRS UM2 UM1 ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
10
|
Renault M, Shintu L, Piotto M, Caldarelli S. Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples. Sci Rep 2013; 3:3349. [PMID: 24284435 PMCID: PMC3842542 DOI: 10.1038/srep03349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
High-Resolution Magic-Angle Spinning (HR-MAS) NMR spectroscopy has become an extremely versatile analytical tool to study heterogeneous systems endowed with liquid-like dynamics. Spinning frequencies of several kHz are however required to obtain NMR spectra, devoid of spinning sidebands, with a resolution approaching that of purely isotropic liquid samples. An important limitation of the method is the large centrifugal forces that can damage the structure of the sample. In this communication, we show that optimizing the sample preparation, particularly avoiding air bubbles, and the geometry of the sample chamber of the HR-MAS rotor leads to high-quality low-sideband NMR spectra even at very moderate spinning frequencies, thus allowing the use of well-established solution-state NMR procedures for the characterization of small and highly dynamic molecules in the most fragile samples, such as live cells and intact tissues.
Collapse
Affiliation(s)
- Marie Renault
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | | | | | | |
Collapse
|
11
|
Wong A, Li X, Sakellariou D. Refined Magic-Angle Coil Spinning Resonator for Nanoliter NMR Spectroscopy: Enhanced Spectral Resolution. Anal Chem 2013; 85:2021-6. [DOI: 10.1021/ac400188b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Alan Wong
- CEA Saclay, DSM, IRAMIS, UMR
CEA/CNRS 3299 − SIS2M, Laboratoire Structure et Dynamique par
Résonance Magnétique, F-91191, Gif-sur-Yvette Cedex,
France
| | - Xiaonan Li
- CEA Saclay, DSM, IRAMIS, UMR
CEA/CNRS 3299 − SIS2M, Laboratoire Structure et Dynamique par
Résonance Magnétique, F-91191, Gif-sur-Yvette Cedex,
France
| | - Dimitris Sakellariou
- CEA Saclay, DSM, IRAMIS, UMR
CEA/CNRS 3299 − SIS2M, Laboratoire Structure et Dynamique par
Résonance Magnétique, F-91191, Gif-sur-Yvette Cedex,
France
- Ecole Normale Supérieure, 24 rue Lhomond, F-75005 Paris,
France
| |
Collapse
|
12
|
Aubert G, Jacquinot JF, Sakellariou D. Eddy current effects in plain and hollow cylinders spinning inside homogeneous magnetic fields: Application to magnetic resonance. J Chem Phys 2012; 137:154201. [DOI: 10.1063/1.4756948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Takeda K. Microcoils and microsamples in solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2012; 47-48:1-9. [PMID: 23083521 DOI: 10.1016/j.ssnmr.2012.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 06/01/2023]
Abstract
Recent reports on microcoils are reviewed. The first part of the review includes a discussion of how the geometries of the sample and coil affect the NMR signal intensity. In addition to derivation of the well-known result that the signal intensity increases as the coil size decreases, the prediction that dilution of a small sample with magnetically inert matter leads to better sensitivity if a tiny coil is not available is given. The second part of the review focuses on the issues specific to solid-state NMR. They include realization of magic-angle spinning (MAS) using a microcoil and harnessing of such strong pulses that are feasible only with a microcoil. Two strategies for microcoil MAS, the piggyback method and magic-angle coil spinning (MACS), are reviewed. In addition, MAS of flat, disk-shaped samples is discussed in the context of solid-state NMR of small-volume samples. Strong RF irradiation, which has been exploited in wide-line spectral excitation, multiple-quantum MAS (MQMAS), and dipolar decoupling experiments, has been accompanied by new challenges regarding the Bloch-Siegert effect, the minimum time resolution of the spectrometer, and the time scale of pulse transient effects. For a possible solution to the latter problem, recent reports on active compensation of pulse transients are described.
Collapse
Affiliation(s)
- Kazuyuki Takeda
- Division of Chemistry, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan.
| |
Collapse
|
14
|
Microfabricated inserts for magic angle coil spinning (MACS) wireless NMR spectroscopy. PLoS One 2012; 7:e42848. [PMID: 22936994 PMCID: PMC3423418 DOI: 10.1371/journal.pone.0042848] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/12/2012] [Indexed: 11/19/2022] Open
Abstract
This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS) NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i) reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii) improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the “magic angle” of 54.74° with respect to the direction of the magnetic field (magic angle spinning – MAS), accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii) given the high spinning rates (tens of kHz) involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz) testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds.
Collapse
|
15
|
Wong A, Jiménez B, Li X, Holmes E, Nicholson JK, Lindon JC, Sakellariou D. Evaluation of high resolution magic-angle coil spinning NMR spectroscopy for metabolic profiling of nanoliter tissue biopsies. Anal Chem 2012; 84:3843-8. [PMID: 22449140 DOI: 10.1021/ac300153k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High-resolution magic-angle sample spinning (HR-MAS) (1)H NMR spectroscopy of tissue biopsies combined with chemometric techniques has emerged as a valuable methodology for disease diagnosis and environmental assessments. However, the tissue mass required for such experiments is of the order of 10 mg, and this can compromise the metabolic evaluation because of tissue heterogeneity. Tissue availability is often a limitation for clinical studies due to histopathological requirements, which are currently the gold standard for diagnosis, for example, in the case of tumors. Here, we introduce the use of a rotating micro-NMR detector that optimizes the coil filling factor such that mass-limited samples can be measured. We show the results for measuring nanoliter volume tissue biopsies using a commercial HR-MAS probe for the first time. The method has been tested with bovine muscle and human gastric mucosal tumor tissue samples. The gain in mass sensitivity is approximate up to 17-fold, and the adequate spectral resolution (3 Hz) allows the measurement of the metabolite profiles in nanoliter volume samples, thereby limiting the ambiguity resulting from heterogeneous tissues; thus, the approach presents diagnostic potential for studies by metabonomics of mass-limited biopsies.
Collapse
Affiliation(s)
- Alan Wong
- CEA Saclay, DSM, IRAMIS, UMR CEA/CNRS no 3299-SIS2M, Laboratoire Structure et Dynamique par Résonance Magnétique, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Nikel O, Laurencin D, Bonhomme C, Sroga GE, Besdo S, Lorenz A, Vashishth D. Solid state NMR investigation of intact human bone quality: balancing issues and insight into the structure at the organic-mineral interface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2012; 116:6320-6331. [PMID: 22822414 PMCID: PMC3399594 DOI: 10.1021/jp2125312] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Age-related bone fragility fractures present a significant problem for public health. Measures of bone quality are increasingly recognized to complement the conventional bone mineral density (BMD) based assessment of fracture risk. The ability to probe and understand bone quality at the molecular level is desirable in order to unravel how the structure of organic matrix and its association with mineral contribute to the overall mechanical properties. The (13)C{(31)P} REDOR MAS NMR (Rotational Echo Double Resonance Magic Angle Spinning Nuclear Magnetic Resonance) technique is uniquely suited for the study of the structure of the organic-mineral interface in bone. For the first time, we have applied it successfully to analyze the structure of intact (non-powdered) human cortical bone samples, from young healthy and old osteoporotic donors. Loading problems associated with the rapid rotation of intact bone were solved using a Finite Element Analysis (FEA) approach, and a method allowing osteoporotic samples to be balanced and spun reproducibly is described. REDOR NMR parameters were set to allow insight into the arrangement of the amino acids at the mineral interface to be accessed, and SVD (Singular Value Decomposition) was applied to enhance the signal to noise ratio and enable a better analysis of the data. From the REDOR data, it was found that carbon atoms belonging to citrate/glucosaminoglycans (GAGs) are closest to the mineral surface regardless of age or site. In contrast, the arrangement of the collagen backbone at the interface varied with site and age. The relative proximity of two of the main amino acids in bone matrix proteins, hydroxyproline and alanine, with respect to the mineral phase was analyzed in more detail, and discussed in view of glycation measurements which were carried out on the tissues. Overall, this work shows that the (13)C{(31)P} REDOR NMR approach could be used as a complementary technique to assess a novel aspect of bone quality, the organic-mineral interface structure.
Collapse
Affiliation(s)
- Ondrej Nikel
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM2-ENSCM-UM1, Université Montpellier 2, Montpellier, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM2-ENSCM-UM1, Université Montpellier 2, Montpellier, France
| | - Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, UPMC Univ. Paris 06, Paris, France
| | - Grażyna E. Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Silke Besdo
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, UPMC Univ. Paris 06, Paris, France
| | - Anna Lorenz
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
17
|
Wong A, Sakellariou D. Sensitivity-Enhanced Natural-Abundance Silicon-29 Magnetic Resonance Imaging. Chemphyschem 2011; 12:3529-32. [DOI: 10.1002/cphc.201100432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/16/2011] [Indexed: 12/15/2022]
|
18
|
Aguiar PM, Jacquinot JF, Sakellariou D. A convenient, high-sensitivity approach to multiple-resonance NMR at nanolitre volumes with inductively-coupled micro-coils. Chem Commun (Camb) 2011; 47:2119-21. [DOI: 10.1039/c0cc04607h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Sakellariou D, Hugon C, Guiga A, Aubert G, Cazaux S, Hardy P. Permanent magnet assembly producing a strong tilted homogeneous magnetic field: towards magic angle field spinning NMR and MRI. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48:903-908. [PMID: 20891027 DOI: 10.1002/mrc.2683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals.
Collapse
Affiliation(s)
- Dimitris Sakellariou
- CEA, DSM, IRAMIS, SIS2M, Laboratoire Structure et Dynamique par Résonance Magnétique, UMR CEA/CNRS n 3299-SIS2M, F-91191 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
20
|
Wong A, Sakellariou D. Two- and three-dimensional multinuclear stray-field imaging of rotating samples with magic-angle spinning (STRAFI-MAS): from bio to inorganic materials. J Magn Reson Imaging 2010; 32:418-23. [PMID: 20677271 DOI: 10.1002/jmri.22242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To revisit and illustrate the potential of a simple and effective multidimensional stray-field imaging technique with magic-angle spinning, known as STRAFI-MAS. MATERIALS AND METHODS STRAFI-MAS images are acquired with a standard NMR magnet and a traditional magic-angle sample spinning (MAS) probe. The stray-field gradients are achieved by placing the MAS probe, along the z-direction, at a distance from the center of the magnet. No pulsed-field gradients are applied. The multidimensional spatial encoding is carried out by synchronizing the radiofrequency pulses with the sample MAS rotation. RESULTS Two-dimensional (2D) and 3D multinuclear images of various phantoms, including a tibia bone and silicon carbide, are recorded. Images of inorganic solids containing quadrupolar nuclei, (23)Na and (27)Al, are also explored for the first time by STRAFI-MAS. CONCLUSION We have demonstrated that STRAFI-MAS is a simple and user-friendly technique for multidimensional imaging without the need of imaging equipment. With the current advancements in NMR and MRI methodologies, STRAFI-MAS is expected to be further developed and improved. We anticipate that STRAFI-MAS can spark a wide spectrum of interest, from material to bio science, where can benefit from high-resolution images.
Collapse
Affiliation(s)
- Alan Wong
- UMR 3299 CEA Saclay, DSM/IRAMIS/CNRS-SIS2M/LSDRM, F-91191, Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
21
|
Wong A, Sakellariou D. Contrast STRAFI-MAS imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 206:264-268. [PMID: 20674421 DOI: 10.1016/j.jmr.2010.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/02/2010] [Accepted: 07/03/2010] [Indexed: 05/29/2023]
Abstract
We demonstrate the possibility of multidimensional contrast (T(1)-, T(2)-weighted and triple-quantum filtered) magnetic resonance imaging using a simple and effective solid-state NMR technique, stray-field imaging with sample magic-angle spinning (STRAFI-MAS). This imaging technique can be easily implemented in today's standard solid-state NMR laboratory, making it a potentially valuable imaging application to material science.
Collapse
Affiliation(s)
- Alan Wong
- CEA, DSM, IRAMIS, SIS2M, Laboratoire Structure et Dynamique par Résonance Magnétique, F-91191 Gif-sur-Yvette, France
| | | |
Collapse
|