1
|
Hermida U, van Poppel MPM, Sabry M, Keramati H, Steinweg JK, Simpson JM, Vigneswaran TV, Razavi R, Pushparajah K, Lloyd DFA, Lamata P, De Vecchi A. The onset of coarctation of the aorta before birth: Mechanistic insights from fetal arch anatomy and haemodynamics. Comput Biol Med 2024; 182:109077. [PMID: 39265477 DOI: 10.1016/j.compbiomed.2024.109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/17/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
Accurate prenatal diagnosis of coarctation of the aorta (CoA) is challenging due to high false positive rate burden and poorly understood aetiology. Despite associations with abnormal blood flow dynamics, fetal arch anatomy changes and alterations in tissue properties, its underlying mechanisms remain a longstanding subject of debate hindering diagnosis in utero. This study leverages computational fluid dynamics (CFD) simulations and statistical shape modelling to investigate the interplay between fetal arch anatomy and blood flow alterations in CoA. Using cardiac magnetic resonance imaging data from 188 fetuses, including normal controls and suspected CoA cases, a statistical shape model of the fetal arch anatomy was built. From this analysis, digital twin models of false and true positive CoA cases were generated. These models were then used to perform CFD simulations of the three-dimensional fetal arch haemodynamics, considering physiological variations in arch shape and blood flow conditions across the disease spectrum. This analysis revealed that independent changes in the shape of. the arch and the balance of left-to-right ventricular output led to qualitatively similar haemodynamic alterations. Transitioning from a false to a true positive phenotype increased retrograde flow through the aortic isthmus. This resulted in the appearance of an area of low wall shear stress surrounded by high wall shear stress values at the flow split apex on the aortic posterior wall opposite the ductal insertion point. Our results suggest a distinctive haemodynamic signature in CoA characterised by the appearance of retrograde flow through the aortic isthmus and altered wall shear stress at its posterior side. The consistent link between alterations in shape and blood flow in CoA suggests the need for comprehensive anatomical and functional diagnostic approaches in CoA. This study presents an application of the digital twin approach to support the understanding of CoA mechanisms in utero and its potential for improved diagnosis before birth.
Collapse
Affiliation(s)
- Uxio Hermida
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Milou P M van Poppel
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Malak Sabry
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Hamed Keramati
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Johannes K Steinweg
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - John M Simpson
- Department of Congenital Heart Disease, Evelina London Children's Hospital, SE1 7EH, UK
| | - Trisha V Vigneswaran
- Department of Congenital Heart Disease, Evelina London Children's Hospital, SE1 7EH, UK
| | - Reza Razavi
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, SE1 7EH, UK
| | - Kuberan Pushparajah
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, SE1 7EH, UK
| | - David F A Lloyd
- Department of Perinatal Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, SE1 7EH, UK
| | - Pablo Lamata
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Adelaide De Vecchi
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
2
|
Barker AJ, Browne LP, Friesen RM. Easing the Strain of Fetal CMR: Editorial for "Fetal Cardiovascular Magnetic Resonance Feature Tracking Myocardial Strain Analysis in Congenital Heart Disease". J Cardiovasc Magn Reson 2024:101115. [PMID: 39490665 DOI: 10.1016/j.jocmr.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Affiliation(s)
- Alex J Barker
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus; Department of Bioengineering, University of Colorado Anschutz Medical Campus.
| | - Lorna P Browne
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus
| | - Richard M Friesen
- Department of Pediatrics, Section of Pediatric Cardiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus
| |
Collapse
|
3
|
Zhang CY, Cleri M, Woodgate T, Ramirez Gilliland P, Bansal S, Aviles Verdera J, Uus AU, Kyriakopoulou V, St Clair K, Story L, Hall M, Pushparajah K, Hajnal JV, Lloyd D, Rutherford MA, Hutter J, Payette K. Structural and functional fetal cardiac imaging using low field (0.55 T) MRI. Front Pediatr 2024; 12:1418645. [PMID: 39318614 PMCID: PMC11421172 DOI: 10.3389/fped.2024.1418645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose This study aims to investigate the feasibility of using a commercially available clinical 0.55 T MRI scanner for comprehensive structural and functional fetal cardiac imaging. Methods Balanced steady-state free precession (bSSFP) and phase contrast (PC) sequences were optimized by in utero studies consisting of 14 subjects for bSSFP optimization and 9 subjects for PC optimization. The signal-to-noise ratio (SNR) of the optimized sequences were investigated. Flow measurements were performed in three vessels, umbilical vein (UV), descending aorta (DAo), and superior vena cava (SVC) using the PC sequences and retrospective gating. The optimized bSSFP, PC and half-Fourier single shot turbo spin-echo (HASTE) sequences were acquired in a cohort of 21 late gestation-age fetuses (>36 weeks) to demonstrate the feasibility of a fetal cardiac exam at 0.55 T. The HASTE stacks were reconstructed to create an isotropic reconstruction of the fetal thorax, followed by automatic great vessel segmentations. The intra-abdominal UV blood flow measurements acquired with MRI were compared to ultrasound UV free-loop flow measurements. Results Using the parameters from 1.5 T as a starting point, the bSSFP sequences were optimized at 0.55 T, resulting in a 1.6-fold SNR increase and improved image contrast compared to starting parameters, as well as good visibility of most cardiac structures as rated by two experienced fetal cardiologists. The PC sequence resulted in increased SNR and reduced scan time, subsequent retrospective gating enabled successful blood flow measurements. The reconstructions and automatic great vessel segmentations showed good quality, with 18/21 segmentations requiring no or minor refinements. Blood flow measurements were within the expected range. A comparison of the UV measurements performed with ultrasound and MRI showed agreement between the two sets of measurements, with better correlation observed at lower flows. Conclusion We demonstrated the feasibility of low-field (0.55 T) MRI for fetal cardiac imaging. The reduced SNR at low field strength can be effectively compensated for by strategically optimizing sequence parameters. Major fetal cardiac structures and vessels were consistently visualized, and flow measurements were successfully obtained. The late gestation study demonstrated the robustness and reproducibility at low field strength. MRI performed at 0.55 T is a viable option for fetal cardiac examination.
Collapse
Affiliation(s)
- Charlie Yuli Zhang
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Michela Cleri
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- London Collaborative Ultra High Field Systems (LoCUS), King’s College London, London, United Kingdom
| | - Tomas Woodgate
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Congenital Heart Disease, Evelina Children Hospital, London, United Kingdom
| | - Paula Ramirez Gilliland
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Simi Bansal
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Women & Children’s Health, King’s College London, London, United Kingdom
| | - Jordina Aviles Verdera
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Alena U. Uus
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Vanessa Kyriakopoulou
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Kamilah St Clair
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Lisa Story
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Women & Children’s Health, King’s College London, London, United Kingdom
| | - Megan Hall
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Women & Children’s Health, King’s College London, London, United Kingdom
| | - Kuberan Pushparajah
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Congenital Heart Disease, Evelina Children Hospital, London, United Kingdom
| | - Joseph V. Hajnal
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - David Lloyd
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Congenital Heart Disease, Evelina Children Hospital, London, United Kingdom
| | - Mary A. Rutherford
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jana Hutter
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| | - Kelly Payette
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
4
|
Cromb D, Uus A, Van Poppel MP, Steinweg JK, Bonthrone AF, Maggioni A, Cawley P, Egloff A, Kyriakopolous V, Matthew J, Price A, Pushparajah K, Simpson J, Razavi R, DePrez M, Edwards D, Hajnal J, Rutherford M, Lloyd DF, Counsell SJ. Total and Regional Brain Volumes in Fetuses With Congenital Heart Disease. J Magn Reson Imaging 2024; 60:497-509. [PMID: 37846811 PMCID: PMC7616254 DOI: 10.1002/jmri.29078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is common and is associated with impaired early brain development and neurodevelopmental outcomes, yet the exact mechanisms underlying these associations are unclear. PURPOSE To utilize MRI data from a cohort of fetuses with CHD as well as typically developing fetuses to test the hypothesis that expected cerebral substrate delivery is associated with total and regional fetal brain volumes. STUDY TYPE Retrospective case-control study. POPULATION Three hundred eighty fetuses (188 male), comprising 45 healthy controls and 335 with isolated CHD, scanned between 29 and 37 weeks gestation. Fetuses with CHD were assigned into one of four groups based on expected cerebral substrate delivery. FIELD STRENGTH/SEQUENCE T2-weighted single-shot fast-spin-echo sequences and a balanced steady-state free precession gradient echo sequence were obtained on a 1.5 T scanner. ASSESSMENT Images were motion-corrected and reconstructed using an automated slice-to-volume registration reconstruction technique, before undergoing segmentation using an automated pipeline and convolutional neural network that had undergone semi-supervised training. Differences in total, regional brain (cortical gray matter, white matter, deep gray matter, cerebellum, and brainstem) and brain:body volumes were compared between groups. STATISTICAL TESTS ANOVA was used to test for differences in brain volumes between groups, after accounting for sex and gestational age at scan. PFDR-values <0.05 were considered statistically significant. RESULTS Total and regional brain volumes were smaller in fetuses where cerebral substrate delivery is reduced. No significant differences were observed in total or regional brain volumes between control fetuses and fetuses with CHD but normal cerebral substrate delivery (all PFDR > 0.12). Severely reduced cerebral substrate delivery is associated with lower brain:body volume ratios. DATA CONCLUSION Total and regional brain volumes are smaller in fetuses with CHD where there is a reduction in cerebral substrate delivery, but not in those where cerebral substrate delivery is expected to be normal. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Alena Uus
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Milou P.M. Van Poppel
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - Johannes K. Steinweg
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - Alexandra F. Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Alessandra Maggioni
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Paul Cawley
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Vanessa Kyriakopolous
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Jacqueline Matthew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Anthony Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Kuberan Pushparajah
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - John Simpson
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - Reza Razavi
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Maria DePrez
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Jo Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - David F.A. Lloyd
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
5
|
Maher S, Seed M. Fetal Cardiovascular MR Imaging. Magn Reson Imaging Clin N Am 2024; 32:479-487. [PMID: 38944435 DOI: 10.1016/j.mric.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Prenatal diagnosis of congenital heart disease allows for appropriate planning of delivery and an opportunity to inform families about the prognosis of the cardiac malformation. On occasion, prenatal therapies may be offered to improve perinatal outcomes. While ultrasound is the primary diagnostic method, advances have led to interest in fetal MRI for its potential to aid in clinical decision-making. This review explores technical innovations and the clinical utility of fetal cardiovascular magnetic resonance (CMR), highlighting its role in diagnosing and planning interventions for complex heart conditions. Future directions include the prediction of perinatal physiology and guidance of delivery planning.
Collapse
Affiliation(s)
- Samer Maher
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Mike Seed
- Cardiology, The Hospital for Sick Children, University of Toronto, 170 Elizabeth Street, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Voges I, Raimondi F, McMahon CJ, Ait-Ali L, Babu-Narayan SV, Botnar RM, Burkhardt B, Gabbert DD, Grosse-Wortmann L, Hasan H, Hansmann G, Helbing WA, Krupickova S, Latus H, Martini N, Martins D, Muthurangu V, Ojala T, van Ooij P, Pushparajah K, Rodriguez-Palomares J, Sarikouch S, Grotenhuis HB, Greil FG. Clinical impact of novel CMR technology on patients with congenital heart disease. A scientific statement of the Association for European Pediatric and Congenital Cardiology (AEPC) and the European Association of Cardiovascular Imaging (EACVI) of the ESC. Eur Heart J Cardiovasc Imaging 2024:jeae172. [PMID: 38985851 DOI: 10.1093/ehjci/jeae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is recommended in patients with congenital heart disease (CHD) in clinical practice guidelines as the imaging standard for a large variety of diseases. As CMR is evolving, novel techniques are becoming available. Some of them are already used clinically, whereas others still need further evaluation. In this statement the authors give an overview of relevant new CMR techniques for the assessment of CHD. Studies with reference values for these new techniques are listed in the supplement.
Collapse
Affiliation(s)
- Inga Voges
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Germany
| | | | - Colin J McMahon
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Lamia Ait-Ali
- Institute of clinical Physiology CNR, Massa, Italy
- Heart Hospital, G. Monastery foundation, Massa, Italy
| | - Sonya V Babu-Narayan
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, England
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Institute for Biological and Medical Engineering and School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Barbara Burkhardt
- Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Dominik D Gabbert
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Germany
| | - Lars Grosse-Wortmann
- Division of Cardiology, Oregon Health and Science University Hospital, Portland, Oregon, United States
| | - Hosan Hasan
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Willem A Helbing
- Department of Pediatrics, division of cardiology, and department of Radiology, Erasmus MC-Sophia children's hospital, Rotterdam, the Netherlands
| | - Sylvia Krupickova
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, England
- Department of Paediatric Cardiology, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
| | - Heiner Latus
- Clinic for Pediatric Cardiology and Congenital Heart Disease Klinikum Stuttgart Germany
| | - Nicola Martini
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Duarte Martins
- Pediatric Cardiology Department, Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Vivek Muthurangu
- Centre for Translational Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Tiina Ojala
- New Children's Hospital Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Pim van Ooij
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Jose Rodriguez-Palomares
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Amsterdam, the Netherlands
- Servicio de Cardiología, Hospital Universitario Vall Hebrón. Institut de Recerca Vall Hebrón (VHIR). Departamento de Medicina, Universitat Autònoma de Barcelona. Barcelona. Spain
| | - Samir Sarikouch
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - F Gerald Greil
- Department of Pediatrics, UT Southwestern/Children's Health, 1935 Medical District Drive B3.09, Dallas, TX 75235
| |
Collapse
|
7
|
Vollbrecht TM, Bissell MM, Kording F, Geipel A, Isaak A, Strizek BS, Hart C, Barker AJ, Luetkens JA. Fetal Cardiac MRI Using Doppler US Gating: Emerging Technology and Clinical Implications. Radiol Cardiothorac Imaging 2024; 6:e230182. [PMID: 38602469 PMCID: PMC11056758 DOI: 10.1148/ryct.230182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
Fetal cardiac MRI using Doppler US gating is an emerging technique to support prenatal diagnosis of congenital heart disease and other cardiovascular abnormalities. Analogous to postnatal electrocardiographically gated cardiac MRI, this technique enables directly gated MRI of the fetal heart throughout the cardiac cycle, allowing for immediate data reconstruction and review of image quality. This review outlines the technical principles and challenges of cardiac MRI with Doppler US gating, such as loss of gating signal due to fetal movement. A practical workflow of patient preparation for the use of Doppler US-gated fetal cardiac MRI in clinical routine is provided. Currently applied MRI sequences (ie, cine or four-dimensional flow imaging), with special consideration of technical adaptations to the fetal heart, are summarized. The authors provide a literature review on the clinical benefits of Doppler US-gated fetal cardiac MRI for gaining additional diagnostic information on cardiovascular malformations and fetal hemodynamics. Finally, future perspectives of Doppler US-gated fetal cardiac MRI and further technical developments to reduce acquisition times and eliminate sources of artifacts are discussed. Keywords: MR Fetal, Ultrasound Doppler, Cardiac, Heart, Congenital, Obstetrics, Fetus Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Thomas M. Vollbrecht
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Malenka M. Bissell
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Fabian Kording
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Annegret Geipel
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Alexander Isaak
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Brigitte S. Strizek
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Christopher Hart
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Alex J. Barker
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Julian A. Luetkens
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| |
Collapse
|
8
|
Goolaub DS, Macgowan CK. Reducing clustering of readouts in non-Cartesian cine magnetic resonance imaging. J Cardiovasc Magn Reson 2024; 26:101003. [PMID: 38290615 PMCID: PMC11211237 DOI: 10.1016/j.jocmr.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/21/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Non-Cartesian magnetic resonance imaging trajectories at golden angle increments have the advantage of allowing motion correction and gating using intermediate real-time reconstructions. However, when the acquired data are cardiac binned for cine imaging, trajectories can cluster together at certain heart rates (HR) causing image artifacts. Here, we demonstrate an approach to reduce clustering by inserting additional angular increments within the trajectory, and optimizing them while still allowing for intermediate reconstructions. METHODS Three acquisition models were simulated under constant and variable HR: golden angle (Mtrd), random additional angles (Mrnd), and optimized additional angles (Mopt). The standard deviations of trajectory angular differences (STAD) were compared through their interquartile ranges (IQR) and the Kolmogorov-Smirnov test (significance level: p = 0.05). Agreement between an image reconstructed with uniform sampling and images from Mtrd, Mrnd, and Mopt was analyzed using the structural similarity index measure (SSIM). Mtrd and Mopt were compared in three adults at high, low, and no HR variability. RESULTS STADs from Mtrd were significantly different (p < 0.05) from Mopt and Mrnd. STAD (IQR × 10-2 rad) showed that Mopt (0.5) and Mrnd (0.5) reduced clustering relative to Mtrd (1.9) at constant HR. For variable HR, Mopt (0.5) and Mrnd (0.5) outperformed Mtrd (0.9). The SSIM (IQR) showed that Mopt (0.011) produced the best image quality, followed by Mrnd (0.014), and Mtrd (0.030). Mopt outperformed Mtrd at reduced HR variability in in-vivo studies. At high HR variability, both models performed well. CONCLUSION This approach reduces clustering in k-space and improves image quality.
Collapse
Affiliation(s)
- Datta Singh Goolaub
- Division of Translational Medicine, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4, Canada.
| | - Christopher K Macgowan
- Division of Translational Medicine, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, 101 College St Suite 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
9
|
Desmond A, Nguyen K, Watterson CT, Sklansky M, Satou GM, Prosper AE, Garg M, Van Arsdell GS, Finn JP, Afshar Y. Integration of Prenatal Cardiovascular Magnetic Resonance Imaging in Congenital Heart Disease. J Am Heart Assoc 2023; 12:e030640. [PMID: 37982254 PMCID: PMC10727279 DOI: 10.1161/jaha.123.030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Standard of care echocardiography can have limited diagnostic accuracy in certain cases of fetal congenital heart disease. Prenatal cardiovascular magnetic resonance (CMR) imaging has potential to provide additional anatomic imaging information, including excellent soft tissue images in multiple planes, improving prenatal diagnostics and in utero hemodynamic assessment. We conducted a literature review of fetal CMR, including its development and implementation into clinical practice, and compiled and analyzed the results. Our findings included the fact that technological and innovative approaches are required to overcome some of the challenges in fetal CMR, in part due to the dynamic nature of the fetal heart. A number of reconstruction algorithms and cardiac gating strategies have been developed over time to improve fetal CMR image quality, allowing unique investigations into fetal hemodynamics, oxygenation, and growth. Studies demonstrate that incorporating CMR in the prenatal arena influences postnatal clinical management. With further refinement and experience, fetal CMR in congenital heart disease continues to evolve and demonstrate ongoing potential as a complementary imaging modality to fetal echocardiography in the care of these patients.
Collapse
Affiliation(s)
- Angela Desmond
- Division of Neonatology, Department of PediatricsUCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Kim‐Lien Nguyen
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Division of CardiologyDavid Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare SystemLos AngelesCAUSA
- Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | | | - Mark Sklansky
- Division of Pediatric Cardiology, Department of PediatricsDavid Geffen School of Medicine, UCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Gary M. Satou
- Division of Pediatric Cardiology, Department of PediatricsDavid Geffen School of Medicine, UCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Ashley E. Prosper
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | - Meena Garg
- Division of Neonatology, Department of PediatricsUCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Glen S. Van Arsdell
- Division of Cardiac Surgery, Department of SurgeryDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | - J. Paul Finn
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Division of CardiologyDavid Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare SystemLos AngelesCAUSA
- Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | - Yalda Afshar
- Division of Maternal Fetal Medicine, Department of Obstetrics and GynecologyDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
10
|
van Amerom JFP, Goolaub DS, Schrauben EM, Sun L, Macgowan CK, Seed M. Fetal cardiovascular blood flow MRI: techniques and applications. Br J Radiol 2023; 96:20211096. [PMID: 35687661 PMCID: PMC10321246 DOI: 10.1259/bjr.20211096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
Abstract
Fetal cardiac MRI is challenging due to fetal and maternal movements as well as the need for a reliable cardiac gating signal and high spatiotemporal resolution. Ongoing research and recent technical developments to address these challenges show the potential of MRI as an adjunct to ultrasound for the assessment of the fetal heart and great vessels. MRI measurements of blood flow have enabled the assessment of normal fetal circulation as well as conditions with disrupted circulations, such as congenital heart disease, along with associated organ underdevelopment and hemodynamic instability. This review provides details of the techniques used in fetal cardiovascular blood flow MRI, including single slice and volumetric imaging sequences, post-processing and analysis, along with a summary of applications in human studies and animal models.
Collapse
Affiliation(s)
- Joshua FP van Amerom
- Division of Translational Medicine, SickKids Research Institute, Toronto, Canada
| | | | - Eric M Schrauben
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
11
|
Kühle H, Cho SKS, Barber N, Goolaub DS, Darby JRT, Morrison JL, Haller C, Sun L, Seed M. Advanced imaging of fetal cardiac function. Front Cardiovasc Med 2023; 10:1206138. [PMID: 37288263 PMCID: PMC10242056 DOI: 10.3389/fcvm.2023.1206138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Over recent decades, a variety of advanced imaging techniques for assessing cardiovascular physiology and cardiac function in adults and children have been applied in the fetus. In many cases, technical development has been required to allow feasibility in the fetus, while an appreciation of the unique physiology of the fetal circulation is required for proper interpretation of the findings. This review will focus on recent advances in fetal echocardiography and cardiovascular magnetic resonance (CMR), providing examples of their application in research and clinical settings. We will also consider future directions for these technologies, including their ongoing technical development and potential clinical value.
Collapse
Affiliation(s)
- Henriette Kühle
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Cardiac and Thoracic Surgery, University Hospital Magdeburg, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Steven K. S. Cho
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Nathaniel Barber
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Datta Singh Goolaub
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Janna L. Morrison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Christoph Haller
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mike Seed
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Moscatelli S, Leo I, Lisignoli V, Boyle S, Bucciarelli-Ducci C, Secinaro A, Montanaro C. Cardiovascular Magnetic Resonance from Fetal to Adult Life-Indications and Challenges: A State-of-the-Art Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050763. [PMID: 37238311 DOI: 10.3390/children10050763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Cardiovascular magnetic resonance (CMR) imaging offers a comprehensive, non-invasive, and radiation-free imaging modality, which provides a highly accurate and reproducible assessment of cardiac morphology and functions across a wide spectrum of cardiac conditions spanning from fetal to adult life. It minimises risks to the patient, particularly the risks associated with exposure to ionising radiation and the risk of complications from more invasive haemodynamic assessments. CMR utilises high spatial resolution and provides a detailed assessment of intracardiac and extracardiac anatomy, ventricular and valvular function, and flow haemodynamic and tissue characterisation, which aid in the diagnosis, and, hence, with the management of patients with cardiac disease. This article aims to discuss the role of CMR and the indications for its use throughout the different stages of life, from fetal to adult life.
Collapse
Affiliation(s)
- Sara Moscatelli
- Inherited Cardiovascular Diseases, Great Ormond Street, Children NHS Foundation Trust, London WC1N 3JH, UK
- Paediatric Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Veronica Lisignoli
- Department of Cardiac Surgery, Cardiology, Heart and Lung Transplantation, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Siobhan Boyle
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Cardiology Department, Logan Hospital, Loganlea Rd, Meadowbrook, QLD 4131, Australia
| | - Chiara Bucciarelli-Ducci
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College University, London SW7 2BX, UK
| | - Aurelio Secinaro
- Radiology Department, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
| | - Claudia Montanaro
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- National Heart and Lung Institute, Imperial Collage London, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|
13
|
Vollbrecht TM, Hart C, Zhang S, Katemann C, Isaak A, Pieper CC, Kuetting D, Faridi B, Strizek B, Attenberger U, Kipfmueller F, Herberg U, Geipel A, Luetkens JA. Fetal Cardiac Cine MRI with Doppler US Gating in Complex Congenital Heart Disease. Radiol Cardiothorac Imaging 2023; 5:e220129. [PMID: 36860838 PMCID: PMC9969216 DOI: 10.1148/ryct.220129] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 02/25/2023]
Abstract
Purpose To apply Doppler US (DUS)-gated fetal cardiac cine MRI in clinical routine and investigate diagnostic performance in complex congenital heart disease (CHD) compared with that of fetal echocardiography. Materials and Methods In this prospective study (May 2021 to March 2022), women with fetuses with CHD underwent fetal echocardiography and DUS-gated fetal cardiac MRI on the same day. For MRI, balanced steady-state free precession cine images were acquired in the axial and optional sagittal and/or coronal orientations. Overall image quality was assessed on a four-point Likert scale (from 1 = nondiagnostic to 4 = good image quality). The presence of abnormalities in 20 fetal cardiovascular features was independently assessed by using both modalities. The reference standard was postnatal examination results. Differences in sensitivities and specificities were determined by using a random-effects model. Results The study included 23 participants (mean age, 32 years ± 5 [SD]; mean gestational age, 36 weeks ± 1). Fetal cardiac MRI was completed in all participants. The median overall image quality of DUS-gated cine images was 3 (IQR, 2.5-4). In 21 of 23 participants (91%), underlying CHD was correctly assessed by using fetal cardiac MRI. In one case, the correct diagnosis was made by using MRI only (situs inversus and congenitally corrected transposition of the great arteries). Sensitivities (91.8% [95% CI: 85.7, 95.1] vs 93.6% [95% CI: 88.8, 96.2]; P = .53) and specificities (99.9% [95% CI: 99.2, 100] vs 99.9% [95% CI: 99.5, 100]; P > .99) for the detection of abnormal cardiovascular features were comparable between MRI and echocardiography, respectively. Conclusion Using DUS-gated fetal cine cardiac MRI resulted in performance comparable with that of using fetal echocardiography for diagnosing complex fetal CHD.Keywords: Pediatrics, MR-Fetal (Fetal MRI), Cardiac, Heart, Congenital, Fetal Imaging, Cardiac MRI, Prenatal, Congenital Heart DiseaseClinical trial registration no. NCT05066399 Supplemental material is available for this article. © RSNA, 2023See also the commentary by Biko and Fogel in this issue.
Collapse
|
14
|
Beer M, Schönnagel B, Herrmann J, Klömpken S, Schaal M, Kaestner M, Apitz C, Brunner H. Non-invasive pediatric cardiac imaging-current status and further perspectives. Mol Cell Pediatr 2022; 9:21. [PMID: 36575291 PMCID: PMC9794482 DOI: 10.1186/s40348-022-00153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Non-invasive cardiac imaging has a growing role in diagnosis, differential diagnosis, therapy planning, and follow-up in children and adolescents with congenital and acquired cardiac diseases. This review is based on a systematic analysis of international peer-reviewed articles and additionally presents own clinical experiences. It provides an overview of technical advances, emerging clinical applications, and the aspect of artificial intelligence. MAIN BODY The main imaging modalities are echocardiography, CT, and MRI. For echocardiography, strain imaging allows a novel non-invasive assessment of tissue integrity, 3D imaging rapid holistic overviews of anatomy. Fast cardiac CT imaging new techniques-especially for coronary assessment as the main clinical indication-have significantly improved spatial and temporal resolution in adjunct with a major reduction in ionizing dose. For cardiac MRI, assessment of tissue integrity even without contrast agent application by mapping sequences is a major technical breakthrough. Fetal cardiac MRI is an emerging technology, which allows structural and functional assessment of fetal hearts including even 4D flow analyses. Last but not least, artificial intelligence will play an important role for improvements of data acquisition and interpretation in the near future. CONCLUSION Non-invasive cardiac imaging plays an integral part in the workup of children with heart disease. In recent years, its main application congenital heart disease has been widened for acquired cardiac diseases.
Collapse
Affiliation(s)
- Meinrad Beer
- grid.410712.10000 0004 0473 882XDepartment of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Björn Schönnagel
- grid.13648.380000 0001 2180 3484Division of Pediatric Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen Herrmann
- grid.13648.380000 0001 2180 3484Division of Pediatric Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Steffen Klömpken
- grid.410712.10000 0004 0473 882XDepartment of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Matthias Schaal
- grid.410712.10000 0004 0473 882XDepartment of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Michael Kaestner
- grid.410712.10000 0004 0473 882XDivision of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Christian Apitz
- grid.410712.10000 0004 0473 882XDivision of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Horst Brunner
- grid.410712.10000 0004 0473 882XDepartment of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
15
|
The Evolution and Developing Importance of Fetal Magnetic Resonance Imaging in the Diagnosis of Congenital Cardiac Anomalies: A Systematic Review. J Clin Med 2022; 11:jcm11237027. [PMID: 36498602 PMCID: PMC9738414 DOI: 10.3390/jcm11237027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is a reliable method, with a complementary role to Ultrasound (US) Echocardiography, that can be used to fully comprehend and precisely diagnose congenital cardiac malformations. Besides the anatomical study of the fetal cardiovascular system, it allows us to study the function of the fetal heart, remaining, at the same time, a safe adjunct to the classic fetal echocardiography. MRI also allows for the investigation of cardiac and placental diseases by providing information about hematocrit, oxygen saturation, and blood flow in fetal vessels. It is crucial for fetal medicine specialists and pediatric cardiologists to closely follow the advances of fetal cardiac MRI in order to provide the best possible care. In this review, we summarize the advance in techniques and their practical utility to date.
Collapse
|
16
|
Goolaub DS, Xu J, Schrauben EM, Marini D, Kingdom JC, Sled JG, Seed M, Macgowan CK. Volumetric Fetal Flow Imaging With Magnetic Resonance Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2941-2952. [PMID: 35604966 DOI: 10.1109/tmi.2022.3176814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fetal development relies on a complex circulatory network. Accurate assessment of flow distribution is important for understanding pathologies and potential therapies. In this paper, we demonstrate a method for volumetric imaging of fetal flow with magnetic resonance imaging (MRI). Fetal MRI faces challenges: small vascular structures, unpredictable motion, and inadequate traditional cardiac gating methods. Here, orthogonal multislice stacks are acquired with accelerated multidimensional radial phase contrast (PC) MRI. Slices are reconstructed into flow sensitive time-series images with motion correction and image-based cardiac gating. They are then combined into a dynamic volume using slice-to-volume reconstruction (SVR) while resolving interslice spatiotemporal coregistration. Compared to prior methods, this approach achieves higher spatiotemporal resolution ( 1×1×1 mm3, ~30 ms) with reduced scan time - important features for the quantification of flow through small fetal structures. Validation is demonstrated in adults by comparing SVR with 4D radial PCMRI (flow bias and limits of agreement: -1.1 ml/s and [-11.8 9.6] ml/s). Feasibility is demonstrated in late gestation fetuses by comparing SVR with 2D Cartesian PCMRI (flow bias and limits of agreement: -0.9 ml/min/kg and [-39.7 37.8] ml/min/kg). With SVR, we demonstrate complex flow pathways (such as parallel flow streams in the proximal inferior vena cava, preferential shunting of blood from the ductus venosus into the left atrium, and blood from the brain leaving the heart through the main pulmonary artery) for the first time in human fetal circulation. This method allows for comprehensive evaluation of the fetal circulation and enables future studies of fetal physiology.
Collapse
|
17
|
Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. ROFO-FORTSCHR RONTG 2022; 194:841-851. [PMID: 35905903 DOI: 10.1055/a-1761-3500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Fetal magnetic resonance imaging (MRI) has become a valuable adjunct to ultrasound in the prenatal diagnosis of congenital pathologies of the central nervous system, thorax, and abdomen. Fetal cardiovascular magnetic resonance (CMR) was limited, mainly by the lack of cardiac gating, and has only recently evolved due to technical developments. METHOD A literature search was performed on PubMed, focusing on technical advancements to perform fetal CMR. In total, 20 publications on cardiac gating techniques in the human fetus were analyzed. RESULTS Fetal MRI is a safe imaging method with no developmental impairments found to be associated with in utero exposure to MRI. Fetal CMR is challenging due to general drawbacks (e. g., fetal motion) and specific limitations such as the difficulty to generate a cardiac gating signal to achieve high spatiotemporal resolution. Promising technical advancements include new methods for fetal cardiac gating, based on novel post-processing approaches and an external hardware device, as well as motion compensation and acceleration techniques. CONCLUSION Newly developed direct and indirect gating approaches were successfully applied to achieve high-quality morphologic and functional imaging as well as quantitative assessment of fetal hemodynamics in research settings. In cases when prenatal echocardiography is limited, e. g., by an unfavorable fetal position in utero, or when its results are inconclusive, fetal CMR could potentially serve as a valuable adjunct in the prenatal assessment of congenital cardiovascular malformations. However, sufficient data on the diagnostic performance and clinical benefit of new fetal CMR techniques is still lacking. KEY POINTS · New fetal cardiac gating methods allow high-quality fetal CMR.. · Motion compensation and acceleration techniques allow for improvement of image quality.. · Fetal CMR could potentially serve as an adjunct to fetal echocardiography in the future.. CITATION FORMAT · Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. Fortschr Röntgenstr 2022; 194: 841 - 851.
Collapse
Affiliation(s)
- Janine Knapp
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Björn P Schönnagel
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Freud LR, Seed M. Prenatal Diagnosis and Management of Single Ventricle Heart Disease. Can J Cardiol 2022; 38:897-908. [DOI: 10.1016/j.cjca.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
|
19
|
Schulz A, Lloyd DFA, van Poppel MPM, Roberts TA, Steinweg JK, Pushparajah K, Hajnal JV, Razavi R. Structured analysis of the impact of fetal motion on phase-contrast MRI flow measurements with metric optimized gating. Sci Rep 2022; 12:5395. [PMID: 35354868 PMCID: PMC8967860 DOI: 10.1038/s41598-022-09327-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/21/2022] [Indexed: 01/19/2023] Open
Abstract
The impact of fetal motion on phase contrast magnetic resonance imaging (PC-MRI) with metric optimized gating (MOG) remains unknown, despite being a known limitation to prenatal MRI. This study aims to describe the effect of motion on fetal flow-measurements using PC-MRI with MOG and to generate a scoring-system that could be used to predict motion-corrupted datasets at the time of acquisition. Ten adult volunteers underwent PC-MRI with MOG using a motion-device to simulate reproducible in-plane motion encountered in fetuses. PC-MRI data were acquired on ten fetuses. All ungated images were rated on their quality from 0 (no motion) to 2 (severe motion). There was no significant difference in measured flows with in-plane motion during the first and last third of sequence acquisition. Movement in the middle section of acquisition produced a significant difference while all referring ungated images were rated with a score of 2. Intra-Class-Correlation (ICC) for flow-measurements in adult and fetal datasets was lower for datasets with scores of 2. For fetal applications, the use of a simple three-point scoring system reliably identifies motion-corrupted sequences from unprocessed data at the time of acquisition, with a high score corresponding to significant underestimation of flow values and increased interobserver variability.
Collapse
Affiliation(s)
- Alexander Schulz
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany.
| | - David F A Lloyd
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Milou P M van Poppel
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Thomas A Roberts
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Johannes K Steinweg
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joseph V Hajnal
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Lloyd DF, van Poppel MP, Pushparajah K, Vigneswaran TV, Zidere V, Steinweg J, van Amerom JF, Roberts TA, Schulz A, Charakida M, Miller O, Sharland G, Rutherford M, Hajnal JV, Simpson JM, Razavi R. Analysis of 3-Dimensional Arch Anatomy, Vascular Flow, and Postnatal Outcome in Cases of Suspected Coarctation of the Aorta Using Fetal Cardiac Magnetic Resonance Imaging. Circ Cardiovasc Imaging 2021; 14:e012411. [PMID: 34187165 PMCID: PMC8300852 DOI: 10.1161/circimaging.121.012411] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Identifying fetuses at risk of severe neonatal coarctation of the aorta (CoA) can be lifesaving but is notoriously challenging in clinical practice with a high rate of false positives. Novel fetal 3-dimensional and phase-contrast magnetic resonance imaging (MRI) offers an unprecedented means of assessing the human fetal cardiovascular system before birth. We performed detailed MRI assessment of fetal vascular morphology and flows in a cohort of fetuses with suspected CoA, correlated with the need for postnatal intervention. METHODS Women carrying a fetus with suspected CoA on echocardiography were referred for MRI assessment between 26 and 36 weeks of gestation, including high-resolution motion-corrected 3-dimensional volumes of the fetal heart and phase-contrast flow sequences gated with metric optimized gating. The relationship between aortic geometry and vascular flows was then analyzed and compared with postnatal outcome. RESULTS Seventy-two patients (51 with suspected fetal CoA and 21 healthy controls) underwent fetal MRI with motion-corrected 3-dimensional vascular reconstructions. Vascular flow measurements from phase-contrast sequences were available in 53 patients. In the CoA group, 25 of 51 (49%) required surgical repair of coarctation after birth; the remaining 26 of 51 (51%) were discharged without neonatal intervention. Reduced blood flow in the fetal ascending aorta and at the aortic isthmus was associated with increasing angulation (P=0.005) and proximal displacement (P=0.006) of the isthmus and was seen in both true positive and false positive cases. A multivariate logistic regression model including aortic flow and isthmal displacement explained 78% of the variation in outcome and correctly predicted the need for intervention in 93% of cases. CONCLUSIONS Reduced blood flow though the left heart is associated with important configurational changes at the aortic isthmus in fetal life, predisposing to CoA when the arterial duct closes after birth. Novel fetal MRI techniques may have a role in both understanding and accurately predicting severe neonatal CoA.
Collapse
Affiliation(s)
- David F.A. Lloyd
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Milou P.M. van Poppel
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - Kuberan Pushparajah
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Trisha V. Vigneswaran
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Vita Zidere
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Johannes Steinweg
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - Joshua F.P. van Amerom
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - Thomas A. Roberts
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - Alexander Schulz
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - Marietta Charakida
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Owen Miller
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Gurleen Sharland
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Mary Rutherford
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - Joseph V. Hajnal
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - John M. Simpson
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Reza Razavi
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| |
Collapse
|
21
|
Saini BS, Darby JRT, Marini D, Portnoy S, Lock MC, Yin Soo J, Holman SL, Perumal SR, Wald RM, Windrim R, Macgowan CK, Kingdom JC, Morrison JL, Seed M. An MRI approach to assess placental function in healthy humans and sheep. J Physiol 2021; 599:2573-2602. [PMID: 33675040 DOI: 10.1113/jp281002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Human placental function is evaluated using non-invasive Doppler ultrasound of umbilical and uterine artery pulsatility indices as measures of resistance in placental vascular beds, while measurement of placental oxygen consumption ( V O 2 ) is only possible during Caesarean delivery. This study shows the feasibility of using magnetic resonance imaging (MRI) in utero to measure blood flow and oxygen content in uterine and umbilical vessels to calculate oxygen delivery to and V O 2 by the gravid uterus, uteroplacenta and fetus. Normal late gestational human uteroplacental V O 2 by MRI was ∼4 ml min-1 kg-1 fetal weight, which was similar to our MRI measurements in sheep and to those previously measured using invasive techniques. Our MRI approach can quantify uteroplacental V O 2 , which involves the quantification of maternal- and fetal-placental blood flows, fetal oxygen delivery and V O 2 , and the oxygen gradient between uterine- and umbilical-venous blood, providing a comprehensive assessment of placental function with clinical potential. ABSTRACT It has not been feasible to perform routine clinical measurement of human placental oxygen consumption ( V O 2 ) and in vitro studies do not reflect true metabolism in utero. Here we propose an MRI method to non-invasively quantify in utero placental and fetal oxygen delivery ( D O 2 ) and V O 2 in healthy humans and sheep. Women (n = 20) and Merino sheep (n = 10; 23 sets of measurements) with singleton pregnancies underwent an MRI in late gestation (36 ± 2 weeks and 128 ± 9 days, respectively; mean ± SD). Blood flow (phase-contrast) and oxygen content (T1 and T2 relaxometry) were measured in the major uterine- and umbilical-placental vessels, allowing calculation of uteroplacental and fetal D O 2 and V O 2 . Maternal D O 2 (ml min-1 kg-1 fetus) to the gravid uterus was similar in humans and sheep (human = 54 ± 15, sheep = 53 ± 21, P = 0.854), while fetal D O 2 (human = 25 ± 4, sheep = 22 ± 5, P = 0.049) was slightly lower in sheep. Uteroplacental and fetal V O 2 (ml min-1 kg-1 fetus; uteroplacental: human = 4.1 ± 1.5, sheep = 3.5 ± 1.9, P = 0.281; fetus: human = 6.8 ± 1.3, sheep = 7.2 ± 1.7, P = 0.426) were similar between species. Late gestational uteroplacental:fetal V O 2 ratio did not change with age (human, P = 0.256; sheep, P = 0.121). Human umbilical blood flow (ml min-1 kg-1 fetus) decreased with advancing age (P = 0.008), while fetal V O 2 was preserved through an increase in oxygen extraction (P = 0.046). By contrast, sheep fetal V O 2 was preserved through stable umbilical flow (ml min-1 kg-1 ; P = 0.443) and oxygen extraction (P = 0.582). MRI derived measurements of uteroplacental and fetal V O 2 between humans and sheep were similar and in keeping with prior data obtained using invasive techniques. Taken together, these data confirm the reliability of our approach, which offers a novel clinical 'placental function test'.
Collapse
Affiliation(s)
- Brahmdeep S Saini
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Davide Marini
- Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Sharon Portnoy
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sunthara R Perumal
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5086, Australia
| | - Rachel M Wald
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, ON, M5G 2N2, Canada
| | - Rory Windrim
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| | - Christopher K Macgowan
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - John C Kingdom
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Mike Seed
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.,Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| |
Collapse
|
22
|
Sun L, Lee FT, van Amerom JFP, Freud L, Jaeggi E, Macgowan CK, Seed M. Update on fetal cardiovascular magnetic resonance and utility in congenital heart disease. JOURNAL OF CONGENITAL CARDIOLOGY 2021. [DOI: 10.1186/s40949-021-00059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Congenital heart disease (CHD) is the most common birth defect, affecting approximately eight per thousand newborns. Between one and two neonates per thousand have congenital cardiac lesions that require immediate post-natal treatment to stabilize the circulation, and the management of these patients in particular has been greatly enhanced by prenatal detection. The antenatal diagnosis of CHD has been made possible through the development of fetal echocardiography, which provides excellent visualization of cardiac anatomy and physiology and is widely available. However, late gestational fetal echocardiographic imaging can be hampered by suboptimal sonographic windows, particularly in the setting of oligohydramnios or adverse maternal body habitus.
Main body
Recent advances in fetal cardiovascular magnetic resonance (CMR) technology now provide a feasible alternative that could be helpful when echocardiography is inconclusive or limited. Fetal CMR has also been used to study fetal circulatory physiology in human fetuses with CHD, providing new insights into how these common anatomical abnormalities impact the distribution of blood flow and oxygen across the fetal circulation. In combination with conventional fetal and neonatal magnetic resonance imaging (MRI) techniques, fetal CMR can be used to explore the relationship between abnormal cardiovascular physiology and fetal development. Similarly, fetal CMR has been successfully applied in large animal models of the human fetal circulation, aiding in the evaluation of experimental interventions aimed at improving in utero development. With the advent of accelerated image acquisition techniques, post-processing approaches to correcting motion artifacts and commercial MRI compatible cardiotocography units for acquiring gated fetal cardiac imaging, an increasing number of CMR methods including angiography, ventricular volumetry, and the quantification of vessel blood flow and oxygen content are now possible.
Conclusion
Fetal CMR has reached an exciting stage whereby it may now be used to enhance the assessment of cardiac morphology and fetal hemodynamics in the setting of prenatal CHD.
Collapse
|
23
|
Salehi D, Fricke K, Bhat M, Arheden H, Liuba P, Hedström E. Utility of Fetal Cardiovascular Magnetic Resonance for Prenatal Diagnosis of Complex Congenital Heart Defects. JAMA Netw Open 2021; 4:e213538. [PMID: 33779747 PMCID: PMC8008290 DOI: 10.1001/jamanetworkopen.2021.3538] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/06/2021] [Indexed: 12/17/2022] Open
Abstract
Importance Prenatal diagnosis of complex congenital heart defects reduces mortality and morbidity in affected infants. However, fetal echocardiography can be limited by poor acoustic windows, and there is a need for improved diagnostic methods. Objective To assess the clinical utility of fetal cardiovascular magnetic resonance imaging in cases in which fetal echocardiography could not visualize all relevant anatomy. Design, Setting, and Participants This cohort study was conducted between January 20, 2017, and June 29, 2020, at Skåne University Hospital (Lund, Sweden), a tertiary center for pediatric cardiology and thoracic surgery. Participants were fetuses referred for fetal cardiovascular magnetic resonance examination by a pediatric cardiologist after an inconclusive echocardiograph. Exposures Fetal cardiovascular magnetic resonance examination requested by the patient's pediatric cardiologist. Main Outcomes and Measures Any change in patient management because of diagnostic information gained from fetal cardiovascular magnetic resonance imaging. Results A total of 31 fetuses underwent cardiovascular magnetic resonance examination at a median gestational age of 36 weeks (range, 31-39 weeks). Overall, fetal cardiovascular magnetic resonance imaging had clinical utility, affecting patient management and/or parental counseling in 26 cases (84%). For aortic arch anatomy including signs of coarctation (20 fetuses), fetal cardiovascular magnetic resonance imaging added diagnostic information in 16 cases (80%). For assessment of univentricular vs biventricular outcome in borderline left ventricle, unbalanced atrioventricular septal defect, and pulmonary atresia with intact ventricular septum (15 fetuses), fetal cardiovascular magnetic resonance imaging visualized intracardiac anatomy and ventricular function, allowing assessment of outcome in 13 cases (87%). In 4 fetuses with hypoplastic left heart syndrome, fetal cardiovascular magnetic resonance imaging helped delivery planning in 3 cases (75%). Finally, fetal cardiovascular magnetic resonance imaging provided valuable information for parental counseling in 21 cases (68%). Conclusions and Relevance In this cohort study, fetal cardiovascular magnetic resonance imaging added clinically useful information to what was available from echocardiography. These findings suggest that fetal CMR has the potential to affect clinical decision-making in challenging cases of congenital heart defects with inconclusive data from echocardiography. Fetal cardiovascular magnetic resonance imaging showed an association with clinical decision-making, including mode of delivery and early postnatal care, as well as with parental counseling.
Collapse
Affiliation(s)
- Daniel Salehi
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Katrin Fricke
- Pediatric Cardiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Misha Bhat
- Pediatric Cardiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Håkan Arheden
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Petru Liuba
- Pediatric Cardiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
24
|
Charest‐Pekeski AJ, Sheta A, Taniguchi L, McVey MJ, Floh A, Sun L, Aujla T, Cho SKS, Ren J, Crawford‐Lean L, Foreman C, Lim JM, Saini BS, Estrada M, Lam A, Belik J, Mroczek D, Quinn M, Holman SL, Darby JRT, Seed M, Morrison JL, Haller C. Achieving sustained extrauterine life: Challenges of an artificial placenta in fetal pigs as a model of the preterm human fetus. Physiol Rep 2021; 9:e14742. [PMID: 33650787 PMCID: PMC7923578 DOI: 10.14814/phy2.14742] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
Artificial placenta (AP) technology aims to maintain fetal circulation, while promoting the physiologic development of organs. Recent reports of experiments performed in sheep indicate the intrauterine environment can be recreated through the cannulation of umbilical vessels, replacement of the placenta with a low-resistance membrane oxygenator, and incubation of the fetus in fluid. However, it remains to be seen whether animal fetuses similar in size to the extremely preterm human infant that have been proposed as a potential target for this technology can be supported in this way. Preterm Yucatan miniature piglets are similar in size to extremely preterm human infants and share similar umbilical cord anatomy, raising the possibility to serve as a good model to investigate the AP. To characterize fetal cardiovascular physiology, the carotid artery (n = 24) was cannulated in utero and umbilical vein (UV) and umbilical artery were sampled. Fetal UV flow was measured by MRI (n = 16). Piglets were delivered at 98 ± 4 days gestation (term = 115 days), cannulated, and supported on the AP (n = 12) for 684 ± 228 min (range 195-3077 min). UV flow was subphysiologic (p = .002), while heart rate was elevated on the AP compared with in utero controls (p = .0007). We observed an inverse relationship between heart rate and UV flow (r2 = .4527; p < .001) with progressive right ventricular enlargement that was associated with reduced contractility and ultimately hydrops and circulatory collapse. We attribute this to excessive afterload imposed by supraphysiologic circuit resistance and augmented sympathetic activity. We conclude that short-term support of the preterm piglet on the AP is feasible, although we have not been able to attain normal fetal physiology. In the future, we propose to investigate the feasibility of an AP circuit that incorporates a centrifugal pump in our miniature pig model.
Collapse
Affiliation(s)
- Alex J. Charest‐Pekeski
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Translational MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Ayman Sheta
- Department of PediatricsDivision of NeonatologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Luiza Taniguchi
- Division of CardiologyThe Labatt Family Heart CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Mark J. McVey
- Department of Anesthesia and Pain MedicineDepartment of Anesthesiology and Pain MedicineThe Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
- Department of PhysicsRyerson UniversityTorontoOntarioCanada
| | - Alejandro Floh
- Division of CardiologyThe Labatt Family Heart CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Critical Care MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Liqun Sun
- Division of CardiologyThe Labatt Family Heart CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Tanroop Aujla
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Translational MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationClinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Steven K. S. Cho
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Translational MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationClinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jiaqi Ren
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Translational MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Lynn Crawford‐Lean
- Division of Cardiovascular SurgeryThe Labatt Family Heart CentreThe Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
| | - Celeste Foreman
- Division of Cardiovascular SurgeryThe Labatt Family Heart CentreThe Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
| | - Jessie Mei Lim
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Translational MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Brahmdeep S. Saini
- Translational MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Marvin Estrada
- Lab Animal ServicesResearch InstituteThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Anson Lam
- Lab Animal ServicesResearch InstituteThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Jaques Belik
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Dariusz Mroczek
- Division of CardiologyThe Labatt Family Heart CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Megan Quinn
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationClinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Stacey L. Holman
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationClinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationClinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Mike Seed
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Division of CardiologyThe Labatt Family Heart CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Janna L. Morrison
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationClinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Christoph Haller
- Division of Cardiovascular SurgeryThe Labatt Family Heart CentreThe Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
| |
Collapse
|
25
|
Fetal cardiovascular magnetic resonance imaging. Pediatr Radiol 2020; 50:1881-1894. [PMID: 33252756 DOI: 10.1007/s00247-020-04902-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Fetal cardiovascular MRI is showing promise as a clinical diagnostic tool in the setting of congenital heart disease when the cardiac anatomy is unresolved by US or when complementary quantitative data on blood flow, oxygen saturation and hematocrit are required to aid in management. Compared with postnatal cardiovascular MRI, prenatal cardiovascular MRI still has some technical limitations. However, ongoing technical advances continue to improve the robustness and usability of fetal cardiovascular MRI. In this review, we provide an overview of the state of the art of fetal cardiovascular MRI and summarize the current focus of clinical application for this versatile technique.
Collapse
|
26
|
Roberts TA, van Amerom JFP, Uus A, Lloyd DFA, van Poppel MPM, Price AN, Tournier JD, Mohanadass CA, Jackson LH, Malik SJ, Pushparajah K, Rutherford MA, Razavi R, Deprez M, Hajnal JV. Fetal whole heart blood flow imaging using 4D cine MRI. Nat Commun 2020; 11:4992. [PMID: 33020487 PMCID: PMC7536221 DOI: 10.1038/s41467-020-18790-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
Prenatal detection of congenital heart disease facilitates the opportunity for potentially life-saving care immediately after the baby is born. Echocardiography is routinely used for screening of morphological malformations, but functional measurements of blood flow are scarcely used in fetal echocardiography due to technical assumptions and issues of reliability. Magnetic resonance imaging (MRI) is readily used for quantification of abnormal blood flow in adult hearts, however, existing in utero approaches are compromised by spontaneous fetal motion. Here, we present and validate a novel method of MRI velocity-encoding combined with a motion-robust reconstruction framework for four-dimensional visualization and quantification of blood flow in the human fetal heart and major vessels. We demonstrate simultaneous 4D visualization of the anatomy and circulation, which we use to quantify flow rates through various major vessels. The framework introduced here could enable new clinical opportunities for assessment of the fetal cardiovascular system in both health and disease.
Collapse
Affiliation(s)
- Thomas A Roberts
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK.
| | - Joshua F P van Amerom
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Alena Uus
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - David F A Lloyd
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, SE1 7EH, UK
| | - Milou P M van Poppel
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, SE1 7EH, UK
| | - Anthony N Price
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Jacques-Donald Tournier
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Chloe A Mohanadass
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Laurence H Jackson
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Shaihan J Malik
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Kuberan Pushparajah
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, SE1 7EH, UK
| | - Mary A Rutherford
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Reza Razavi
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, SE1 7EH, UK
| | - Maria Deprez
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Joseph V Hajnal
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| |
Collapse
|
27
|
Goolaub DS, Xu J, Schrauben E, Sun L, Roy CW, Marini D, Seed M, Macgowan CK. Fetal Flow Quantification in Great Vessels Using Motion-Corrected Radial Phase Contrast MRI: Comparison With Cartesian. J Magn Reson Imaging 2020; 53:540-551. [PMID: 32815242 DOI: 10.1002/jmri.27334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Phase contrast MRI in the great vessels is a potential clinical tool for managing fetal pathologies. One challenge is the uncontrollable fetal motion, potentially corrupting flow quantifications. PURPOSE To demonstrate improvements in fetal blood flow quantification in great vessels using retrospectively motion-corrected golden-angle radial phase contrast MRI relative to Cartesian phase contrast MRI. STUDY TYPE Method comparison. PHANTOM/SUBJECTS Computer simulation. Seventeen pregnant volunteers. FIELD STRENGTH/SEQUENCE 1.5T and 3T. Cartesian and golden-angle radial phase contrast MRI. ASSESSMENT Through computer simulations, radial (with and without retrospective motion correction) and Cartesian phase contrast MRI were compared using flow deviations. in vivo Cartesian and radial phase contrast MRI measurements and reconstruction qualities were compared in pregnancies. Cartesian data were reconstructed into gated reconstructions (CINEs) after cardiac gating with metric optimized gating (MOG). For radial data, real-time reconstructions were performed for motion correction and MOG followed by CINE reconstructions. STATISTICAL TESTS Wilcoxon signed-rank test. Linear regression. Bland-Altman plots. Student's t-test. RESULTS Simulations showed significant improvements (P < 0.05) in flow accuracy and reconstruction quality with motion correction ([mean/peak] flow errors with ±5 mm motion corruption: Cartesian [35 ± 1/115 ± 7] mL/s, motion uncorrected radial [25 ± 1/75 ± 2] mL/s and motion-corrected radial [1.0 ± 0.5/-5 ± 1] mL/s). in vivo Cartesian reconstructions without motion correction had lower quality than the motion-corrected radial reconstructions (P < 0.05). Across all fetal mean flow measurements, the bias [limits of agreement] between the two measurements were -0.2 [-76, 75] mL/min/kg, while the linear regression coefficients were (Mradial = 0.81 × MCartesian + 29.8 [mL/min/kg], r2 = 0.67). The corresponding measures for the peak fetal flows were -23 [-214, 167] mL/min/kg and (Pradial = 0.95 × PCartesian -1.2 [mL/min/kg], r2 = 0.80). Cartesian reconstructions of low quality showed significantly higher estimated mean and peak (P < 0.05) flows than the corresponding radial reconstructions. DATA CONCLUSION Simulations showed that radial phase contrast MRI with motion compensation improved flow accuracy. For fetal measurements, motion-corrected radial reconstructions showed better image quality than, and different flow values from, Cartesian reconstructions. Level of Evidence 1. Technical Efficacy Stage 1. J. MAGN. RESON. IMAGING 2021;53:540-551.
Collapse
Affiliation(s)
- Datta Singh Goolaub
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jiawei Xu
- Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Schrauben
- Division of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Liqun Sun
- Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher W Roy
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Davide Marini
- Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Abstract
Magnetic resonance imaging (MRI) is an appealing technology for fetal cardiovascular assessment. It can be used to visualize fetal cardiac and vascular anatomy, to quantify fetal blood flow, and to quantify fetal blood oxygen saturation and hematocrit. However, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the human fetus, the lack of conventional cardiac gating methods to synchronize data acquisition, and the potential corruption of MRI data due to maternal respiration and unpredictable fetal movements. In this review, we discuss recent technical advances in accelerated imaging, image reconstruction, cardiac gating, and motion compensation that have enabled dynamic MRI of the fetal heart.
Collapse
|
29
|
Aughwane R, Ingram E, Johnstone ED, Salomon LJ, David AL, Melbourne A. Placental MRI and its application to fetal intervention. Prenat Diagn 2020; 40:38-48. [PMID: 31306507 PMCID: PMC7027916 DOI: 10.1002/pd.5526] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) of placental invasion has been part of clinical practice for many years. The possibility of being better able to assess placental vascularization and function using MRI has multiple potential applications. This review summarises up-to-date research on placental function using different MRI modalities. METHOD We discuss how combinations of these MRI techniques have much to contribute to fetal conditions amenable for therapy such as singletons at high risk for fetal growth restriction (FGR) and monochorionic twin pregnancies for planning surgery and counselling for selective growth restriction and transfusion conditions. RESULTS The whole placenta can easily be visualized on MRI, with a clear boundary against the amniotic fluid, and a less clear placental-uterine boundary. Contrasts such as diffusion weighted imaging, relaxometry, blood oxygenation level dependent MRI and flow and metabolite measurement by dynamic contrast enhanced MRI, arterial spin labeling, or spectroscopic techniques are contributing to our wider understanding of placental function. CONCLUSION The future of placental MRI is exciting, with the increasing availability of multiple contrasts and new models that will boost the capability of MRI to measure oxygen saturation and placental exchange, enabling examination of placental function in complicated pregnancies.
Collapse
Affiliation(s)
| | - Emma Ingram
- Division of Developmental Biology & MedicineUniversity of ManchesterManchesterUK
| | - Edward D. Johnstone
- Division of Developmental Biology & MedicineUniversity of ManchesterManchesterUK
| | - Laurent J. Salomon
- Hôpital Necker‐Enfants Malades, AP‐HP, EHU PACT and LUMIERE PlatformUniversité Paris DescartesParisFrance
| | - Anna L. David
- Institute for Women's HealthUniversity College LondonLondonUK
- National Institute for Health ResearchUniversity College London Hospitals Biomedical Research CentreLondonUK
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
30
|
Ryd D, Sun L, Steding-Ehrenborg K, Bidhult S, Kording F, Ruprecht C, Macgowan CK, Seed M, Aletras AH, Arheden H, Hedström E. Quantification of blood flow in the fetus with cardiovascular magnetic resonance imaging using Doppler ultrasound gating: validation against metric optimized gating. J Cardiovasc Magn Reson 2019; 21:74. [PMID: 31783877 PMCID: PMC6883707 DOI: 10.1186/s12968-019-0586-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Fetal cardiovascular magnetic resonance (CMR) imaging is used clinically and for research, but has been previously limited due to lack of direct gating methods. A CMR-compatible Doppler ultrasound (DUS) gating device has resolved this. However, the DUS-gating method is not validated against the current reference method for fetal phase-contrast blood flow measurements, metric optimized gating (MOG). Further, we investigated how different methods for vessel delineation affect flow volumes and observer variability in fetal flow acquisitions. AIMS To 1) validate DUS gating versus MOG for quantifying fetal blood flow; 2) assess repeatability of DUS gating; 3) assess impact of region of interest (ROI) size on flow volume; and 4) compare time-resolved and static delineations for flow volume and observer variability. METHODS Phase-contrast CMR was acquired in the fetal descending aorta (DAo) and umbilical vein by DUS gating and MOG in 22 women with singleton pregnancy in gestational week 360 (265-400) with repeated scans in six fetuses. Impact of ROI size on measured flow was assessed for ROI:s 50-150% of the vessel diameter. Four observers from two centers provided time-resolved and static delineations. Bland-Altman analysis was used to determine agreement between both observers and methods. RESULTS DAo flow was 726 (348-1130) ml/min and umbilical vein flow 366 (150-782) ml/min by DUS gating. Bias±SD for DUS-gating versus MOG were - 45 ± 122 ml/min (-6 ± 15%) for DAo and 19 ± 136 ml/min (2 ± 24%) for umbilical vein flow. Repeated flow measurements in the same fetus showed similar volumes (median CoV = 11% (DAo) and 23% (umbilical vein)). Region of interest 50-150% of vessel diameter yielded flow 35-120%. Bias±SD for time-resolved versus static DUS-gated flow was 33 ± 39 ml/min (4 ± 6%) for DAo and 11 ± 84 ml/min (2 ± 15%) for umbilical vein flow. CONCLUSIONS Quantification of blood flow in the fetal DAo and umbilical vein using DUS-gated phase-contrast CMR is feasible and agrees with the current reference method. Repeatability was generally high for CMR fetal blood flow assessment. An ROI similar to the vessel area or slightly larger is recommended. A static ROI is sufficient for fetal flow quantification using currently available CMR sequences.
Collapse
Affiliation(s)
- Daniel Ryd
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Liqun Sun
- Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON Canada
| | - Katarina Steding-Ehrenborg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
- Department of Health Sciences, Physiotherapy, Lund University, Lund, Sweden
| | - Sebastian Bidhult
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Fabian Kording
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ruprecht
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher K. Macgowan
- Department of Medical Biophysics, University of Toronto and Hospital for Sick Children, Toronto, ON Canada
| | - Michael Seed
- Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON Canada
- Department of Diagnostic Imaging, University of Toronto and Hospital for Sick Children, Toronto, ON Canada
| | - Anthony H. Aletras
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
- School of Medicine, Laboratory of Computing, Medical Informatics and Biomedical, Imaging Technologies, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Håkan Arheden
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
31
|
Shulman M, Cho E, Aasi B, Cheng J, Nithiyanantham S, Waddell N, Sussman D. Quantitative analysis of fetal magnetic resonance phantoms and recommendations for an anthropomorphic motion phantom. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:257-272. [PMID: 31487004 DOI: 10.1007/s10334-019-00775-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To provide a review and quantitative analysis of the available fetal MR imaging phantoms. MATERIALS AND METHODS A literature search was conducted across Pubmed, Google Scholar, and Ryerson University Library databases to identify fetal MR imaging phantoms. Phantoms were graded on a semi-quantitative scale in regards to four evaluation categories: (1) anatomical accuracy in size and shape, (2) dielectric conductivity similar to the simulated tissue, (3) relaxation times similar to simulated tissue, and (4) physiological motion similar to fetal gross body, cardiovascular, and breathing motion. This was followed by statistical analysis to identify significant findings. RESULTS Seventeen fetal phantoms were identified and had an average overall percentage accuracy of 26%, with anatomical accuracy being satisfied the most (56%) and physiological motion the least (7%). Phantoms constructed using 3D printing were significantly more accurate than conventionally constructed phantoms. DISCUSSION Currently available fetal phantoms lack accuracy and motion simulation. 3D printing may lead to higher accuracy compared with traditional manufacturing. Future research needs to focus on properly simulating both fetal anatomy and physiological motion to produce a phantom that is appropriate for fetal MRI sequence development and optimization.
Collapse
Affiliation(s)
- Michael Shulman
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Eunyoung Cho
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Bipin Aasi
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Jin Cheng
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Saiee Nithiyanantham
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Nicole Waddell
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Dafna Sussman
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada. .,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada. .,The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada. .,Department of Biomedical Physics, Ryerson University, Toronto, ON, M5B 2K3, Canada.
| |
Collapse
|
32
|
Roy CW, Marini D, Lloyd DFA, Mawad W, Yoo SJ, Schrauben EM, Jaeggi E, Seed M, Macgowan CK. Preliminary Experience Using Motion Compensated CINE Magnetic Resonance Imaging to Visualise Fetal Congenital Heart Disease. Circ Cardiovasc Imaging 2019; 11:e007745. [PMID: 30558501 DOI: 10.1161/circimaging.118.007745] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Recent advances in cardiovascular magnetic resonance (CMR) imaging have facilitated CINE imaging of the fetal heart. In this work, a preliminary investigation of the utility of multislice CINE CMR for assessing fetal congenital heart disease is performed and compared with echocardiography. METHODS AND RESULTS Multislice CINE CMR and echocardiography images were acquired in 25 pregnant women wherein the fetus had a suspected congenital heart defect based on routine obstetric ultrasound. Pathognomonic images were identified for each subject for qualitative comparison of CMR and echocardiography. Quantitative comparison of CMR and echocardiography was then performed by 2 reviewers using a binary scoring of 9 fetal cardiac anatomic features (identifiable/not-identifiable). Pathognomonic images demonstrated the ability of CMR to visualize a variety of congenital heart defects. Overall CMR was able to identify the majority of the 9 assessed fetal cardiac anatomic features (reviewer 1, 7.1±2.1; reviewer 2, 6.7±2.3). Although both reviewers identified more anatomic features with echocardiography (reviewer 1, 7.8±2.3; reviewer 2, 7.5±2.4; P=0.01), combining information from both modalities enabled identification of additional anatomic features across subjects (reviewer 1, 8.4±1.3; reviewer 2, 8.4±1.2). The primary limiting factor for CMR was inadequate coverage of the fetal cardiac anatomy or noncontiguous slices because of gross fetal movement. CONCLUSIONS CINE CMR enables visualization of fetal congenital heart disease. This work demonstrates the potential of CMR for diagnosing congenital heart disease in utero in conjunction with echocardiography during late gestation.
Collapse
Affiliation(s)
- Christopher W Roy
- Department of Medical Biophysics, University of Toronto, Canada (C.W.R., C.K.M.).,Division of Translational Medicine (C.W.R., E.M.S., E.J., C.K.M)
| | - Davide Marini
- Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - David F A Lloyd
- Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (D.F.A.L.).,Departments of Paediatric and Fetal Cardiology, Evelina Children's Hospital, London, United Kingdom (D.F.A.L.)
| | - Wadi Mawad
- Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - Shi-Joon Yoo
- Departments of Pediatrics and Diagnostic Imaging, University of Toronto, Canada (S.-J.Y., E.J., M.S.).,Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - Eric M Schrauben
- Division of Translational Medicine (C.W.R., E.M.S., E.J., C.K.M)
| | - Edgar Jaeggi
- Departments of Pediatrics and Diagnostic Imaging, University of Toronto, Canada (S.-J.Y., E.J., M.S.).,Division of Translational Medicine (C.W.R., E.M.S., E.J., C.K.M).,Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - Mike Seed
- Departments of Pediatrics and Diagnostic Imaging, University of Toronto, Canada (S.-J.Y., E.J., M.S.).,Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - Christopher K Macgowan
- Department of Medical Biophysics, University of Toronto, Canada (C.W.R., C.K.M.).,Division of Translational Medicine (C.W.R., E.M.S., E.J., C.K.M)
| |
Collapse
|
33
|
Marini D, van Amerom J, Saini BS, Sun L, Seed M. MR imaging of the fetal heart. J Magn Reson Imaging 2019; 51:1030-1044. [PMID: 31190452 DOI: 10.1002/jmri.26815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
In the last decade, technological advances have enabled the acquisition of high spatial and temporal resolution cardiac magnetic resonance imaging (MRI) in the fetus. Fetal cardiac MRI has emerged as an alternative to ultrasound, which may be helpful to confirm a diagnosis of congenital heart disease when ultrasound assessment is hampered, for example in late gestation or in the setting of oligohydramnios. MRI also provides unique physiologic information, including vessel blood flow, oxygen saturation and hematocrit, which may be helpful to investigate cardiac and placental diseases. In this review, we summarize some of the main techniques and significant advances in the field to date. Level of Evidence: 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2020;51:1030-1044.
Collapse
Affiliation(s)
- Davide Marini
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua van Amerom
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| | - Brahmdeep S Saini
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| | - Liqun Sun
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| | - Mike Seed
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
34
|
Roy CW, Marini D, Segars WP, Seed M, Macgowan CK. Fetal XCMR: a numerical phantom for fetal cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 2019; 21:29. [PMID: 31118056 PMCID: PMC6532268 DOI: 10.1186/s12968-019-0539-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Validating new techniques for fetal cardiovascular magnetic resonance (CMR) is challenging due to random fetal movement that precludes repeat measurements. Consequently, fetal CMR development has been largely performed using physical phantoms or postnatal volunteers. In this work, we present an open-source simulation designed to aid in the development and validation of new approaches for fetal CMR. Our approach, fetal extended Cardiac-Torso cardiovascular magnetic resonance imaging (Fetal XCMR), builds on established methods for simulating CMR acquisitions but is tailored toward the dynamic physiology of the fetal heart and body. We present comparisons between the Fetal XCMR phantom and data acquired in utero, resulting in image quality, anatomy, tissue signals and contrast. METHODS Existing extended Cardiac-Torso models are modified to create maternal and fetal anatomy, combined according to simulated motion, mapped to CMR contrast, and converted to CMR data. To provide a comparison between the proposed simulation and experimental fetal CMR images acquired in utero, images from a typical scan of a pregnant woman are included and simulated acquisitions were generated using matching CMR parameters, motion and noise levels. Three reconstruction (static, real-time, and CINE), and two motion estimation methods (translational motion, fetal heart rate) from data acquired in transverse, sagittal, coronal, and short-axis planes of the fetal heart were performed to compare to in utero acquisitions and demonstrate feasibility of the proposed simulation framework. RESULTS Overall, CMR contrast, morphologies, and relative proportions of the maternal and fetal anatomy are well represented by the Fetal XCMR images when comparing the simulation to static images acquired in utero. Additionally, visualization of maternal respiratory and fetal cardiac motion is comparable between Fetal XCMR and in utero real-time images. Finally, high quality CINE image reconstructions provide excellent delineation of fetal cardiac anatomy and temporal dynamics for both data types. CONCLUSION The fetal CMR phantom provides a new method for evaluating fetal CMR acquisition and reconstruction methods by simulating the underlying anatomy and physiology. As the field of fetal CMR continues to grow, new methods will become available and require careful validation. The fetal CMR phantom is therefore a powerful and convenient tool in the continued development of fetal cardiac imaging.
Collapse
Affiliation(s)
- Christopher W. Roy
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Vaud Switzerland
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
- Division of Translational Medicine, Peter Gilgan Centre for Research & Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - Davide Marini
- Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - William Paul Segars
- Department of Radiology, Duke University Medical Center, Durham, North Carolina USA
| | - Mike Seed
- Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Ontario Canada
- Departments of Pediatrics and Diagnostic Imaging, University of Toronto, Toronto, Ontario Canada
| | - Christopher K. Macgowan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
- Division of Translational Medicine, Peter Gilgan Centre for Research & Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| |
Collapse
|
35
|
Tavares de Sousa M, Hecher K, Yamamura J, Kording F, Ruprecht C, Fehrs K, Behzadi C, Adam G, Schoennagel BP. Dynamic fetal cardiac magnetic resonance imaging in four-chamber view using Doppler ultrasound gating in normal fetal heart and in congenital heart disease: comparison with fetal echocardiography. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2019; 53:669-675. [PMID: 30381848 DOI: 10.1002/uog.20167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To investigate the diagnostic performance of dynamic fetal cardiac magnetic resonance imaging (MRI), using a MR-compatible Doppler ultrasound (DUS) device for fetal cardiac gating, in differentiating fetuses with congenital heart disease from those with a normal heart, and to compare the technique with fetal echocardiography. METHODS This was a prospective study of eight fetuses with a normal heart and four with congenital heart disease (CHD), at a median of 34 (range, 28-36) weeks' gestation. Dynamic fetal cardiac MRI was performed using a DUS device for direct cardiac gating. The four-chamber view was evaluated according to qualitative findings. Measurements of the length of the left and right ventricles, diameter of the tricuspid and mitral valves, myocardial wall thickness, transverse cardiac diameter and left ventricular planimetry were performed. Fetal echocardiography and postnatal diagnoses were considered the reference standards. RESULTS Direct cardiac gating allowed continuous triggering of the fetal heart, showing high temporal and spatial resolution. Both fetal cardiac MRI and echocardiography in the four-chamber view detected pathological findings in three of the 12 fetuses. Qualitative evaluation revealed overall consistency between echocardiography and MRI. On both echocardiography and MRI, quantitative measurements revealed significant differences between fetuses with a normal heart and those with CHD with respect to the length of the right (P < 0.01 for both) and left (P < 0.01 for both) ventricles and transverse cardiac diameter (P < 0.05 and P < 0.01, respectively). Tricuspid valve diameter on cardiac MRI was found to be significantly different in healthy fetuses from in those with CHD (P < 0.05). CONCLUSIONS For the first time, this study has shown that dynamic fetal cardiac MRI in the four-chamber view, using external cardiac gating, allows evaluation of cardiac anatomy and diagnosis of congenital heart disease in agreement with fetal echocardiography. Dynamic fetal cardiac MRI may be useful as a second-line investigation if conditions for fetal echocardiography are unfavorable. Copyright © 2018 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- M Tavares de Sousa
- University Medical Center Hamburg-Eppendorf, Department of Obstetrics and Fetal Medicine, Hamburg, Germany
| | - K Hecher
- University Medical Center Hamburg-Eppendorf, Department of Obstetrics and Fetal Medicine, Hamburg, Germany
| | - J Yamamura
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - F Kording
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - C Ruprecht
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - K Fehrs
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - C Behzadi
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - G Adam
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - B P Schoennagel
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| |
Collapse
|
36
|
Ducas R, Nguyen ET, Wald RM. Contemporary considerations for the use of cardiovascular magnetic resonance imaging during pregnancy. Obstet Med 2019; 12:158-163. [PMID: 31853254 DOI: 10.1177/1753495x19832166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/29/2019] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular imaging during pregnancy is frequently used to help direct diagnosis and management for women with known or suspected cardiac disease. Although echocardiography is the most commonly used imaging modality in pregnancy, cardiovascular magnetic resonance imaging is an important and increasingly used tool, which can provide complementary, and oftentimes incremental, information regarding cardiovascular anatomy, ventricular function, and vascular flows. Advantages of cardiovascular magnetic resonance imaging over echocardiography and other imaging techniques include superior reproducibility, excellent cross-sectional evaluation of cardiac structures, high spatial resolution, and lack of ionizing radiation (a limitation of computed tomography and conventional catheter-based angiography). Cardiovascular magnetic resonance imaging in the absence of gadolinium-based contrast agents poses no known risk to the mother or fetus and its applications in pregnancy are expanding. Clinicians should be familiar with the role of cardiovascular magnetic resonance imaging in pregnancy to optimize and enhance care for mothers with heart disease.
Collapse
Affiliation(s)
- Robin Ducas
- Department of Internal Medicine, Section of Cardiology and Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Canada
| | - Elsie T Nguyen
- Joint Department of Medical Imaging, Cardiothoracic Division, Peter Munk Cardiac Center, Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Rachel M Wald
- Joint Department of Medical Imaging, Cardiothoracic Division, Peter Munk Cardiac Center, Toronto General Hospital, University of Toronto, Toronto, Canada.,Department of Medicine, Toronto Congenital Cardiac Centre for Adults, Peter Munk Cardiac Centre, University of Toronto, Toronto, Canada.,Departments of Medicine and Obstetrics and Gynecology, Special Pregnancy Program, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Fetal dynamic phase-contrast MR angiography using ultrasound gating and comparison with Doppler ultrasound measurements. Eur Radiol 2019; 29:4169-4176. [PMID: 30617486 DOI: 10.1007/s00330-018-5940-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/28/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To investigate the feasibility of fetal phase-contrast (PC)-MR angiography of the descending aorta (AoD) using an MR-compatible Doppler ultrasound sensor (DUS) for fetal cardiac gating and to compare velocimetry with Doppler ultrasound measurements. METHODS In this prospective study, 2D PC-MR angiography was performed in 12 human fetuses (mean gestational age 32.8 weeks) using an MR-compatible DUS for gating of the fetal heart at 1.5 T. Peak flow velocities in the fetal AoD were compared with Doppler ultrasound measurements performed on the same day. Reproducibility of PC-MR measurements was tested by repeated PC-MR in five fetuses. RESULTS Dynamic PC-MR angiography in the AoD was successfully performed in all fetuses using the DUS, with an average fetal heart rate of 140 bpm (range 129-163). Time-velocity curves revealed typical arterial blood flow patterns. PC-MR mean flow velocity and mean flux were 21.2 cm/s (range 8.6-36.8) and 8.4 ml/s (range 3.2-14.6), respectively. A positive association between PC-MR mean flux and stroke volume with gestational age was obtained (r = 0.66, p = 0.02 and r = 0.63, p = 0.03). PC-MR and Doppler ultrasound peak velocities revealed a highly significant correlation (r = 0.8, p < 0.002). Peak velocities were lower for PC-MR with 69.1 cm/s (range 39-125) compared with 96.7 cm/s (range 60-142) for Doppler ultrasound (p < 0.001). Reproducibility of PC-MR was high (p > 0.05). CONCLUSION The MR-compatible DUS for fetal cardiac gating allows for PC-MR angiography in the fetal AoD. Comparison with Doppler ultrasound revealed a highly significant correlation of peak velocities with underestimation of PC-MR velocities. This new technique for direct fetal cardiac gating indicates the potential of PC-MR angiography for assessing fetal hemodynamics. KEY POINTS • The developed MR-compatible Doppler ultrasound sensor allows direct fetal cardiac gating and can be used for prenatal dynamic cardiovascular MRI. • The MR-compatible Doppler ultrasound sensor was successfully applied to perform intrauterine phase-contrast MR angiography of the fetal aorta, which revealed a highly significant correlation with Doppler ultrasound measurements. • As fetal flow hemodynamics is an important parameter in the diagnosis and management of fetal pathologies, fetal phase-contrast MR angiography may offer an alternative imaging method in addition to Doppler ultrasound and develop as a second line tool in the evaluation of fetal flow hemodynamics.
Collapse
|
38
|
Bidhult S, Töger J, Heiberg E, Carlsson M, Arheden H, Aletras AH, Hedström E. Independent validation of metric optimized gating for fetal cardiovascular phase-contrast flow imaging. Magn Reson Med 2019; 81:495-503. [PMID: 30159933 PMCID: PMC6282515 DOI: 10.1002/mrm.27392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE To validate metric optimized gating phase-contrast MR (MOG PC-MR) flow measurements for a range of fetal flow velocities in phantom experiments. 2) To investigate intra- and interobserver variability for fetal flow measurements at an imaging center other than the original site. METHODS MOG PC-MR was compared to timer/beaker measurements in a pulsatile flow phantom using a heart rate (∼145 bpm), nozzle diameter (∼6 mm), and flow range (∼130-700 mL/min) similar to fetal imaging. Fifteen healthy fetuses were included for intra- and interobserver variability in the fetal descending aorta and umbilical vein. RESULTS Phantom MOG PC-MR flow bias and variability was 2% ± 23%. Accuracy of MOG PC-MR was degraded for flow profiles with low velocity-to-noise ratio. Intra- and interobserver coefficients of variation were 6% and 19%, respectively, for fetal descending aorta; and 10% and 17%, respectively, for the umbilical vein. CONCLUSION Phantom validation showed good agreement between MOG and conventionally gated PC-MR, except for cases with low velocity-to-noise ratio, which resulted in MOG misgating and underestimated peak velocities and warranted optimization of sequence parameters to individual fetal vessels. Inter- and intraobserver variability for fetal MOG PC-MR imaging were comparable to previously reported values.
Collapse
Affiliation(s)
- Sebastian Bidhult
- Lund University, Skane University HospitalDepartment of Clinical Sciences Lund, Clinical PhysiologyLundSweden
- Lund UniversityDepartment of Biomedical Engineering, Faculty of EngineeringLundSweden
| | - Johannes Töger
- Lund University, Skane University HospitalDepartment of Clinical Sciences Lund, Clinical PhysiologyLundSweden
| | - Einar Heiberg
- Lund University, Skane University HospitalDepartment of Clinical Sciences Lund, Clinical PhysiologyLundSweden
- Lund UniversityDepartment of Biomedical Engineering, Faculty of EngineeringLundSweden
| | - Marcus Carlsson
- Lund University, Skane University HospitalDepartment of Clinical Sciences Lund, Clinical PhysiologyLundSweden
| | - Håkan Arheden
- Lund University, Skane University HospitalDepartment of Clinical Sciences Lund, Clinical PhysiologyLundSweden
| | - Anthony H. Aletras
- Lund University, Skane University HospitalDepartment of Clinical Sciences Lund, Clinical PhysiologyLundSweden
- Laboratory of Computing, Medical Informatics and Biomedical–Imaging Technologies, School of MedicineAristotle University of ThessalonikiGreece
| | - Erik Hedström
- Lund University, Skane University HospitalDepartment of Clinical Sciences Lund, Clinical PhysiologyLundSweden
- Lund University, Skane University HospitalDepartment of Clinical Sciences Lund, Diagnostic RadiologyLundSweden
| |
Collapse
|
39
|
Antoni ST, Lehmann S, Neidhardt M, Fehrs K, Ruprecht C, Kording F, Adam G, Schupp S, Schlaefer A. Model checking for trigger loss detection during Doppler ultrasound-guided fetal cardiovascular MRI. Int J Comput Assist Radiol Surg 2018; 13:1755-1766. [PMID: 30078152 DOI: 10.1007/s11548-018-1832-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/25/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE Ultrasound (US) is the state of the art in prenatal diagnosis to depict fetal heart diseases. Cardiovascular magnetic resonance imaging (CMRI) has been proposed as a complementary diagnostic tool. Currently, only trigger-based methods allow the temporal and spatial resolutions necessary to depict the heart over time. Of these methods, only Doppler US (DUS)-based triggering is usable with higher field strengths. DUS is sensitive to motion. This may lead to signal and, ultimately, trigger loss. If too many triggers are lost, the image acquisition is stopped, resulting in a failed imaging sequence. Moreover, losing triggers may prolong image acquisition. Hence, if no actual trigger can be found, injected triggers are added to the signal based on the trigger history. METHOD We use model checking, a technique originating from the computer science domain that formally checks if a model satisfies given requirements, to simultaneously model heart and respiratory motion and to decide whether respiration has a prominent effect on the signal. Using bounds on the physiological parameters and their variability, the method detects when changes in the signal are due to respiration. We use this to decide when to inject a trigger. RESULTS In a real-world scenario, we can reduce the number of falsely injected triggers by 94% from more than 87% to less than 5%. On a subset of motion that would allow CMRI, the number can be further reduced to below 0.2%. In a study using simulations with a robot, we show that our method works for different types of motions, motion ranges, starting positions and heartbeat traces. CONCLUSION While DUS is a promising approach for fetal CMRI, correct trigger injection is critical. Our model checking method can reduce the number of wrongly injected triggers substantially, providing a key prerequisite for fast and artifact free CMRI.
Collapse
Affiliation(s)
- Sven-Thomas Antoni
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany.
| | - Sascha Lehmann
- Institute for Software Systems, Hamburg University of Technology, Hamburg, Germany
| | - Maximilian Neidhardt
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany
| | - Kai Fehrs
- Center for Radiology and Endoscopy, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ruprecht
- Center for Radiology and Endoscopy, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Kording
- Center for Radiology and Endoscopy, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Center for Radiology and Endoscopy, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sibylle Schupp
- Institute for Software Systems, Hamburg University of Technology, Hamburg, Germany
| | - Alexander Schlaefer
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
40
|
Kording F, Yamamura J, de Sousa MT, Ruprecht C, Hedström E, Aletras AH, Ellen Grant P, Powell AJ, Fehrs K, Adam G, Kooijman H, Schoennagel BP. Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating. J Cardiovasc Magn Reson 2018; 20:17. [PMID: 29530064 PMCID: PMC5846256 DOI: 10.1186/s12968-018-0440-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/26/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fetal cardiovascular magnetic resonance (CMR) imaging may provide a valuable adjunct to fetal echocardiography in the evaluation of congenital cardiovascular pathologies. However, dynamic fetal CMR is difficult due to the lack of direct in-utero cardiac gating. The aim of this study was to investigate the effectiveness of a newly developed Doppler ultrasound (DUS) device in humans for fetal CMR gating. METHODS Fifteen fetuses (gestational age 30-39 weeks) were examined using 1.5 T CMR scanners at three different imaging sites. A newly developed CMR-compatible DUS device was used to generate gating signals from fetal cardiac motion. Gated dynamic balanced steady-state free precession images were acquired in 4-chamber and short-axis cardiac views. Gating signals during data acquisition were analyzed with respect to trigger variability and sensitivity. Image quality was assessed by measuring endocardial blurring (EB) and by image evaluation using a 4-point scale. Left ventricular (LV) volumetry was performed using the single-plane ellipsoid model. RESULTS Gating signals from the fetal heart were detected with a variability of 26 ± 22 ms and a sensitivity of trigger detection of 96 ± 4%. EB was 2.9 ± 0.6 pixels (4-chamber) and 2.5 ± 0.1 pixels (short axis). Image quality scores were 3.6 ± 0.6 (overall), 3.4 ± 0.7 (mitral valve), 3.4 ± 0.7 (foramen ovale), 3.6 ± 0.7 (atrial septum), 3.7 ± 0.5 (papillary muscles), 3.8 ± 0.4 (differentiation myocardium/lumen), 3.7 ± 0.5 (differentiation myocardium/lung), and 3.9 ± 0.4 (systolic myocardial thickening). Inter-observer agreement for the scores was moderate to very good (kappa 0.57-0.84) for all structures. LV volumetry revealed mean values of 2.8 ± 1.2 ml (end-diastolic volume), 0.9 ± 0.4 ml (end systolic volume), 1.9 ± 0.8 ml (stroke volume), and 69.1 ± 8.4% (ejection fraction). CONCLUSION High-quality dynamic fetal CMR was successfully performed using a newly developed DUS device for direct fetal cardiac gating. This technique has the potential to improve the utility of fetal CMR in the evaluation of congenital pathologies.
Collapse
Affiliation(s)
- Fabian Kording
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jin Yamamura
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Manuela Tavares de Sousa
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christian Ruprecht
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Erik Hedström
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Diagnostic Radiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Anthony H. Aletras
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| | - P. Ellen Grant
- Departments of Radiology and Medicine, Boston Children’s Hospital, and Harvard Medical School, Boston, MA USA
| | - Andrew J. Powell
- Department of Cardiology and Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kai Fehrs
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | | - Bjoern P. Schoennagel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
41
|
Nye GA, Ingram E, Johnstone ED, Jensen OE, Schneider H, Lewis RM, Chernyavsky IL, Brownbill P. Human placental oxygenation in late gestation: experimental and theoretical approaches. J Physiol 2018; 596:5523-5534. [PMID: 29377190 PMCID: PMC6265570 DOI: 10.1113/jp275633] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023] Open
Abstract
The placenta is crucial for life. It is an ephemeral but complex organ acting as the barrier interface between maternal and fetal circulations, providing exchange of gases, nutrients, hormones, waste products and immunoglobulins. Many gaps exist in our understanding of the detailed placental structure and function, particularly in relation to oxygen handling and transfer in healthy and pathological states in utero. Measurements to understand oxygen transfer in vivo in the human are limited, with no general agreement on the most appropriate methods. An invasive method for measuring partial pressure of oxygen in the intervillous space through needle electrode insertion at the time of Caesarean sections has been reported. This allows for direct measurements in vivo whilst maintaining near normal placental conditions; however, there are practical and ethical implications in using this method for determination of placental oxygenation. Furthermore, oxygen levels are likely to be highly heterogeneous within the placenta. Emerging non-invasive techniques, such as MRI, and ex vivo research are capable of enhancing and improving current imaging methodology for placental villous structure and increase the precision of oxygen measurement within placental compartments. These techniques, in combination with mathematical modelling, have stimulated novel cross-disciplinary approaches that could advance our understanding of placental oxygenation and its metabolism in normal and pathological pregnancies, improving clinical treatment options and ultimately outcomes for the patient.
Collapse
Affiliation(s)
- Gareth A Nye
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Emma Ingram
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Edward D Johnstone
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Oliver E Jensen
- School of Mathematics, University of Manchester, Manchester, M13 9PL, UK
| | - Henning Schneider
- Department of Obstetrics and Gynecology, Inselspital, University of Bern, CH-3010, Bern, Switzerland
| | - Rohan M Lewis
- Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Igor L Chernyavsky
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,School of Mathematics, University of Manchester, Manchester, M13 9PL, UK
| | - Paul Brownbill
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| |
Collapse
|
42
|
Rodríguez-Soto AE, Langham MC, Abdulmalik O, Englund EK, Schwartz N, Wehrli FW. MRI quantification of human fetal O 2 delivery rate in the second and third trimesters of pregnancy. Magn Reson Med 2018; 80:1148-1157. [PMID: 29359353 DOI: 10.1002/mrm.27094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Ana E Rodríguez-Soto
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Langham
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Erin K Englund
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nadav Schwartz
- Maternal and Child Health Research Program, Department of OBGYN, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Sun L, Macgowan CK, Portnoy S, Sled JG, Yoo SJ, Grosse-Wortmann L, Jaeggi E, Kingdom J, Seed M. New advances in fetal cardiovascular magnetic resonance imaging for quantifying the distribution of blood flow and oxygen transport: Potential applications in fetal cardiovascular disease diagnosis and therapy. Echocardiography 2017; 34:1799-1803. [DOI: 10.1111/echo.13760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Liqun Sun
- Department of Pediatrics; University of Toronto and Hospital for Sick Children; Toronto ON Canada
| | - Christopher K. Macgowan
- Department of Physiology and Experimental Medicine; University of Toronto and Hospital for Sick Children; Toronto ON Canada
| | - Sharon Portnoy
- Department of Physiology and Experimental Medicine; University of Toronto and Hospital for Sick Children; Toronto ON Canada
| | - John G. Sled
- Department of Physiology and Experimental Medicine; University of Toronto and Hospital for Sick Children; Toronto ON Canada
| | - Shi-Joon Yoo
- Department of Diagnostic Imaging; University of Toronto and Hospital for Sick Children; Toronto ON Canada
| | - Lars Grosse-Wortmann
- Department of Pediatrics; University of Toronto and Hospital for Sick Children; Toronto ON Canada
- Department of Diagnostic Imaging; University of Toronto and Hospital for Sick Children; Toronto ON Canada
| | - Edgar Jaeggi
- Department of Pediatrics; University of Toronto and Hospital for Sick Children; Toronto ON Canada
| | - John Kingdom
- Department of Obstetrics and Gynecology; University of Toronto and Mount Sinai Hospital; Toronto ON Canada
| | - Mike Seed
- Department of Pediatrics; University of Toronto and Hospital for Sick Children; Toronto ON Canada
- Department of Diagnostic Imaging; University of Toronto and Hospital for Sick Children; Toronto ON Canada
| |
Collapse
|
44
|
Duan AQ, Darby JRT, Soo JY, Lock MC, Zhu MY, Flynn LV, Perumal SR, Macgowan CK, Selvanayagam JB, Morrison JL, Seed M. Feasibility of phase-contrast cine magnetic resonance imaging for measuring blood flow in the sheep fetus. Am J Physiol Regul Integr Comp Physiol 2017; 317:R780-R792. [PMID: 29351431 DOI: 10.1152/ajpregu.00273.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phase-contrast cine MRI (PC-MRI) is the gold-standard noninvasive technique for measuring vessel blood flow and has previously been applied in the human fetal circulation. We aimed to assess the feasibility of using PC-MRI to define the distribution of the fetal circulation in sheep. Fetuses were catheterized at 119-120 days of gestation (term, 150 days) and underwent MRI at ∼123 days of gestation under isoflurane anesthesia, ventilated at a FIO2 of 1.0. PC-MRI was performed using a fetal arterial blood pressure catheter signal for cardiac triggering. Blood flows were measured in the major fetal vessels, including the main pulmonary artery, ascending and descending aorta, superior vena cava, ductus arteriosus, left and right pulmonary arteries, umbilical vein, ductus venosus, and common carotid artery and were indexed to estimated fetal weight. The combined ventricular output, pulmonary blood flow, and flow across the foramen ovale were calculated from vessel flows. Intraobserver and interobserver agreement and reproducibility was assessed. Blood flow measurements were successfully obtained in 61 out of 74 vessels (82.4%) interrogated in 9 fetuses. There was good intraobserver [R = 0.998, P < 0.0001; intraclass correlation (ICC) = 0.997] and interobserver agreement (R = 0.996, P < 0.0001; ICC = 0.996). Repeated MRI measurements showed good reproducibility (R = 0.989, P = 0.0002; ICC = 0.990). We conclude that PC-MRI using fetal catheters for gating triggers is feasible in the major vessels of late gestation fetal sheep. This approach may provide a useful new tool for assessing the circulatory characteristics of fetal sheep models of human disease, including fetal growth restriction and congenital heart disease.
Collapse
Affiliation(s)
- An Qi Duan
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Meng Yuan Zhu
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucy V Flynn
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging, and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, Adelaide, Australia
| | - Christopher K Macgowan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Mike Seed
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Crowe LA, Manasseh G, Chmielewski A, Hachulla AL, Speicher D, Greiser A, Muller H, de Perrot T, Vallee JP, Salomir R. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T. IEEE Trans Biomed Eng 2017; 65:294-306. [PMID: 29053451 DOI: 10.1109/tbme.2017.2764111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. METHODS A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. RESULTS Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. CONCLUSION We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. SIGNIFICANCE The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.
Collapse
|
46
|
Duan AQ, Lock MC, Perumal SR, Darby JR, Soo JY, Selvanayagam JB, Macgowan CK, Seed M, Morrison JL. Feasibility of detecting myocardial infarction in the sheep fetus using late gadolinium enhancement CMR imaging. J Cardiovasc Magn Reson 2017; 19:69. [PMID: 28903760 PMCID: PMC5598048 DOI: 10.1186/s12968-017-0383-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/29/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging has enabled the accurate assessment of myocardial infarction (MI). However, LGE CMR has not been performed successfully in the fetus, where it could be useful for animal studies of interventions to promote cardiac regeneration. We believe that LGE imaging could allow us to document the presence, extent and effect of MI in utero and would thereby expand our capacity for conducting fetal sheep MI research. We therefore aimed to investigate the feasibility of using LGE to detect MI in sheep fetuses. METHODS Six sheep fetuses underwent a thoracotomy and ligation of a left anterior descending (LAD) coronary artery branch; while two fetuses underwent a sham surgery. LGE CMR was performed in a subset of fetuses immediately after the surgery and three days later. Early gadolinium enhancement (EGE) CMR was also performed in a subset of fetuses on both days. Cine imaging of the heart was performed to measure ventricular function. RESULTS The imaging performed immediately after LAD ligation revealed no evidence of infarct on LGE (n=3). Two of four infarcted fetuses (50%) showed hypoenhancement at the infarct site on the EGE images. Three days after the ligation, LGE images revealed a clear, hyper-enhanced infarct zone in four of the five infarcted fetuses (80%). No hyper-enhanced infarct zone was seen on the one sham fetus that underwent LGE CMR. No hypoenhancement could be seen in the EGE images in either the sham (n=1) or the infarcted fetus (n=1). No regional wall motion abnormalities were apparent in two of the five infarcted fetuses. CONCLUSION LGE CMR detected the MI three days after LAD ligation, but not immediately after. Using available methods, EGE imaging was less useful for detecting deficits in perfusion. Our study provides evidence for the ability of a non-invasive tool to monitor the progression of cardiac repair and damage in fetuses with MI. However, further investigation into the optimal timing of LGE and EGE scans and improvement of the sequences should be pursued with the aim of expanding our capacity to monitor cardiac regeneration after MI in fetal sheep.
Collapse
Affiliation(s)
- An Qi Duan
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON M5S 1A8 Canada
| | - Mitchell C. Lock
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Frome Road, Adelaide, South Australia 5000 Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, 101 Blacks Road, Gilles Plains, Adelaide, South Australia 5086 Australia
| | - Jack R. Darby
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Frome Road, Adelaide, South Australia 5000 Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Frome Road, Adelaide, South Australia 5000 Australia
| | - Joseph B. Selvanayagam
- Cardiac Imaging Research Group, Department of Heart Health, South Australian Health & Medical Research Institute, and Flinders University, GPO Box 2100, Adelaide, South Australia 5001 Australia
| | - Christopher K. Macgowan
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Room 08.9714, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - Mike Seed
- Division of Cardiology, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Frome Road, Adelaide, South Australia 5000 Australia
| |
Collapse
|
47
|
Consistent reconstruction of 4D fetal heart ultrasound images to cope with fetal motion. Int J Comput Assist Radiol Surg 2017. [PMID: 28634788 DOI: 10.1007/s11548-017-1624-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE 4D ultrasound imaging of the fetal heart relies on reconstructions from B-mode images. In the presence of fetal motion, current approaches suffer from artifacts, which are unrecoverable for single sweeps. METHODS We propose to use many sweeps and exploit the resulting redundancy to automatically recover from motion by reconstructing a 4D image which is consistent in phase, space, and time. An interactive visualization framework to view animated ultrasound slices from 4D reconstructions on arbitrary planes was developed using a magnetically tracked mock probe. RESULTS We first quantified the performance of 10 4D reconstruction formulations on simulated data. Reconstructions of 14 in vivo sequences by a baseline, the current state-of-the-art, and the proposed approach were then visually ranked with respect to temporal quality on orthogonal views. Rankings from 5 observers showed that the proposed 4D reconstruction approach significantly improves temporal image quality in comparison with the baseline. The 4D reconstructions of the baseline and the proposed methods were then inspected interactively for accessibility to clinically important views and rated for their clinical usefulness by an ultrasound specialist in obstetrics and gynecology. The reconstructions by the proposed method were rated as 'very useful' in 71% and were statistically significantly more useful than the baseline reconstructions. CONCLUSIONS Multi-sweep fetal heart ultrasound acquisitions in combination with consistent 4D image reconstruction improves quality as well as clinical usefulness of the resulting 4D images in the presence of fetal motion.
Collapse
|
48
|
van Amerom JFP, Lloyd DFA, Price AN, Kuklisova Murgasova M, Aljabar P, Malik SJ, Lohezic M, Rutherford MA, Pushparajah K, Razavi R, Hajnal JV. Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection. Magn Reson Med 2017; 79:327-338. [PMID: 28370252 PMCID: PMC5763466 DOI: 10.1002/mrm.26686] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE Development of a MRI acquisition and reconstruction strategy to depict fetal cardiac anatomy in the presence of maternal and fetal motion. METHODS The proposed strategy involves i) acquisition and reconstruction of highly accelerated dynamic MRI, followed by image-based ii) cardiac synchronization, iii) motion correction, iv) outlier rejection, and finally v) cardiac cine reconstruction. Postprocessing entirely was automated, aside from a user-defined region of interest delineating the fetal heart. The method was evaluated in 30 mid- to late gestational age singleton pregnancies scanned without maternal breath-hold. RESULTS The combination of complementary acquisition/reconstruction and correction/rejection steps in the pipeline served to improve the quality of the reconstructed 2D cine images, resulting in increased visibility of small, dynamic anatomical features. Artifact-free cine images successfully were produced in 36 of 39 acquired data sets; prolonged general fetal movements precluded processing of the remaining three data sets. CONCLUSIONS The proposed method shows promise as a motion-tolerant framework to enable further detail in MRI studies of the fetal heart and great vessels. Processing data in image-space allowed for spatial and temporal operations to be applied to the fetal heart in isolation, separate from extraneous changes elsewhere in the field of view. Magn Reson Med 79:327-338, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Joshua F P van Amerom
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - David F A Lloyd
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Anthony N Price
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Maria Kuklisova Murgasova
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Paul Aljabar
- Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Shaihan J Malik
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Maelene Lohezic
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Kuberan Pushparajah
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Reza Razavi
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Joseph V Hajnal
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| |
Collapse
|
49
|
Roy CW, Seed M, Kingdom JC, Macgowan CK. Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing. J Cardiovasc Magn Reson 2017; 19:29. [PMID: 28316282 PMCID: PMC5357808 DOI: 10.1186/s12968-017-0346-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/18/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND To develop and evaluate a reconstruction framework for high resolution time-resolved CMR of the fetal heart in the presence of motion. METHODS Data were acquired using a golden angle radial trajectory in seven fetal subjects and reconstructed as real-time images to detect fetal movement. Data acquired during through-plane motion were discarded whereas in-plane motion was corrected. A fetal cardiac gating signal was extracted to sort the corrected data by cardiac phase, allowing reconstruction of cine images. The quality of motion corrected images and the effect of data undersampling were quantified using separate expressions for spatial blur and image error. RESULTS Motion corrected reordered cine reconstructions (127 slices) showed improved image quality relative to both uncorrected cines and corresponding real-time images across a range of root-mean-squared (RMS) displacements (0.3-3.7 mm) and fetal heart rates (119-176 bpm). The relative spatial blur between cines with and without motion correction increased with in-plane RMS displacement leading to an effective decrease in the effective spatial resolution for images without motion correction. Image error between undersampled and reference images was less than 10% for reconstructions using 750 or more spokes, yielding a minimum acceptable scan time of approximately 4 s/slice during quiescent through plane motion. CONCLUSIONS By rejecting data corrupted by through-plane motion, and correcting data corrupted by in-plane translation, the proposed reconstruction framework accounts for common sources of motion artifact (gross fetal movement, maternal respiration, fetal cardiac contraction) to produce high quality images of the fetal heart.
Collapse
Affiliation(s)
- Christopher W. Roy
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Division of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON Canada
| | - Mike Seed
- Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, ON Canada
- Departments of Pediatrics and Diagnostic Imaging, University of Toronto, Toronto, ON Canada
| | - John C. Kingdom
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, ON Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON Canada
| | - Christopher K. Macgowan
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Division of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON Canada
| |
Collapse
|
50
|
Dipak NK, Venkatesh S, Prabhu S, Rao S. Evolution of ventricular outpouching through the fetal and postnatal periods: Unabating dilemma of serial observation or surgical correction. J Saudi Heart Assoc 2016; 29:203-210. [PMID: 28652674 PMCID: PMC5475357 DOI: 10.1016/j.jsha.2016.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 02/01/2023] Open
Abstract
Ventricular outpouching is a rare finding in prenatal sonography and the main differential diagnoses are diverticulum, aneurysm, and pseudoaneurysm in addition to congenital cysts and clefts. The various modes of fetal presentation of congenital ventricular outpouching include an abnormal four-chamber view on fetal two-dimensional echocardiogram, fetal arrhythmia, fetal hydrops, and pericardial effusion. Left ventricular aneurysm (LVA)/nonapical diverticula are usually isolated defects. Apical diverticula are always associated with midline thoracoabdominal defects (epigastric pulsating diverticulum or large omphalocele) and other structural malformations of the heart. Most patients with LVA/congenital ventricular diverticulum remain clinically asymptomatic but they can potentially give rise to complications such as ventricular tachyarrhythmias, systemic embolism, sudden death, spontaneous rupture, and severe valvular regurgitation. The treatment of asymptomatic LVA and isolated congenital ventricular diverticulum is still undefined. In this review, our aim is to outline a systematic approach to a fetus detected with ventricular outpouching. Starting with prevalence and its types, issues in fetal management, natural course and evolution postbirth, and finally the perpetual dilemma of serial observation or surgical correction is discussed.
Collapse
Affiliation(s)
- Niraj Kumar Dipak
- Department of Neonatology, B J Wadia Hospital for Children, Nowrosjee Wadia Maternity Hospital, Acharya Donde Marg, Parel, Mumbai, Maharashtra, aIndia
| | - Sumitra Venkatesh
- Department of Pediatric Cardiology, B J Wadia Hospital for Children, Nowrosjee Wadia Maternity Hospital, Acharya Donde Marg, Parel, Mumbai, Maharashtra, bIndia
| | - Shakuntala Prabhu
- Department of Pediatric Cardiology, B J Wadia Hospital for Children, Nowrosjee Wadia Maternity Hospital, Acharya Donde Marg, Parel, Mumbai, Maharashtra, bIndia
| | - Sudha Rao
- Department of Neonatology, B J Wadia Hospital for Children, Nowrosjee Wadia Maternity Hospital, Acharya Donde Marg, Parel, Mumbai, Maharashtra, aIndia
| |
Collapse
|