1
|
Zhang P, Cheng J, Lu Y, Zhang N, Wu X, Lin H, Li W, Wang J, Winnik MA, Gan Z, Hou Y. Hypersensitive MR angiography based on interlocking stratagem for diagnosis of cardiac-cerebral vascular diseases. Nat Commun 2023; 14:6149. [PMID: 37783733 PMCID: PMC10545789 DOI: 10.1038/s41467-023-41783-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Magnetic resonance (MR) angiography is one of the main diagnostic approaches for cardiac-cerebral vascular diseases. Nevertheless, the non-contrast-enhanced MR angiography suffers from its intrinsic problems derived from the blood flow-dependency, while the clinical Gd-chelating contrast agents are limited by their rapid vascular extravasation. Herein, we report a hypersensitive MR angiography strategy based on interlocking stratagem of zwitterionic Gd-chelate contrast agents (PAA-Gd). The longitudinal molar relaxivity of PAA-Gd was 4.6-times higher than that of individual Gd-chelates as well as appropriate blood half-life (73.8 min) and low immunogenicity, enabling sophisticated micro-vessels angiography with a resolution at the order of hundred micrometers. A series of animal models of cardiac-cerebrovascular diseases have been built for imaging studies on a 7.0 T MRI scanner, while the clinical translation potential of PAA-Gd has been evaluated on swine on a 3.0 T clinical MRI scanner. The current studies offer a promising strategy for precise diagnosis of vascular diseases.
Collapse
Affiliation(s)
- Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junwei Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yijie Lu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Ni Zhang
- Department of Psychiatry, and Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoai Wu
- Department of Psychiatry, and Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua Lin
- Department of Psychiatry, and Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Li
- Department of Nanomedicine & International Joint Cancer Institute, Naval Medical University, Shanghai, 200433, China.
| | - Jian Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Zhihua Gan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Schmidt S, Bruschewski M, Flassbeck S, John K, Grundmann S, Ladd ME, Schmitter S. Phase-contrast acceleration mapping with synchronized encoding. Magn Reson Med 2021; 86:3201-3210. [PMID: 34313340 DOI: 10.1002/mrm.28948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop a phase-contrast (PC) -based method for direct and unbiased quantification of the acceleration vector field by synchronization of the spatial and acceleration encoding time points. The proposed method explicitly aims at in-vitro applications, requiring high measurement accuracy, as well as the validation of clinically relevant acceleration-encoded sequences. METHODS A velocity-encoded sequence with synchronized encoding (SYNC SPI) was modified to allow direct acceleration mapping by replacing the bipolar encoding gradients with tripolar gradient waveforms. The proposed method was validated in two in-vitro flow cases: a rotation and a stenosis phantom. The thereby obtained velocity and acceleration vector fields were quantitatively compared to those acquired with conventional PC methods, as well as to theoretical data. RESULTS The rotation phantom study revealed a systematic bias of the conventional PC acceleration mapping method that resulted in an average pixel-wise relative angle between the measured and theoretical vector field of (7.8 ± 3.2)°, which was reduced to (-0.4 ± 2.7)° for the proposed SYNC SPI method. Furthermore, flow features in the stenosis phantom were displaced by up to 10 mm in the conventional PC data compared with the acceleration-encoded SYNC SPI data. CONCLUSIONS This work successfully demonstrates a highly accurate method for direct acceleration mapping. It thus complements the existing velocity-encoded SYNC SPI method to enable the direct and unbiased quantification of both the velocity and acceleration vector field for in vitro studies. Hence, this method can be used for the validation of conventional acceleration-encoded PC methods applicable in-vivo.
Collapse
Affiliation(s)
- Simon Schmidt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Sebastian Flassbeck
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, New York, USA
| | - Kristine John
- Institute of Fluid Mechanics, University of Rostock, Rostock, Germany
| | - Sven Grundmann
- Institute of Fluid Mechanics, University of Rostock, Rostock, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
3
|
Middione MJ, Loecher M, Moulin K, Ennis DB. Optimization methods for magnetic resonance imaging gradient waveform design. NMR IN BIOMEDICINE 2020; 33:e4308. [PMID: 32342560 PMCID: PMC7606655 DOI: 10.1002/nbm.4308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/07/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
The development and implementation of novel MRI pulse sequences remains challenging and laborious. Gradient waveforms are typically designed using a combination of analytical and ad hoc methods to construct each gradient waveform axis independently. This strategy makes coding the pulse sequence complicated, in addition to being time inefficient. As a consequence, nearly all commercial MRI pulse sequences fail to maximize use of the available gradient hardware or efficiently mitigate physiological effects. This results in expensive MRI systems that underperform relative to their inherent hardware capabilities. To address this problem, a software solution is proposed that incorporates numerical optimization methods into MRI pulse sequence programming. Examples are shown for rotational variant vs. invariant waveform designs, acceleration nulled velocity encoding gradients, and mitigation of peripheral nerve stimulation for diffusion encoding. The application of optimization methods to MRI pulse sequence design incorporates gradient hardware limits and the prescribed MRI protocol parameters (e.g. field-of-view, resolution, gradient moments, and/or b-value) to simultaneously construct time-optimal gradient waveforms. In many cases, the resulting constrained gradient waveform design problem is convex and can be solved on-the-fly on the MRI scanner. The result is a set of multi-axis time-optimal gradient waveforms that satisfy the design constraints, thereby increasing SNR-efficiency. These optimization methods can also be used to mitigate imaging artifacts (e.g. eddy currents) or account for peripheral nerve stimulation. The result of the optimization method is to enable easier pulse sequence gradient waveform design and permit on-the-fly implementation for a range of MRI pulse sequences.
Collapse
Affiliation(s)
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Kévin Moulin
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Daniel B. Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Radiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
4
|
Iwata K, Sekine T, Tanaka I, Ando T, Orita E. Turbulent Kinetic Energy Is Different from Viscous Energy Loss. Radiographics 2020; 40:2142-2144. [PMID: 33136486 DOI: 10.1148/rg.2020200177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kotomi Iwata
- Department of Radiology, Nippon Medical School, Tokyo, Japan; Department of Radiology, Nippon Medical School Musashikosugi Hospital, 1-396 Kosugicho, Nakaharaku, Kawasaki, Kanagawa 211-8533, Japan (T.S.)
| | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School, Tokyo, Japan; Department of Radiology, Nippon Medical School Musashikosugi Hospital, 1-396 Kosugicho, Nakaharaku, Kawasaki, Kanagawa 211-8533, Japan (T.S.)
| | - Izumi Tanaka
- Department of Radiology, Nippon Medical School, Tokyo, Japan; Department of Radiology, Nippon Medical School Musashikosugi Hospital, 1-396 Kosugicho, Nakaharaku, Kawasaki, Kanagawa 211-8533, Japan (T.S.)
| | - Takahiro Ando
- Department of Radiology, Nippon Medical School, Tokyo, Japan; Department of Radiology, Nippon Medical School Musashikosugi Hospital, 1-396 Kosugicho, Nakaharaku, Kawasaki, Kanagawa 211-8533, Japan (T.S.)
| | - Erika Orita
- Department of Radiology, Nippon Medical School, Tokyo, Japan; Department of Radiology, Nippon Medical School Musashikosugi Hospital, 1-396 Kosugicho, Nakaharaku, Kawasaki, Kanagawa 211-8533, Japan (T.S.)
| |
Collapse
|
5
|
Hu L, Ouyang R, Sun A, Wang Q, Guo C, Peng Y, Qin Y, Zhang Y, Xiang Y, Zhong Y. Pulmonary artery hemodynamic assessment of blood flow characteristics in repaired tetralogy of Fallot patients versus healthy child volunteers. Quant Imaging Med Surg 2020; 10:921-933. [PMID: 32489917 DOI: 10.21037/qims.2020.03.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background This study aimed to assess the severity of helix and vortex flow in pulmonary artery hemodynamic using 4-dimensional flow cardiac magnetic resonance (4D flow CMR) in patients with repaired tetralogy of Fallot (rTOF) and healthy child volunteers and to explore the relationship between pulmonary hemodynamic changes and right heart function. Methods CMR studies were performed in 25 rTOF patients (15 M/10 F; 8.44±4.52 years) and 10 normal child volunteers (7 M/3 F; 8.2±1.22 years) on 3.0T MR scanners. Cardiac function was calculated in the patient and control groups. Systolic diameter, peak velocity, net flow, and regurgitation was quantified in the main pulmonary artery (MPA) plane, left pulmonary artery (LPA) plane, and right pulmonary artery (RPA) plane. The relationship between the hemodynamic parameters and quantitative flow indices and right ventricular (RV) function were analyzed through simple linear regression analysis using Pearson R-values. We analyzed differences in flow patterns between the 2 groups for the same slice. According to the severity of the helix and vortex flow in the 4D flow CMR, we categorized rTOF patients into the following groups: group 1, severe flow grading; group 2, mild flow grading; group 3, no flow grading; the control cases with no flow grade were included in group 4. We compared RV cardiac function, wall shear stress (WSS), and viscous energy loss (EL) between group 1+2 and group 3+4 using unpaired t-test analysis for normally distributed data and the Mann-Whitney test for non-normally distributed continuous variables. Results RV end-diastolic volume index (EDVi) (127.8±36.13 vs. 83.11±6.18, respectively; P<0.001), RV end-systolic volume index (ESVi) (65.14±27.02 vs. 36.13±5.95, respectively; P<0.001), and ejection fraction (EF) (49.97±6.39 vs. 56.71±4.56, respectively; P=0.006,) were significantly different between the groups. The rTOF diameters of the MPA and RPA were significantly larger than those of the control group (19.74±4.01 vs. 14.97±2.37 for MPA, P=0.001; 12.04±3.28 vs. 8.99±1.23 for RPA, P=0.004, respectively). There were correlations between peak WSS and pulmonary regurgitation (PR) in the MPA (R=0.48, P=0.014), correlations between peak systolic EL and RVEDV (R=0.51, P=0.008), and between peak systolic EL and RVESV (R=0.51, P=0.009). The peak systole and diastole WSS of group 1+2 were significantly different compared to group 3+4 in the MPA (P<0.05). The peak systole and diastole EL of group 1+2 was significantly different from group 3+4 in the MPA (P<0.05). The peak systole EL of group 1+2 was significantly different from group 3+4 in the RPA (P<0.01). Conclusions Increased peak WSS and EL were associated with pulmonary hemodynamic changes in the MPA and RPA. There might be an earlier marker of evolving hemodynamic inefficiency than that in traditional parameters. The better understanding of pulmonary artery hemodynamic assessment in rTOF may lead to a greater insight into pulmonary artery (PA)-RV interactions and how they ultimately impact RV function.
Collapse
Affiliation(s)
- Liwei Hu
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Rongzhen Ouyang
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Aimin Sun
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qian Wang
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Chen Guo
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yafeng Peng
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yan Qin
- Department of Cardiovascular and Thoracic Surgery, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yong Zhang
- MR research, GE Healthcare, Shanghai 201203, China
| | - Yang Xiang
- J.C. Wu Center for Aerodynamics, School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yumin Zhong
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
6
|
Wink C, Bassenge JP, Ferrazzi G, Schaeffter T, Schmitter S. 4D flow imaging with UNFOLD in a reduced FOV. Magn Reson Med 2019; 84:327-338. [PMID: 31873954 DOI: 10.1002/mrm.28120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/08/2022]
Abstract
PURPOSE Two-dimensional selective excitation (2DRF) allows shortening 4D flow scan times by reducing the FOV, but the longer 2DRF pulse duration decreases the temporal resolution, yielding underestimated peak flow values. Multiple k-space lines per cardiac phase, nl ≥ 2, are commonly applied in 4D flow MRI to shorten the inherent long scan times. We demonstrate that 2DRF 4D flow with nl ≥ 2 can be easily combined with UNFOLD (UNaliasing by Fourier-encoding the Overlaps using the temporaL Dimension), a technique that allows regaining nominally the temporal resolution of the respective acquisition with nl = 1, to assure peak flow quantification. METHODS Two different 2DRF pulses with spiral k-space trajectories were designed and integrated into a 4D flow sequence. Flow phantom experiments and 7 healthy control 4D flow in vivo measurements, with and without UNFOLD reconstructions, were compared with conventional reconstruction and 1D slab-selective excitation (1DRF) by evaluating time-resolved flow curves, peak flow, peak velocity, blood flow volume per cardiac cycle, and spatial aliasing. RESULTS Applying UNFOLD to 4D flow imaging with 2DRF and reduced FOV increased the quantified in vivo peak flow values significantly by 3.7% ± 2.3% to 5.2% ± 2.4% (P < .05). Accordingly, the peak flow underestimation of 2DRF scans compared with conventional 1DRF scans decreased with UNFOLD. Finally, 2DRF combined with UNFOLD accelerated the 4D flow acquisition 3.5 ± 1.4 fold by reducing the FOV and increasing the effective temporal resolution by 6.7% compared with conventional 1D selective excitation, with 2 k-space lines per cardiac phase. CONCLUSION Two-dimensional selective excitation combined with UNFOLD allows limiting the FOV to shorten 4D flow scan times and compensates for the loss in temporal resolution with 2DRF (Δt = 64.8 ms) compared with 1DRF (Δt = 43.2 ms), yielding an effective resolution of Δteff = 40.5 ms to enhance peak flow quantification.
Collapse
Affiliation(s)
- Clarissa Wink
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,FG Medizintechnik, Technische Universität Berlin, Berlin, Germany
| | - Jean Pierre Bassenge
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Giulio Ferrazzi
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,FG Medizintechnik, Technische Universität Berlin, Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
7
|
Piatti F, Sturla F, Bissell MM, Pirola S, Lombardi M, Nesteruk I, Della Corte A, Redaelli ACL, Votta E. 4D Flow Analysis of BAV-Related Fluid-Dynamic Alterations: Evidences of Wall Shear Stress Alterations in Absence of Clinically-Relevant Aortic Anatomical Remodeling. Front Physiol 2017; 8:441. [PMID: 28694784 PMCID: PMC5483483 DOI: 10.3389/fphys.2017.00441] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 01/30/2023] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital cardiac disease and is a foremost risk factor for aortopathies. Despite the genetic basis of BAV and of the associated aortopathies, BAV-related alterations in aortic fluid-dynamics, and particularly in wall shear stresses (WSSs), likely play a role in the progression of aortopathy, and may contribute to its pathogenesis. To test whether WSS may trigger aortopathy, in this study we used 4D Flow sequences of phase-contrast cardiac magnetic resonance imaging (CMR) to quantitatively compare the in vivo fluid dynamics in the thoracic aorta of two groups of subjects: (i) five prospectively enrolled young patients with normo-functional BAV and with no aortic dilation and (ii) ten age-matched healthy volunteers. Through the semi-automated processing of 4D Flow data, the aortic bulk flow at peak systole was quantified, and WSSs acting on the endothelium of the ascending aorta were characterized throughout the systolic phase in terms of magnitude and time-dependency through a method recently developed by our group. Variables computed for each BAV patient were compared vs. the corresponding distribution of values obtained for healthy controls. In BAV patients, ascending aorta diameter was measured on cine-CMR images at baseline and at 3-year follow-up. As compared to controls, normo-functional BAV patients were characterized by minor bulk flow disturbances at peak systole. However, they were characterized by evident alterations of WSS distribution and peak values in the ascending aorta. In particular, in four BAV patients, who were characterized by right-left leaflet fusion, WSS peak values exceeded by 27–46% the 90th percentile of the distribution obtained for healthy volunteers. Only in the BAV patient with right-non-coronary leaflet fusion the same threshold was exceeded by 132%. Also, evident alterations in the time-dependency of WSS magnitude and direction were observed. Despite, these fluid-dynamic alterations, no clinically relevant anatomical remodeling was observed in the BAV patients at 3-year follow-up. In light of previous evidence from the literature, our results suggest that WSS alterations may precede the onset of aortopathy and may contribute to its triggering, but WSS-driven anatomical remodeling, if any, is a very slow process.
Collapse
Affiliation(s)
- Filippo Piatti
- Department of Electronics, Information and Bioengineering, Politecnico di MilanoMilan, Italy
| | - Francesco Sturla
- Department of Electronics, Information and Bioengineering, Politecnico di MilanoMilan, Italy
| | - Malenka M Bissell
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of OxfordOxford, United Kingdom
| | - Selene Pirola
- Department of Chemical Engineering, Imperial College LondonLondon, United Kingdom
| | - Massimo Lombardi
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San DonatoSan Donato Milanese, Milan, Italy
| | - Igor Nesteruk
- Department of Free Boundary Flows, Institute of Hydromechanics, National Academy of Sciences of UkraineKyiv, Ukraine
| | - Alessandro Della Corte
- Department of Cardiothoracic and Respiratory Sciences, Università Degli Studi Della Campania 'L. Vanvitelli' NaplesNaples, Italy
| | - Alberto C L Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di MilanoMilan, Italy
| | - Emiliano Votta
- Department of Electronics, Information and Bioengineering, Politecnico di MilanoMilan, Italy
| |
Collapse
|
8
|
Wu D, Liu S, Buch S, Ye Y, Dai Y, Haacke EM. A fully flow-compensated multiecho susceptibility-weighted imaging sequence: The effects of acceleration and background field on flow compensation. Magn Reson Med 2015; 76:478-89. [PMID: 26332053 DOI: 10.1002/mrm.25878] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/25/2015] [Accepted: 07/16/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE To present a fully flow-compensated multiecho gradient echo sequence that can be used for MR angiography (MRA), susceptibility weighted imaging (SWI), and quantitative susceptibility mapping (QSM) and to study the effects of flow acceleration and background field gradients on flow compensation. METHODS The quality of flow compensation was evaluated using the data from eight volunteers. The effects of flow acceleration were studied by changing the polarities of the readout gradients in two consecutive scans. The background field was used to estimate the phase errors of flow compensation in the presence of field inhomogeneities. SWI and QSM data were generated with confounding arterial phase removed. T2 * maps were obtained from the multiecho data to estimate T2 * of arterial blood. RESULTS Reasonable flow compensation was achieved. Nevertheless, background field gradients and acceleration-induced phase errors were found to be as large as π/2 and π/3, respectively, both in agreement with theory. T2 * was measured as 82 ± 4 ms and 74 ± 9 ms for arteries inside and outside the brain, respectively, at 3T. CONCLUSION High-quality MRA, SWI, and QSM data can be obtained simultaneously. Masking out the arteries to remove the phase due to flow acceleration and background field gradients improves the quality of both SWI and QSM data. Magn Reson Med 76:478-489, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Saifeng Liu
- The MRI Institute for Biomedical Research, Waterloo, Ontario, Canada
| | - Sagar Buch
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Yongquan Ye
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Yongming Dai
- The MRI Institute for Biomedical Research, Detroit, Michigan, USA
| | - E Mark Haacke
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.,The MRI Institute for Biomedical Research, Waterloo, Ontario, Canada.,School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.,Department of Radiology, Wayne State University, Detroit, Michigan, USA.,The MRI Institute for Biomedical Research, Detroit, Michigan, USA
| |
Collapse
|
9
|
Casas B, Lantz J, Dyverfeldt P, Ebbers T. 4D Flow MRI-based pressure loss estimation in stenotic flows: Evaluation using numerical simulations. Magn Reson Med 2015; 75:1808-21. [DOI: 10.1002/mrm.25772] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/07/2015] [Accepted: 04/23/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Belen Casas
- Division of Cardiovascular Medicine; Department of Medical and Health Sciences; Linköping University; Linköping Sweden
- Center for Medical Image Science and Visualization (CMIV); Linköping University; Linköping Sweden
| | - Jonas Lantz
- Division of Cardiovascular Medicine; Department of Medical and Health Sciences; Linköping University; Linköping Sweden
- Center for Medical Image Science and Visualization (CMIV); Linköping University; Linköping Sweden
- Division of Media and Information Technology; Department of Science and Technology/Swedish e-Science Research Centre (SeRC); Linköping University; Linköping Sweden
| | - Petter Dyverfeldt
- Division of Cardiovascular Medicine; Department of Medical and Health Sciences; Linköping University; Linköping Sweden
- Center for Medical Image Science and Visualization (CMIV); Linköping University; Linköping Sweden
| | - Tino Ebbers
- Division of Cardiovascular Medicine; Department of Medical and Health Sciences; Linköping University; Linköping Sweden
- Center for Medical Image Science and Visualization (CMIV); Linköping University; Linköping Sweden
- Division of Media and Information Technology; Department of Science and Technology/Swedish e-Science Research Centre (SeRC); Linköping University; Linköping Sweden
| |
Collapse
|
10
|
Abstract
4D flow MRI permits a comprehensive in-vivo assessment of three-directional blood flow within 3-dimensional vascular structures throughout the cardiac cycle. Given the large coverage permitted from a 4D flow acquisition, the distribution of vessel wall and flow parameters along an entire vessel of interest can thus be derived from a single measurement without being dependent on multiple predefined 2D acquisitions. In addition to qualitative 3D visualizations of complex cardiac and vascular flow patterns, quantitative flow analysis can be performed and is complemented by the ability to compute sophisticated hemodynamic parameters, such as wall shear stress or 3D pressure difference maps. These metrics can provide information previously unavailable with conventional modalities regarding the impact of cardiovascular disease or therapy on global and regional changes in hemodynamics. This review provides an introduction to the methodological aspects of 4D flow MRI to assess vascular hemodynamics and describes its potential for the assessment and understanding of altered hemodynamics in the presence of cardiovascular disease.
Collapse
|
11
|
Bicuspid aortic valves are associated with increased wall and turbulence shear stress levels compared to trileaflet aortic valves. Biomech Model Mechanobiol 2014; 14:577-88. [DOI: 10.1007/s10237-014-0623-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 09/11/2014] [Indexed: 12/14/2022]
|
12
|
Barker AJ, van Ooij P, Bandi K, Garcia J, Albaghdadi M, McCarthy P, Bonow RO, Carr J, Collins J, Malaisrie SC, Markl M. Viscous energy loss in the presence of abnormal aortic flow. Magn Reson Med 2014; 72:620-8. [PMID: 24122967 PMCID: PMC4051863 DOI: 10.1002/mrm.24962] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 01/12/2023]
Abstract
PURPOSE To present a theoretical basis for noninvasively characterizing in vivo fluid-mechanical energy losses and to apply it in a pilot study of patients known to express abnormal aortic flow patterns. METHODS Four-dimensional flow MRI was used to characterize laminar viscous energy losses in the aorta of normal controls (n = 12, age = 37 ± 10 yr), patients with aortic dilation (n = 16, age = 52 ± 8 yr), and patients with aortic valve stenosis matched for age and aortic size (n = 14, age = 46 ± 15 yr), using a relationship between the three-dimensional velocity field and viscous energy dissipation. RESULTS Viscous energy loss was elevated significantly in the thoracic aorta in patients with dilated aorta (3.6 ± 1.3 mW, P = 0.024) and patients with aortic stenosis (14.3 ± 8.2 mW, P < 0.001) compared with healthy volunteers (2.3 ± 0.9 mW). The same pattern of significant differences was seen in the ascending aorta, where viscous energy losses in patients with dilated aortas (2.2 ± 1.1 mW, P = 0.021) and patients with aortic stenosis (10.9 ± 6.8 mW, P < 0.001) were elevated compared with healthy volunteers (1.2 ± 0.6 mW). CONCLUSION This technique provides a capability to quantify the contribution of abnormal laminar blood flow to increased ventricular afterload. In this pilot study, viscous energy loss in patient cohorts was significantly elevated and indicates that cardiac afterload is increased due to abnormal flow.
Collapse
Affiliation(s)
- Alex J Barker
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kneppo C, Eichhorn JG, Ley S, Schenk JP, Gorenflo M, Bettendorf M. Assessment of aortic morphology and compliance in children and adolescents with Ullrich-Turner syndrome (UTS) using magnetic resonance imaging (MRI). J Pediatr Endocrinol Metab 2014; 27:915-22. [PMID: 24854524 DOI: 10.1515/jpem-2013-0332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 04/17/2014] [Indexed: 01/15/2023]
Abstract
AIM The aim of this study was to evaluate the morphology and elastic properties of the aorta in children and adolescents with Ullrich-Turner syndrome (UTS) treated with growth hormone, by using magnetic resonance imaging (MRI). METHODS Thirty-seven conscious UTS patients were examined using a 1.5-T whole-body MRI. Contrast-free three-dimensional (3D)-MR angiographies were performed, including 2D cine MRI, to calculate the aortic compliance (C) and cine of the aortic valve. RESULTS Changes of aortic morphology were evident in 40% of the patients, whereas six had more than one alteration. A bicuspid aortic valve was identified in three patients that were missed by previous echocardiography. The aortic compliances in UTS patients were similar to those in healthy persons. CONCLUSION This study shows that aortic morphology and compliance can be assessed by MRI without using contrast agents and without sedation in children and adolescents with UTS.
Collapse
|
14
|
Uretsky S, Gillam LD. Nature versus nurture in bicuspid aortic valve aortopathy: more evidence that altered hemodynamics may play a role. Circulation 2013; 129:622-4. [PMID: 24345404 DOI: 10.1161/circulationaha.113.007282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Seth Uretsky
- Department of Cardiovascular Medicine, Morristown Medical Center, Morristown, NJ
| | | |
Collapse
|
15
|
Hansen KL, Pedersen MM, Møller-Sørensen H, Kjaergaard J, Nilsson JC, Lund JT, Jensen JA, Nielsen MB. Intraoperative cardiac ultrasound examination using vector flow imaging. ULTRASONIC IMAGING 2013; 35:318-332. [PMID: 24081728 DOI: 10.1177/0161734613505552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Conventional ultrasound (US) methods for blood velocity estimation only provide one-dimensional and angle-dependent velocity estimates; thus, the complexity of cardiac flow has been difficult to measure. To circumvent these limitations, the Transverse Oscillation (TO) vector flow method has been proposed. The vector flow method implemented on a commercial scanner provided real-time, angle-independent estimates of cardiac blood flow. Epicardiac and epiaortic, intraoperative US examinations were performed on three patients with stenosed coronary arteries scheduled for bypass surgery. Repeating cyclic beat-to-beat flow patterns were seen in the ascending aorta and pulmonary artery of each patient, but these patterns varied between patients. Early systolic retrograde flow filling the aortic sinuses was seen in the ascending aorta as well as early systolic retrograde flow in the pulmonary artery. In diastole, stable vortices in aortic sinuses of the ascending aorta created central antegrade flow. A stable vortex in the right atrium was seen during the entire heart cycle. The measurements were compared with estimates obtained intraoperatively with conventional spectral Doppler US using a transesophageal and an epiaortic approach. Mean differences in peak systole velocity of 11% and 26% were observed when TO was compared with transesophageal echocardiography and epiaortic US, respectively. In one patient, the cardiac output derived from vector velocities was compared with pulmonary artery catheter thermodilution technique and showed a difference of 16%. Vector flow provides real-time, angle-independent vector velocities of cardiac blood flow. The technique can potentially reveal new information of cardiovascular physiology and give insight into blood flow dynamics.
Collapse
|
16
|
Bencsik M, Al-Rwaili A, Morris R, Fairhurst DJ, Mundell V, Cave G, McKendry J, Evans S. Quantitation of MRI sensitivity to quasi-monodisperse microbubble contrast agents for spatially resolved manometry. Magn Reson Med 2012; 70:1409-18. [PMID: 23233424 DOI: 10.1002/mrm.24575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/10/2012] [Accepted: 11/05/2012] [Indexed: 11/08/2022]
Abstract
PURPOSE The direct in-vivo measurement of fluid pressure cannot be achieved with MRI unless it is done with the contribution of a contrast agent. No such contrast agents are currently available commercially, whilst those demonstrated previously only produced qualitative results due to their broad size distribution. Our aim is to quantitate then model the MR sensitivity to the presence of quasi-monodisperse microbubble populations. METHODS Lipid stabilised microbubble populations with mean radius 1.2 ± 0.8 μm have been produced by mechanical agitation. Contrast agents with increasing volume fraction of bubbles up to 4% were formed and the contribution the bubbles bring to the relaxation rate was quantitated. A periodic pressure change was also continuously applied to the same contrast agent, until MR signal changes were only due to bubble radius change and not due to a change in bubble density. RESULTS The MR data compared favourably with the prediction of an improved numerical simulation. An excellent MR sensitivity of 23 % bar(-1) has been demonstrated. CONCLUSION This work opens up the possibility of generating microbubble preparations tailored to specific applications with optimised MR sensitivity, in particular MRI based in-vivo manometry.
Collapse
Affiliation(s)
- Martin Bencsik
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | | | | | | | | | | | | |
Collapse
|