1
|
Jambor I, Steiner A, Pesola M, Gardberg M, Frantzén J, Jokinen P, Liimatainen T, Minn H, Aronen H, Merisaari H. Relaxation Along a Fictitious Field, continuous wave T1rho, adiabatic T1rho and adiabatic T2rho imaging of human gliomas at 3T: A feasibility study. PLoS One 2024; 19:e0296958. [PMID: 38558074 PMCID: PMC10984536 DOI: 10.1371/journal.pone.0296958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024] Open
Abstract
In pre-clinical models of brain gliomas, Relaxation Along a Fictitious Field in second rotating frame (TRAFF2), continues wave T1rho (T1ρcw), adiabatic T1rho (T1ρadiab), and adiabatic T2rho (T2ρadiab) relaxation time mappings have demonstrated potential to non-invasively characterize brain gliomas. Our aim was to evaluate the feasibility and potential of 4 different spin lock methods at 3T to characterize primary brain glioma. 22 patients (26-72 years) with suspected primary glioma. T1ρcw was performed using pulse peak amplitude of 500Hz and pulse train durations of 40 and 80 ms while the corresponding values for T1ρadiab, T2ρadiab, TRAFF2 were 500/500/500Hz and 48 and 96, 64 and 112, 45 and 90 ms, respectively. The parametric maps were calculated using a monoexponential model. Molecular profiles were evaluated from tissue specimens obtained during the resection. The lesion regions-of-interest were segmented from high intensity FLAIR using automatic segmentation with manual refinement. Statistical descriptors from the voxel intensity values inside each lesion and radiomic features (Pyrad MRC package) were calculated. From extracted radiomics, mRMRe R package version 2.1.0 was used to select 3 features in each modality for statistical comparisons. Of the 22 patients, 10 were found to have IDH-mutant gliomas and of those 5 patients had 1p/19q codeletion group comparisons. Following correction for effects of age and gender, at least one statistical descriptor was able to differentiate between IDH and 1p/19q codeletion status for all the parametric maps. In the radiomic analysis, corner-edge detector features with Harris-Stephens filtered signal showed significant group differences in IDH and 1p/19q codeletion groups. Spin lock imaging at 3T of human glioma was feasible and various qualitative parameters derived from the parametric maps were found to have potential to differentiate IDH and 1p19q codeletion status. Future larger prospective clinical trials are warranted to evaluate these methods further.
Collapse
Affiliation(s)
- Ivan Jambor
- Department of Radiology, University of Turku, Turku, Finland
- Enterprise Service Group—Radiology, Mass General Brigham, Boston, MA, United States of America
| | - Aida Steiner
- Department of Radiology, University of Turku, Turku, Finland
- Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| | - Marko Pesola
- Department of Radiology, University of Turku, Turku, Finland
| | - Maria Gardberg
- Tyks Laboratories, Pathology, Turku University Hospital and Institute of Biomedicine, University of Turku Turku, Finland
| | - Janek Frantzén
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Pekka Jokinen
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Timo Liimatainen
- Department of Radiology, University of Oulu, Oulu, Finland
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heikki Minn
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland, Finland
| | - Hannu Aronen
- Department of Radiology, University of Turku, Turku, Finland
- Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| | - Harri Merisaari
- Department of Radiology, University of Turku, Turku, Finland
- Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| |
Collapse
|
2
|
Mirmojarabian SA, Lammentausta E, Liukkonen E, Ahvenjärvi L, Junttila J, Nieminen MT, Liimatainen T. Myocardium Assessment by Relaxation along Fictitious Field, Extracellular Volume, Feature Tracking, and Myocardial Strain in Hypertensive Patients with Left Ventricular Hypertrophy. Int J Biomed Imaging 2022; 2022:9198691. [PMID: 35782296 PMCID: PMC9246602 DOI: 10.1155/2022/9198691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background Previous research has shown impaired global longitudinal strain (GLS) and slightly elevated extracellular volume fraction (ECV) in hypertensive patients with left ventricular hypertrophy (HTN LVH). Up to now, only little attention has been paid to interactions between macromolecules and free water in hypertrophied myocardium. Purpose To evaluate the feasibility of relaxation along a fictitious field with rank 2 (RAFF2) in HTN LVH patients. Study Type. Single institutional case control. Subjects 9 HTN LVH (age, 69 ± 10 years) and 11 control subjects (age, 54 ± 12 years). Field Strength/Sequence. Relaxation time mapping (T 1, T 1ρ , and T RAFF2 with 11.8 μT maximum radio frequency field amplitude) was performed at 1.5 T using a Siemens Aera (Erlangen, Germany) scanner equipped with an 18-channel body array coil. Assessment. ECV was calculated using pre- and postcontrast T 1, and global strains parameters were assessed by Segment CMR (Medviso AB Co, Sweden). The parametric maps of T 1ρ and T RAFF2 were computed using a monoexponential model, while the Bloch-McConnell equations were solved numerically to model effect of the chemical exchange during radio frequency pulses. Statistical Tests. Parametric maps were averaged over myocardium for each subject to be used in statistical analysis. Kolmogorov-Smirnov was used as the normality test followed by Student's t-test and Pearson's correlation to determine the difference between the HTN LVH patients and controls along with Hedges' g effect size and the association between variables, respectively. Results T RAFF2 decreased statistically (83 ± 2 ms vs 88 ± 6 ms, P < 0.031), and global longitudinal strain was impaired (GLS, -14 ± 3 vs - 18 ± 2, P < 0.002) in HTN LVH patients compared to the controls, respectively. Also, significant negative correlation was found between T RAFF2 and GLS (r = -0.53, P < 0.05). Data Conclusion. Our results suggest that T RAFF2 decrease in HTN LVH patients may be explained by gradual collagen accumulation which can be reflected in GLS changes. Most likely, it increases the water proton interactions and consequently decreases T RAFF2 before myocardial scarring.
Collapse
Affiliation(s)
| | | | - Esa Liukkonen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Lauri Ahvenjärvi
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Juhani Junttila
- Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miika T. Nieminen
- Research Unit of Medical Imaging, Physics, And Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Timo Liimatainen
- Research Unit of Medical Imaging, Physics, And Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
3
|
Laakso H, Ylä-Herttuala E, Sierra A, Jambor I, Poutanen M, Liljenbäck H, Virtanen H, Merisaari H, Aronen H, Minn H, Roivainen A, Liimatainen T. Docetaxel chemotherapy response in PC3 prostate cancer mouse model detected by rotating frame relaxations and water diffusion. NMR IN BIOMEDICINE 2021; 34:e4483. [PMID: 33543563 DOI: 10.1002/nbm.4483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
MRI is a common method of prostate cancer diagnosis. Several MRI-derived markers, including the apparent diffusion coefficient (ADC) based on diffusion-weighted imaging, have been shown to provide values for prostate cancer detection and characterization. The hypothesis of the study was that docetaxel chemotherapy response could be picked up earlier with rotating frame relaxation times TRAFF2 and TRAFF4 than with the continuous wave T1ρ , adiabatic T1ρ , adiabatic T2ρ , T1 , T2 or water ADC. Human PC3 prostate cancer cells expressing a red fluorescent protein were implanted in 21 male mice. Docetaxel chemotherapy was given once a week starting 1 week after cell implantation for 10 randomly selected mice, while the rest served as a control group (n = 11). The MRI consisted of relaxation along a fictitious field (RAFF) in the second (RAFF2) and fourth (RAFF4) rotating frames, T1 and T2 , continuous wave T1ρ , adiabatic T1ρ and adiabatic T2ρ relaxation time measurements and water ADC. MRI was conducted at 7 T, once a week up to 4 weeks from cell implantation. The tumor volume was monitored using T2 -weighted MRI and optical imaging. The histology was evaluated after the last imaging time point. Significantly reduced RAFFn, T1ρ, T2ρ and conventional relaxation times 4 weeks after tumor implantation were observed in the treated tumors compared with the controls. The clearest short- and long-term responses were obtained with T1 , while no clear improvement in response to treatment was detected with novel methods compared with conventional methods or with RAFFn compared with all others. The tumor volume decreased after a two-week time point for the treated group and increased significantly in the control group, which was supported by increasing red fluorescent light emission in the control tumors. Decreased relaxation times were associated with successful chemotherapy outcomes. The results indicate altered relaxation mechanisms compared with higher dose chemotherapies previously published.
Collapse
Affiliation(s)
- Hanne Laakso
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elias Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ivan Jambor
- Department of Radiology, University of Turku, Turku, Finland
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matti Poutanen
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Heidi Liljenbäck
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Helena Virtanen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Harri Merisaari
- Department of Radiology, University of Turku, Turku, Finland
- Department of Future Technologies, University of Turku, Turku, Finland
| | - Hannu Aronen
- Department of Radiology, University of Turku, Turku, Finland
- Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| | - Heikki Minn
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Anne Roivainen
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Timo Liimatainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Department of Clinical Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
4
|
Jambor I, Steiner A, Pesola M, Liimatainen T, Sucksdorff M, Rissanen E, Airas L, Aronen HJ, Merisaari H. Whole Brain Adiabatic T 1rho and Relaxation Along a Fictitious Field Imaging in Healthy Volunteers and Patients With Multiple Sclerosis: Initial Findings. J Magn Reson Imaging 2021; 54:866-879. [PMID: 33675564 DOI: 10.1002/jmri.27586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In preclinical models of multiple sclerosis (MS), both adiabatic T1rho (T1ρadiab ) and relaxation along a fictitious field (RAFF) imaging have demonstrated potential to noninvasively characterize MS. PURPOSE To evaluate the feasibility of whole brain T1ρadiab and RAFF imaging in healthy volunteers and patients with MS. STUDY TYPE Single institutional clinical trial. SUBJECTS 38 healthy volunteers (24-69 years) and 21 patients (26-59 years) with MS. Five healthy volunteers underwent a second MR examination performed within 8 days. Clinical disease severity (The Expanded Disability Status Scale [EDSS] and The Multiple Sclerosis Severity Score [MSSS]) was evaluated at baseline and 1-year follow-up (FU). FIELD STRENGTH/SEQUENCE RAFF in second rotating frame of reference (RAFF2) was performed at 3 T using 3D-fast-field echo with magnetization preparation, RF amplitude of 11.74 μT while the corresponding value for T1ρadiab was 13.50 μT. T1 -, T2 -, and FLAIR-weighted images were acquired with reconstruction voxel size 1.0 × 1.0 × 1.0 mm3 . ASSESSMENT The parametric maps of T1ρadiab and RAFF2 (TRAFF2 ) were calculated using a monoexponential model. Semi-automatic segmentation of MS lesions, white matter (WM), and gray matter (GM), and WM tracks was performed using T1 -, T2 -, and FLAIR-weighted images. STATISTICAL TESTS Regression analysis was used to evaluate correlation of T1ρadiab and TRAFF2 with age and disease severity while a Friedman test followed by Wilcoxon Signed Rank test for differences between tissue types. Short-term repeatability was evaluated on voxel level. RESULTS Both T1ρadiab and TRAFF2 demonstrated good short-term repeatability with relative differences on voxel level in the range of 6.1%-11.9%. Differences in T1ρadiab and TRAFF2 between the tissue types in MS patients were significant (P < 0.05). T1ρadiab and TRAFF2 correlated (P < 0.001) with baseline EDSS/MSSM and disease progression at FU (P < 0.001). DATA CONCLUSION Whole brain T1ρadiab and TRAFF2 at 3 T was feasible with significant differences in T1ρadiab and TRAFF2 values between tissues types and correlation with disease severity. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Ivan Jambor
- Department of Diagnostic Radiology, University of Turku, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aida Steiner
- Department of Diagnostic Radiology, University of Turku, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| | - Marko Pesola
- Department of Diagnostic Radiology, University of Turku, Turku, Finland
| | - Timo Liimatainen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, University of Oulu, Oulu, Finland
| | - Marcus Sucksdorff
- Department of Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Eero Rissanen
- Department of Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Laura Airas
- Department of Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Hannu J Aronen
- Department of Diagnostic Radiology, University of Turku, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| | - Harri Merisaari
- Department of Diagnostic Radiology, University of Turku, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland.,Department of Future Technologies, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Zhang J, Xue W, Xu K, Yi L, Guo Y, Xie T, Tong H, Zhou B, Wang S, Li Q, Liu H, Chen X, Fang J, Zhang W. Dual inhibition of PFKFB3 and VEGF normalizes tumor vasculature, reduces lactate production, and improves chemotherapy in glioblastoma: insights from protein expression profiling and MRI. Theranostics 2020; 10:7245-7259. [PMID: 32641990 PMCID: PMC7330843 DOI: 10.7150/thno.44427] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Tumor vascular normalization (TVN) is emerging to enhance the efficacy of anticancer treatment in many cancers including glioblastoma (GBM). However, a common and severe challenge being currently faced is the transient TVN effect, hampering the sustained administration of anticancer therapy during TVN window. Additionally, the lack of non-contrast agent-based imaging biomarkers to monitor TVN process postpones the clinical translation of TVN strategy. In this study, we investigated whether dual inhibition of VEGF and the glycolytic activator PFKFB3 could reinforce the TVN effect in GBM. Dynamic contrast-enhanced-magnetic resonance imaging (DCE-MRI) and intravoxel incoherent motion (IVIM)-MRI were performed to monitor TVN process and to identify whether IVIM-MRI is a candidate or complementary imaging biomarker for monitoring TVN window without exogenous contrast agent administration. Methods: Patient-derived orthotopic GBM xenografts in mice were established and treated with bevacizumab (BEV), 3PO (PFKFB3 inhibitor), BEV+3PO dual therapy, or saline. The vascular morphology, tumor hypoxia, and lactate level were evaluated before and at different time points after treatments. Doxorubicin was used to evaluate chemotherapeutic efficacy and drug delivery. Microarray of angiogenesis cytokines and western blotting were conducted to characterize post-treatment molecular profiling. TVN process was monitored by DCE- and IVIM-MRI. Correlation analysis of pathological indicators and MRI parameters was further analyzed. Results: Dual therapy extended survival and delayed tumor growth over each therapy alone, concomitant with a decrease of cell proliferation and an increase of cell apoptosis. The dual therapy reinforces TVN effect, thereby alleviating tumor hypoxia, reducing lactate production, and improving the efficacy and delivery of doxorubicin. Mechanistically, several angiogenic cytokines and pathways were downregulated after dual therapy. Notably, dual therapy inhibited Tie1 expression, the key regulator of TVN, in both endothelial cells and tumor cells. DCE- and IVIM-MRI data showed that dual therapy induced a more homogenous and prominent TVN effect characterized by improved vascular function in tumor core and tumor rim. Correlation analysis revealed that IVIM-MRI parameter D* had better correlations with TVN pathological indicators compared with the DCE-MRI parameter Ktrans. Conclusions: Our results propose a rationale to overcome the current limitation of BEV monotherapy by integrating the synergistic effects of VEGF and PFKFB3 blockade to enhance chemotherapy efficacy through a sustained TVN effect. Moreover, we unveil IVIM-MRI parameter D* has much potential as a complementary imaging biomarker to monitor TVN window more precisely without exogenous contrast agent injection.
Collapse
Affiliation(s)
- Junfeng Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Xue
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kai Xu
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Tian Xie
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Haipeng Tong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Bo Zhou
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shunan Wang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qing Li
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Heng Liu
- Department of Radiology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Weiguo Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Clinical Research Center of Imaging and Nuclear Medicine, Chongqing, 400042, China
| |
Collapse
|
6
|
Filip P, Svatkova A, Carpenter AF, Eberly LE, Nestrasil I, Nissi MJ, Michaeli S, Mangia S. Rotating frame MRI relaxations as markers of diffuse white matter abnormalities in multiple sclerosis. NEUROIMAGE-CLINICAL 2020; 26:102234. [PMID: 32272373 PMCID: PMC7139162 DOI: 10.1016/j.nicl.2020.102234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/16/2020] [Accepted: 02/29/2020] [Indexed: 01/04/2023]
Abstract
T1ρ and RAFF4 - MRI protocols sensitive to slow motional regimes – are able to detect changes in T2w-defined normally appearing white matter of patients with multiple sclerosis. RAFF4, T1ρ and T2ρ showed differences in hippocampus in patients with multiple sclerosis despite the absence of alterations in resting-state functional MRI metrics. Hence, RAFF4, T1ρ and T2ρ hold promise as potential non-invasive tools for monitoring MS activity and eventually for the evaluation of therapeutic effects.
Even though MRI visualization of white matter lesions is pivotal for the diagnosis and management of multiple sclerosis (MS), the issue of detecting diffuse brain tissue damage beyond the apparent T2-hyperintense lesions continues to spark considerable interest. Motivated by the notion that rotating frame MRI methods are sensitive to slow motional regimes critical for tissue characterization, here we utilized novel imaging protocols of rotating frame MRI on a clinical 3 Tesla platform, including adiabatic longitudinal, T1ρ, and transverse, T2ρ, relaxation methods, and Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank 4 (RAFF4), in 10 relapsing-remitting multiple sclerosis patients and 10 sex- and age-matched healthy controls. T1ρ, T2ρ and RAFF4 relaxograms extracted from the whole white matter exhibited a significant shift towards longer relaxation time constants in MS patients as compared to controls. T1ρ and RAFF4 detected alterations even when considering only regions of normally appearing white matter (NAWM), while other MRI metrics such as T1w/T2w ratio and diffusion tensor imaging measures failed to find group differences. In addition, RAFF4, T2ρ and, to a lesser extent, T1ρ showed differences in subcortical grey matter structures, mainly hippocampus, whereas no functional changes in this region were detected in resting-state functional MRI metrics. We conclude that rotating frame MRI techniques are exceptionally sensitive methods for the detection of subtle abnormalities not only in NAWM, but also in deep grey matter in MS, where they surpass even highly sensitive measures of functional changes, which are often suggested to precede detectable structural alterations. Such abnormalities are consistent with a wide spectrum of different, but interconnected pathological features of MS, including the loss of neuronal cells and their axons, decreased levels of myelin even in NAWM, and altered iron content.
Collapse
Affiliation(s)
- Pavel Filip
- First Department of Neurology, Faculty of Medicine, Masaryk University and University Hospital of St. Anne, Brno, Czech Republic; Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Alena Svatkova
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Adam F Carpenter
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lynn E Eberly
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA; Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Igor Nestrasil
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Mikko J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Yla-Herttuala E, Laidinen S, Laakso H, Liimatainen T. Quantification of myocardial infarct area based on T RAFFn relaxation time maps - comparison with cardiovascular magnetic resonance late gadolinium enhancement, T 1ρ and T 2 in vivo. J Cardiovasc Magn Reson 2018; 20:34. [PMID: 29879996 PMCID: PMC5992705 DOI: 10.1186/s12968-018-0463-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two days after myocardial infarction (MI), the infarct consists mostly on necrotic tissue, and the myocardium is transformed through granulation tissue to scar in two weeks after the onset of ischemia in mice. In the current work, we determined and optimized cardiovascular magnetic resonance (CMR) methods for the detection of MI size during the scar formation without contrast agents in mice. METHODS We characterized MI and remote areas with rotating frame relaxation time mapping including relaxation along fictitious field in nth rotating frame (RAFFn), T1ρ and T2 relaxation time mappings at 1, 3, 7, and 21 days after MI. These results were compared to late gadolinium enhancement (LGE) and Sirius Red-stained histology sections, which were obtained at day 21 after MI. RESULTS All relaxation time maps showed significant differences in relaxation time between the MI and remote area. Areas of increased signal intensities after gadolinium injection and areas with increased TRAFF2 relaxation time were highly correlated with the MI area determined from Sirius Red-stained histology sections (LGE: R2 = 0.92, P < 0.01, TRAFF2: R2 = 0.95, P < 0.001). Infarct area determined based on T1ρ relaxation time correlated highly with Sirius Red histology sections (R2 = 0.97, P < 0.01). The smallest overestimation of the LGE-defined MI area was obtained for TRAFF2 (5.6 ± 4.2%) while for T1ρ overestimation percentage was > 9% depending on T1ρ pulse power. CONCLUSION T1ρ and TRAFF2 relaxation time maps can be used to determine accurately MI area at various time points in the mouse heart. Determination of MI size based on TRAFF2 relaxation time maps could be performed without contrast agents, unlike LGE, and with lower specific absorption rate compared to on-resonance T1ρ relaxation time mapping.
Collapse
Affiliation(s)
- Elias Yla-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Svetlana Laidinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanne Laakso
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Center for Magnetic Resonance Research, Minneapolis, MN USA
| | - Timo Liimatainen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, University Hospital of Oulu, P.O. Box 50, 90029 OYS Oulu, Finland
| |
Collapse
|
8
|
Laakso H, Wirth G, Korpisalo P, Ylä-Herttuala E, Michaeli S, Ylä-Herttuala S, Liimatainen T. T 2 , T 1ρ and T RAFF4 detect early regenerative changes in mouse ischemic skeletal muscle. NMR IN BIOMEDICINE 2018; 31:e3909. [PMID: 29570882 DOI: 10.1002/nbm.3909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/22/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
The identification of areas with regenerative potential in ischemic tissues would allow the targeting of treatments supporting tissue recovery. The regeneration process involves the activation of several cellular and molecular responses which could be detected using magnetic resonance imaging (MRI). However, to date, magnetic resonance (MR) relaxation parameters have received little attention in the diagnosis and follow-up of limb ischemia. The purpose of this study was to evaluate the feasibility of different MRI relaxation and diffusion tensor imaging parameters in the detection of areas showing early signs of regeneration in ischemic mouse skeletal muscles. T2 and T1ρ relaxation time constants, together with TRAFFn , T1 and diffusion tensor imaging, were evaluated to differentiate areas of regeneration in a mouse hind limb ischemia model before and 0, 1, 4, 7, 14 and 30 days after ischemia. All the measured relaxation times were longer in the areas of early regeneration compared with normal muscle tissue. The relaxation times increased after ischemia in the ischemic muscles, reaching a maximum at 4-7 days after occlusion, coinciding with the appearance of early signs of regeneration. Fractional anisotropy decreased significantly (p < 0.05) on days 1-4, whereas mean diffusivity, λ1 and λ2 decreased later, starting at day 7 after ischemia compared with the pre-operational time point. The percentages of areas with different tissue morphologies were determined based on histological analysis of the ischemic muscle cross-sections, and correlations between the percentages obtained and different relaxation times were calculated. The highest correlation between relaxation times and histology was achieved with T2 , T1ρ and TRAFF4 (R2 = 0.96, R2 = 0.92 and R2 = 0.84, respectively, p < 0.01). Early regenerative changes were visible using T2 , T1ρ and TRAFF4 MR relaxation time constants in skeletal muscle after ischemia. These markers could potentially be used for the identification of targets for therapies supporting muscle regeneration after ischemic injury.
Collapse
Affiliation(s)
- Hanne Laakso
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Galina Wirth
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petra Korpisalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elias Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Science Service Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Timo Liimatainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
9
|
Khan MA, Laakso H, Laidinen S, Kettunen S, Heikura T, Ylä-Herttuala S, Liimatainen T. The follow-up of progressive hypertrophic cardiomyopathy using magnetic resonance rotating frame relaxation times. NMR IN BIOMEDICINE 2018; 31:e3871. [PMID: 29244217 DOI: 10.1002/nbm.3871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/20/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Magnetic resonance rotating frame relaxation times are an alternative non-contrast agent choice for the diagnosis of chronic myocardial infarct. Fibrosis typically occurs in progressive hypertrophic cardiomyopathy. Fibrosis has been imaged in myocardial infarcted tissue using rotating frame relaxation times, which provides the possibility to follow up progressive cardiomyopathy without contrast agents. Mild and severe left ventricular hypertrophy were induced in mice by transverse aortic constriction, and the longitudinal rotating frame relaxation times (T1ρ ) and relaxation along the fictitious field (TRAFF2 , TRAFF3 ) were measured at 5, 10, 24, 62 and 89 days after transverse aortic constriction in vivo. Myocardial fibrosis was verified using Masson's trichrome staining. Increases in the relative relaxation time differences of T1ρ , together with TRAFF2 and TRAFF3 , between fibrotic and remote tissues over time were observed. Furthermore, TRAFF2 and TRAFF3 showed higher relaxation times overall in fibrotic tissue than T1ρ . Relaxation time differences were highly correlated with an excess of histologically verified fibrosis. We found that TRAFF2 and TRAFF3 are more sensitive than T1ρ to hypertrophic cardiomyopathy-related tissue changes and can serve as non-invasive diagnostic magnetic resonance imaging markers to follow up the mouse model of progressive hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Muhammad Arsalan Khan
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanne Laakso
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Svetlana Laidinen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna Kettunen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tommi Heikura
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Timo Liimatainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
10
|
Mangia S, Svatkova A, Mascali D, Nissi MJ, Burton PC, Bednarik P, Auerbach EJ, Giove F, Eberly LE, Howell MJ, Nestrasil I, Tuite PJ, Michaeli S. Multi-modal Brain MRI in Subjects with PD and iRBD. Front Neurosci 2017; 11:709. [PMID: 29311789 PMCID: PMC5742124 DOI: 10.3389/fnins.2017.00709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a condition that often evolves into Parkinson's disease (PD). Therefore, by monitoring iRBD it is possible to track the neurodegeneration of individuals who may progress to PD. Here we aimed at piloting the characterization of brain tissue properties in mid-brain subcortical regions of 10 healthy subjects, 8 iRBD, and 9 early-diagnosed PD. We used a battery of magnetic resonance imaging (MRI) contrasts at 3 T, including adiabatic and non-adiabatic rotating frame techniques developed by our group, along with diffusion tensor imaging (DTI) and resting-state fMRI. Adiabatic T1ρ and T2ρ, and non-adiabatic RAFF4 (Relaxation Along a Fictitious Field in the rotating frame of rank 4) were found to have lower coefficient of variations and higher sensitivity to detect group differences as compared to DTI parameters such as fractional anisotropy and mean diffusivity. Significantly longer T1ρ were observed in the amygdala of PD subjects vs. controls, along with a trend of lower functional connectivity as measured by regional homogeneity, thereby supporting the notion that amygdalar dysfunction occurs in PD. Significant abnormalities in reward networks occurred in iRBD subjects, who manifested lower network strength of the accumbens. In agreement with previous studies, significantly longer T1ρ occurred in the substantia nigra compacta of PD vs. controls, indicative of neuronal degeneration, while regional homogeneity was lower in the substantia nigra reticulata. Finally, other trend-level findings were observed, i.e., lower RAFF4 and T2ρ in the midbrain of iRBD subjects vs. controls, possibly indicating changes in non-motor features as opposed to motor function in the iRBD group. We conclude that rotating frame relaxation methods along with functional connectivity measures are valuable to characterize iRBD and PD subjects, and with proper validation in larger cohorts may provide pathological signatures of iRBD and PD.
Collapse
Affiliation(s)
- Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Alena Svatkova
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Daniele Mascali
- MARBILab, Centro Fermi - Museo Storico Della Fisica e Centro di Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Mikko J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Philip C Burton
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Petr Bednarik
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Edward J Auerbach
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Federico Giove
- MARBILab, Centro Fermi - Museo Storico Della Fisica e Centro di Studi e Ricerche Enrico Fermi, Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Lynn E Eberly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Michael J Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Igor Nestrasil
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Paul J Tuite
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Nissi MJ MJ, Salo EN, Tiitu V, Liimatainen T, Michaeli S, Mangia S, Ellermann J, Nieminen MT. Multi-parametric MRI characterization of enzymatically degraded articular cartilage. J Orthop Res 2016; 34:1111-20. [PMID: 26662555 PMCID: PMC4903086 DOI: 10.1002/jor.23127] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/08/2015] [Indexed: 02/04/2023]
Abstract
Several laboratory and rotating frame quantitative MRI parameters were evaluated and compared for detection of changes in articular cartilage following selective enzymatic digestion. Bovine osteochondral specimens were subjected to 44 h incubation in control medium or in collagenase or chondroitinase ABC to induce superficial collagen or proteoglycan (glycosaminoglycan) alterations. The samples were scanned at 9.4 T for T1 , T1 Gd (dGEMRIC), T2 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , TRAFF2 , and T1 sat relaxation times and for magnetization transfer ratio (MTR). For reference, glycosaminoglycan content, collagen fibril orientation and biomechanical properties were determined. Changes primarily in the superficial cartilage were noted after enzymatic degradation. Most of the studied parameters were sensitive to the destruction of collagen network, whereas glycosaminoglycan depletion was detected only by native T1 and T1 Gd relaxation time constants throughout the tissue and by MTR superficially. T1 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat correlated significantly with the biomechanical properties while T1 Gd correlated with glycosaminoglycan staining. The findings indicated that most of the studied MRI parameters were sensitive to both glycosaminoglycan content and collagen network integrity, with changes due to enzymatic treatment detected primarily in the superficial tissue. Strong correlation of T1 , adiabatic T1ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat with the altered biomechanical properties, reflects that these parameters were sensitive to critical functional properties of cartilage. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1111-1120, 2016.
Collapse
Affiliation(s)
- Mikko J. Nissi MJ
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland,CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, USA,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland,Corresponding author: Mikko J. Nissi, Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland, Telephone number: +358-50-5955517, Fax number: +358-17-162585
| | - Elli-Noora Salo
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Virpi Tiitu
- Institute of Biomedicine, Anatomy, University of Eastern Finland, Kuopio, Finland
| | - Timo Liimatainen
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland,Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Shalom Michaeli
- CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Silvia Mangia
- CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Jutta Ellermann
- CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Miika T. Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
12
|
Jambor I, Pesola M, Merisaari H, Taimen P, Boström PJ, Liimatainen T, Aronen HJ. Relaxation along fictitious field, diffusion-weighted imaging, and T2 mapping of prostate cancer: Prediction of cancer aggressiveness. Magn Reson Med 2015; 75:2130-40. [PMID: 26094849 DOI: 10.1002/mrm.25808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the performance of relaxation along a fictitious field (RAFF) relaxation time (TRAFF ), diffusion-weighted imaging (DWI)-derived parameters, and T2 relaxation time values for prostate cancer (PCa) detection and characterization. METHODS Fifty patients underwent 3T MR examination using surface array coils before prostatectomy. DWI was performed using 14 and 12 b values in the ranges of 0-500 s/mm(2) and 0-2000 s/mm(2) , respectively. Repeated MR examination was performed in 16 patients. TRAFF , DWI-derived parameters (monoexponential, kurtosis, biexponential models), and T2 values were measured and averaged over regions of interest placed in PCa and normal tissue. Repeatability of TRAFF and DWI-derived parameters were assessed by coefficient of repeatability and intraclass correlation coefficient ICC(3,1). Areas under the receiver operating characteristic curve (AUCs) for PCa detection and Gleason score classification were estimated. The parameters were correlated with Gleason score groups using Spearman correlation coefficient (ρ). RESULTS ICC(3,1) values for TRAFF were in the range of 0.82-0.92. TRAFF values had higher AUC values for Gleason score classification compared with DWI-derived parameters and T2 . The RAFF method demonstrated the highest ρ value (-0.65). CONCLUSION In a quantitative region of interest-based analysis, RAFF outperformed DWI ("low" and "high" b values) and T2 mapping in the characterization of PCa.
Collapse
Affiliation(s)
- Ivan Jambor
- Department of Radiology, University of Turku, Turku, Finland
| | - Marko Pesola
- Department of Radiology, University of Turku, Turku, Finland
| | - Harri Merisaari
- Department of Information Technology, University of Turku, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Peter J Boström
- Department of Urology, University of Turku and Turku University Hospital, Turku, Finland
| | - Timo Liimatainen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| | - Hannu J Aronen
- Department of Radiology, University of Turku, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| |
Collapse
|
13
|
Longo DL, Dastrù W, Consolino L, Espak M, Arigoni M, Cavallo F, Aime S. Cluster analysis of quantitative parametric maps from DCE-MRI: application in evaluating heterogeneity of tumor response to antiangiogenic treatment. Magn Reson Imaging 2015; 33:725-36. [PMID: 25839393 DOI: 10.1016/j.mri.2015.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The objective of this study was to compare a clustering approach to conventional analysis methods for assessing changes in pharmacokinetic parameters obtained from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) during antiangiogenic treatment in a breast cancer model. MATERIALS AND METHODS BALB/c mice bearing established transplantable her2+ tumors were treated with a DNA-based antiangiogenic vaccine or with an empty plasmid (untreated group). DCE-MRI was carried out by administering a dose of 0.05 mmol/kg of Gadocoletic acid trisodium salt, a Gd-based blood pool contrast agent (CA) at 1T. Changes in pharmacokinetic estimates (K(trans) and vp) in a nine-day interval were compared between treated and untreated groups on a voxel-by-voxel analysis. The tumor response to therapy was assessed by a clustering approach and compared with conventional summary statistics, with sub-regions analysis and with histogram analysis. RESULTS Both the K(trans) and vp estimates, following blood-pool CA injection, showed marked and spatial heterogeneous changes with antiangiogenic treatment. Averaged values for the whole tumor region, as well as from the rim/core sub-regions analysis were unable to assess the antiangiogenic response. Histogram analysis resulted in significant changes only in the vp estimates (p<0.05). The proposed clustering approach depicted marked changes in both the K(trans) and vp estimates, with significant spatial heterogeneity in vp maps in response to treatment (p<0.05), provided that DCE-MRI data are properly clustered in three or four sub-regions. CONCLUSIONS This study demonstrated the value of cluster analysis applied to pharmacokinetic DCE-MRI parametric maps for assessing tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Dario Livio Longo
- Institute of Biostructure and Bioimaging (CNR) c/o Molecular Biotechnologies Center, Via Nizza 52, 10126, Torino, Italy; Molecular Imaging Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Walter Dastrù
- Molecular Imaging Center, University of Torino, Via Nizza 52, 10126 Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Lorena Consolino
- Molecular Imaging Center, University of Torino, Via Nizza 52, 10126 Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Miklos Espak
- Dept. of Computer Science, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Silvio Aime
- Molecular Imaging Center, University of Torino, Via Nizza 52, 10126 Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
14
|
Jambor I, Pesola M, Taimen P, Merisaari H, Boström PJ, Minn H, Liimatainen T, Aronen HJ. Rotating frame relaxation imaging of prostate cancer: Repeatability, cancer detection, and Gleason score prediction. Magn Reson Med 2015; 75:337-44. [PMID: 25733132 DOI: 10.1002/mrm.25647] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/08/2014] [Accepted: 01/12/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate relaxation along a fictitious field (RAFF) and continuous wave (cw) T1ρ imaging of prostate cancer (PCa) in the terms of repeatability, PCa detection, and characterization. METHODS Thirty-six patients (PSA 11.6 ± 7.6 ng/mL, mean ± standard deviation) with histologically confirmed PCa underwent two repeated 3T MR examinations using surface array coils before prostatectomy. Relaxation along fictitious field, cw T1ρ, and T2 relaxation times (TRAFF, T1ρcw, T2) were measured and averaged over regions of interest placed in PCa, normal peripheral zone (PZ), and normal central gland (CG) positioned using whole-mount prostatectomy sections and anatomical T2-weighted images. Receiver operating characteristic curve analysis with area under the curve (AUC) was calculated to distinguish PCa from PZ/CG and PCa with Gleason score (GS) of 3+3 from GS of 3+4/≥ 3+4. RESULTS TRAFF and T1ρcw relaxation times were repeatable with coefficients of repeatability as a percentage of median value in the range of 7.8-23.2%. AUC (mean, 95% confidence interval) in the differentiation of PCa with GS of 3+3 from PCa with CS of ≥ 3+4 were 0.88 (0.72-0.99), 0.69 (0.46-0.90), and 0.68 (0.45-0.88), for TRAFF, T1ρcw, and T2, respectively. CONCLUSION In quantitative region of interest based analysis, TRAFF outperformed T1ρcw and T2 in PCa detection and characterization.
Collapse
Affiliation(s)
- Ivan Jambor
- Department of Diagnostic Radiology, University of Turku, Turku, Finland
| | - Marko Pesola
- Department of Diagnostic Radiology, University of Turku, Turku, Finland
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Harri Merisaari
- Department of Information Technology, University of Turku, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | - Peter J Boström
- Department of Surgery, Division of Urology, Turku University Hospital, Turku, Finland
| | - Heikki Minn
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Timo Liimatainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hannu J Aronen
- Department of Diagnostic Radiology, University of Turku, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| |
Collapse
|
15
|
Hakkarainen H, Sierra A, Mangia S, Garwood M, Michaeli S, Gröhn O, Liimatainen T. MRI relaxation in the presence of fictitious fields correlates with myelin content in normal rat brain. Magn Reson Med 2015; 75:161-8. [PMID: 25648507 DOI: 10.1002/mrm.25590] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/25/2014] [Accepted: 12/04/2014] [Indexed: 11/05/2022]
Abstract
PURPOSE Brain myelin plays an important role in normal brain function. Demyelination is involved in many degenerative brain diseases, thus quantitative imaging of myelin has been under active investigation. In previous work, we demonstrated the capability of the method known as Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n (RAFFn) to provide image contrast between white and gray matter in human and rat brains. Here, we provide evidence pointing to myelin being the major source of this contrast. METHODS RAFFn relaxation time constant (TRAFFn) was mapped in rat brain ex vivo. TRAFFn was quantified in 12 different brain areas. TRAFFn values were compared with multiple other MRI metrics (T1, T2 , continuous wave T1ρ, adiabatic T1ρ and T2ρ, magnetization transfer ratio), and with histologic measurements of cell density, myelin and iron content. RESULTS Highest contrast between white and grey matter was obtained with TRAFFn in the rotating frames of ranks n = 4 and 5. TRAFFn values correlated strongly with myelin content, whereas no associations between TRAFFn and iron content or cell density were found. CONCLUSION TRAFFn with n = 4 or 5 provides a high sensitivity for selective myelin mapping in the rat brain.
Collapse
Affiliation(s)
- Hanne Hakkarainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Timo Liimatainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
16
|
Sorce DJ, Mangia S, Liimatainen T, Garwood M, Michaeli S. Exchange-induced relaxation in the presence of a fictitious field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 245:12-6. [PMID: 24911888 PMCID: PMC4308052 DOI: 10.1016/j.jmr.2014.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
In the present study we derive a solution for two site fast exchange-induced relaxation in the presence of a fictitious magnetic field as generated by amplitude and frequency modulated RF pulses. This solution provides a means to analyze data obtained from relaxation experiments with the method called RAFFn (Relaxation Along a Fictitious Field of rank n), in which a fictitious field is created in a coordinate frame undergoing multi-fold rotation about n axes (rank n). The RAFF2 technique is relevant to MRI relaxation methods that provide good contrast enhancement for tumor detection. The relaxation equations for n=2 are derived for the fast exchange regime using density matrix formalism. The method of derivation can be further extended to obtain solutions for n>2.
Collapse
Affiliation(s)
- Dennis J Sorce
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Timo Liimatainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Liimatainen T, Hakkarainen H, Mangia S, Huttunen JMJ, Storino C, Idiyatullin D, Sorce D, Garwood M, Michaeli S. MRI contrasts in high rank rotating frames. Magn Reson Med 2014; 73:254-62. [PMID: 24523028 DOI: 10.1002/mrm.25129] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 11/10/2022]
Abstract
PURPOSE MRI relaxation measurements are performed in the presence of a fictitious magnetic field in the recently described technique known as RAFF (Relaxation Along a Fictitious Field). This method operates in the 2(nd) rotating frame (rank n = 2) by using a nonadiabatic sweep of the radiofrequency effective field to generate the fictitious magnetic field. In the present study, the RAFF method is extended for generating MRI contrasts in rotating frames of ranks 1 ≤ n ≤ 5. The developed method is entitled RAFF in rotating frame of rank n (RAFFn). THEORY AND METHODS RAFFn pulses were designed to generate fictitious fields that allow locking of magnetization in rotating frames of rank n. Contrast generated with RAFFn was studied using Bloch-McConnell formalism together with experiments on human and rat brains. RESULTS Tolerance to B0 and B1 inhomogeneities and reduced specific absorption rate with increasing n in RAFFn were demonstrated. Simulations of exchange-induced relaxations revealed enhanced sensitivity of RAFFn to slow exchange. Consistent with such feature, an increased grey/white matter contrast was observed in human and rat brain as n increased. CONCLUSION RAFFn is a robust and safe rotating frame relaxation method to access slow molecular motions in vivo.
Collapse
Affiliation(s)
- Timo Liimatainen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanne Hakkarainen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Janne M J Huttunen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Christine Storino
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Dennis Sorce
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA
| |
Collapse
|
18
|
Andronesi OC, Bhat H, Reuter M, Mukherjee S, Caravan P, Rosen BR. Whole brain mapping of water pools and molecular dynamics with rotating frame MR relaxation using gradient modulated low-power adiabatic pulses. Neuroimage 2013; 89:92-109. [PMID: 24345390 DOI: 10.1016/j.neuroimage.2013.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/27/2013] [Accepted: 12/07/2013] [Indexed: 10/25/2022] Open
Abstract
Nuclear magnetic resonance (NMR) relaxation in the rotating frame is sensitive to molecular dynamics on the time scale of water molecules interacting with macromolecules or supramolecular complexes, such as proteins, myelin and cell membranes. Hence, longitudinal (T1ρ) and transverse (T2ρ) relaxation in the rotating frame may have a great potential to probe the macromolecular fraction of tissues. This stimulated a large interest in using this MR contrast to image brain under healthy and disease conditions. However, experimental challenges related to the use of intense radiofrequency irradiation have limited the widespread use of T1ρ and T2ρ imaging. Here, we present methodological development to acquire 3D high-resolution or 2D (multi-)slice selective T1ρ and T2ρ maps of the entire human brain within short acquisition times. These improvements are based on a class of gradient modulated adiabatic pulses that reduce the power deposition, provide slice selection, and mitigate artifacts resulting from inhomogeneities of B1 and B0 magnetic fields. Based on an analytical model of the T1ρ and T2ρ relaxation we compute the maps of macromolecular bound water fraction, correlation and exchange time constants as quantitative biomarkers informative of tissue macromolecular content. Results obtained from simulations, phantoms and five healthy subjects are included.
Collapse
Affiliation(s)
- Ovidiu C Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Himanshu Bhat
- Siemens Medical Solutions USA Inc, Charlestown, MA 02129, USA
| | - Martin Reuter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shreya Mukherjee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
19
|
Current world literature. Curr Opin Pediatr 2012; 24:770-9. [PMID: 23146873 DOI: 10.1097/mop.0b013e32835af8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|