1
|
Lu A, Atkinson IC, Thulborn KR. Motion reduction for quantitative brain sodium MR imaging with a navigated flexible twisted projection imaging sequence at 9.4 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 307:106582. [PMID: 31499470 DOI: 10.1016/j.jmr.2019.106582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Quantitative measurement of the tissue sodium concentration (TSC) provides a metric for tissue cell volume fraction for monitoring tumor responses to therapy and neurodegeneration in the brain as well as applications outside the central nervous system such as the fixed charge density in cartilage. Despite the low detection sensitivity of the sodium MR signal compared to the proton signal and the requirement for a long repetition time to minimize longitudinal magnetization saturation, acquisition time has been reduced to less than 10 min for a nominal isotropic voxel size of 3.3 mm with the improved acquisition efficiency of twisted projection imaging (TPI) at 9.4 T. However, patient motion can degrade the accuracy of the quantification even within these acquisition times. Our goal has been to improve the robustness of quantitative sodium MR imaging by minimizing the impact of motion that may occur even in cooperative patients. We present a method to spatially encode a lower resolution navigator echo after encoding the free induction decay signal for the quantitative image at no time penalty. Both the imaging and navigator data are sampled with flexTPI readout trajectories. Navigator images are generated at a higher temporal resolution (∼1 min) albeit at lower spatial resolution (8 mm) than the quantitative high-resolution images. The multiple volumes of navigator echo images are then aligned to extract the translational and rotational motion parameters assuming rigid-body motion. These parameters are used to align the k-space data during the acquisition of each volume of the quantitative images. Our results show significantly reduced image blurring with this method when the subject's head moved randomly by up to 7° between the navigator acquisitions.
Collapse
Affiliation(s)
- Aiming Lu
- Department of Radiology, Mayo Clinic, Rochester, MN 55901, United States.
| | - Ian C Atkinson
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
2
|
Thulborn KR, Lu A, Atkinson IC, Pauliah M, Beal K, Chan TA, Omuro A, Yamada J, Bradbury MS. Residual Tumor Volume, Cell Volume Fraction, and Tumor Cell Kill During Fractionated Chemoradiation Therapy of Human Glioblastoma using Quantitative Sodium MR Imaging. Clin Cancer Res 2019; 25:1226-1232. [PMID: 30487127 PMCID: PMC7462306 DOI: 10.1158/1078-0432.ccr-18-2079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/04/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Spatial and temporal patterns of response of human glioblastoma to fractionated chemoradiation are described by changes in the bioscales of residual tumor volume (RTV), tumor cell volume fraction (CVF), and tumor cell kill (TCK), as derived from tissue sodium concentration (TSC) measured by quantitative sodium MRI at 3 Tesla. These near real-time patterns during treatment are compared with overall survival. EXPERIMENTAL DESIGN Bioscales were mapped during fractionated chemoradiation therapy in patients with glioblastomas (n = 20) using TSC obtained from serial quantitative sodium MRI at 3 Tesla and a two-compartment model of tissue sodium distribution. The responses of these parameters in newly diagnosed human glioblastomas undergoing treatment were compared with time-to-disease progression and survival. RESULTS RTV following tumor resection showed decreased CVF due to disruption of normal cell packing by edema and infiltrating tumor cells. CVF showed either increases back toward normal as infiltrating tumor cells were killed, or decreases as cancer cells continued to infiltrate and extend tumor margins. These highly variable tumor responses showed no correlation with time-to-progression or overall survival. CONCLUSIONS These bioscales indicate that fractionated chemoradiotherapy of glioblastomas produces variable responses with low cell killing efficiency. These parameters are sensitive to real-time changes within the treatment volume while remaining stable elsewhere, highlighting the potential to individualize therapy earlier in management, should alternative strategies be available.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois.
| | - Aiming Lu
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois
| | - Ian C Atkinson
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois
| | - Mohan Pauliah
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kathryn Beal
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timothy A Chan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Antonio Omuro
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Josh Yamada
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michelle S Bradbury
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York
| |
Collapse
|
3
|
Wang P, Deger MS, Kang H, Ikizler TA, Titze J, Gore JC. Sex differences in sodium deposition in human muscle and skin. Magn Reson Imaging 2017; 36:93-97. [PMID: 27989912 PMCID: PMC5222810 DOI: 10.1016/j.mri.2016.10.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/08/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022]
Abstract
The aim of this work was to investigate possible sex differences in the patterns of sodium deposition between muscle and skin using sodium MRI. A total of 38 subjects were examined for comparisons: 20 males, aged 25-79years with a median age of 51; 18 females, aged 38-66years, median age 53. All subjects underwent sodium MRI scans of the calf muscles together with cross sections through four calibration standards containing known sodium contents (10mM, 20mM, 30mM, and 40mM). Tissue sodium concentrations (TSC) in muscle and skin were then calculated by comparing signal intensities between tissues and reference standards using a linear analysis. A Wilcoxon rank sum test was applied to the ΔTSC (=TSCmuscle-TSCskin) series of males and females to examine if they were significantly different. Finally, a multiple linear regression was utilized to account for the effects from two potential confounders, age and body mass index (BMI). We found that sodium content appears to be higher in skin than in muscle for men, however women tend to have higher muscle sodium than skin sodium. This sex-relevant sodium deposition is statistically significant (P=3.10×10-5) by the Wilcoxon rank sum test, and this difference in distribution seems to be more reliable with increasing age. In the multiple linear regression, gender still has a statistically significant effect (P<1.0×10-4) on the difference between sodium deposition in muscle and skin, while taking the effects of age and BMI into account.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Muge Serpil Deger
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - T Alp Ikizler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jens Titze
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Thulborn KR, Lui E, Guntin J, Jamil S, Sun Z, Claiborne T, Atkinson IC. Quantitative sodium MRI of the human brain at 9.4 T provides assessment of tissue sodium concentration and cell volume fraction during normal aging. NMR IN BIOMEDICINE 2016; 29:137-43. [PMID: 26058461 PMCID: PMC4674376 DOI: 10.1002/nbm.3312] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 05/11/2023]
Abstract
Sodium ion homeostasis is a fundamental property of viable tissue, allowing the tissue sodium concentration to be modeled as the tissue cell volume fraction. The modern neuropathology literature using ex vivo tissue from selected brain regions indicates that human brain cell density remains constant during normal aging and attributes the volume loss that occurs with advancing age to changes in neuronal size and dendritic arborization. Quantitative sodium MRI performed with the enhanced sensitivity of ultrahigh-field 9.4 T has been used to investigate tissue cell volume fraction during normal aging. This cross-sectional study (n = 49; 21-80 years) finds that the in vivo tissue cell volume fraction remains constant in all regions of the brain with advancing age in individuals who remain cognitively normal, extending the ex vivo literature reporting constant neuronal cell density across the normal adult age range. Cell volume fraction, as measured by quantitative sodium MRI, is decreased in diseases of cell loss, such as stroke, on a time scale of minutes to hours, and in response to treatment of brain tumors on a time scale of days to weeks. Neurodegenerative diseases often have prodromal periods of decades in which regional neuronal cell loss occurs prior to clinical presentation. If tissue cell volume fraction can detect such early pathology, this quantitative parameter may permit the objective measurement of preclinical disease progression. This current study in cognitively normal aging individuals provides the basis for the pursuance of investigations directed towards such neurodegenerative diseases.
Collapse
Affiliation(s)
- Keith R. Thulborn
- Correspondence to: K. Thulborn, University of Illinois at Chicago, Center for MR Research, 1801 West Taylor St., MC 707, Suite 1307, Chicago, IL 60612, USA.
| | - Elaine Lui
- Royal Melbourne Hospital, Radiology, Parkville, Vic., Australia
| | - Jonathan Guntin
- University of Illinois at Chicago, Center for MR Research, Chicago, IL, USA
| | - Saad Jamil
- University of Illinois at Chicago, Center for MR Research, Chicago, IL, USA
| | - Ziqi Sun
- University of Illinois at Chicago, Center for MR Research, Chicago, IL, USA
| | - Theodore Claiborne
- University of Illinois at Chicago, Center for MR Research, Chicago, IL, USA
| | - Ian C. Atkinson
- University of Illinois at Chicago, Center for MR Research, Chicago, IL, USA
| |
Collapse
|
5
|
Brown R, Lakshmanan K, Madelin G, Alon L, Chang G, Sodickson DK, Regatte RR, Wiggins GC. A flexible nested sodium and proton coil array with wideband matching for knee cartilage MRI at 3T. Magn Reson Med 2015; 76:1325-34. [PMID: 26502310 DOI: 10.1002/mrm.26017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/27/2015] [Accepted: 09/25/2015] [Indexed: 12/11/2022]
Abstract
PURPOSE We describe a 2 × 6 channel sodium/proton array for knee MRI at 3T. Multielement coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low tissue-coil coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. METHODS The issue of low tissue-coil coupling in the developed six-channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize the coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high-quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. RESULTS The wideband matching scheme and tight-fitting mechanical design contributed to >30% central signal-to-noise ratio gain on the sodium module over a mononuclear sodium birdcage coil, and the performance of the proton module was sufficient for clinical imaging. CONCLUSION We expect the strategies presented in this study to be generally relevant in high-density receive arrays, particularly in x-nuclei or small animal applications. Magn Reson Med 76:1325-1334, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA. .,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA. .,NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, New York, USA.
| | - Karthik Lakshmanan
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Leeor Alon
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, New York, USA
| | - Gregory Chang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, New York, USA
| | - Ravinder R Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Graham C Wiggins
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
6
|
Shajan G, Mirkes C, Buckenmaier K, Hoffmann J, Pohmann R, Scheffler K. Three‐layered radio frequency coil arrangement for sodium MRI of the human brain at 9.4 Tesla. Magn Reson Med 2015; 75:906-16. [DOI: 10.1002/mrm.25666] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/22/2015] [Accepted: 02/02/2015] [Indexed: 11/09/2022]
Affiliation(s)
- G. Shajan
- High Field MR Center, Max Planck Institute for Biological CyberneticsTübingen Germany
| | - Christian Mirkes
- High Field MR Center, Max Planck Institute for Biological CyberneticsTübingen Germany
- Department for Biomedical Magnetic ResonanceUniversity of TübingenTübingen Germany
| | - Kai Buckenmaier
- High Field MR Center, Max Planck Institute for Biological CyberneticsTübingen Germany
| | - Jens Hoffmann
- High Field MR Center, Max Planck Institute for Biological CyberneticsTübingen Germany
| | - Rolf Pohmann
- High Field MR Center, Max Planck Institute for Biological CyberneticsTübingen Germany
| | - Klaus Scheffler
- High Field MR Center, Max Planck Institute for Biological CyberneticsTübingen Germany
- Department for Biomedical Magnetic ResonanceUniversity of TübingenTübingen Germany
| |
Collapse
|
7
|
Truong ML, Harrington MG, Schepkin VD, Chekmenev EY. Sodium 3D COncentration MApping (COMA 3D) using (23)Na and proton MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 247:88-95. [PMID: 25261742 PMCID: PMC4198170 DOI: 10.1016/j.jmr.2014.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/21/2014] [Accepted: 08/25/2014] [Indexed: 06/03/2023]
Abstract
Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm(3) and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/.
Collapse
Affiliation(s)
- Milton L Truong
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN 37232, USA.
| | - Michael G Harrington
- Huntington Medical Research Institutes, 99 North El Molino Ave, Pasadena, CA 91101, USA
| | - Victor D Schepkin
- National High Magnetic Field Laboratory (NHMFL), Florida State University, 1800 E Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Eduard Y Chekmenev
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37205, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Mirkes CC, Hoffmann J, Shajan G, Pohmann R, Scheffler K. High-resolution quantitative sodium imaging at 9.4 Tesla. Magn Reson Med 2014; 73:342-51. [PMID: 24435910 DOI: 10.1002/mrm.25096] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/10/2022]
Abstract
PURPOSE Investigation of the feasibility to perform high-resolution quantitative sodium imaging at 9.4 Tesla (T). METHODS A proton patch antenna was combined with a sodium birdcage coil to provide a proton signal without compromising the efficiency of the X-nucleus coil. Sodium density weighted images with a nominal resolution of 1 × 1 × 5 mm(3) were acquired within 30 min with an ultrashort echo time sequence. The methods used for signal calibration as well as for B0, B1, and off-resonance correction were verified on a phantom and five healthy volunteers. RESULTS An actual voxel volume of roughly 40 μL could be achieved at 9.4T, while maintaining an acceptable signal-to-noise ratio (8 for brain tissue and 35 for cerebrospinal fluid). The measured mean sodium concentrations for gray and white matter were 36 ± 2 and 31 ± 1 mmol/L of wet tissue, which are comparable to values previously reported in the literature. CONCLUSION The reduction of partial volume effects is essential for accurate measurement of the sodium concentration in the human brain. Ultrahigh field imaging is a viable tool to achieve this goal due to its increased sensitivity.
Collapse
Affiliation(s)
- Christian C Mirkes
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jens Hoffmann
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - G Shajan
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Rolf Pohmann
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
9
|
Regatte RR. Why buy an expensive ($7 million) 7T MRI system for biomedical research? J Magn Reson Imaging 2013; 40:280-2. [PMID: 24123421 DOI: 10.1002/jmri.24444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ravinder R Regatte
- Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|