1
|
Rosenberg JT, Grant SC, Topgaard D. Nonparametric 5D D-R 2 distribution imaging with single-shot EPI at 21.1 T: Initial results for in vivo rat brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 341:107256. [PMID: 35753184 PMCID: PMC9339475 DOI: 10.1016/j.jmr.2022.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In vivo human diffusion MRI is by default performed using single-shot EPI with greater than 50-ms echo times and associated signal loss from transverse relaxation. The individual benefits of the current trends of increasing B0 to boost SNR and employing more advanced signal preparation schemes to improve the specificity for selected microstructural properties eventually may be cancelled by increased relaxation rates at high B0 and echo times with advanced encoding. Here, initial attempts to translate state-of-the-art diffusion-relaxation correlation methods from 3 T to 21.1 T are made to identify hurdles that need to be overcome to fulfill the promises of both high SNR and readily interpretable microstructural information.
Collapse
Affiliation(s)
- Jens T Rosenberg
- National High Magnetic Field Laboratory, Florida State University, Tallahassee FL, United States.
| | - Samuel C Grant
- National High Magnetic Field Laboratory, Florida State University, Tallahassee FL, United States; Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States.
| | | |
Collapse
|
2
|
Olesen JL, Østergaard L, Shemesh N, Jespersen SN. Diffusion time dependence, power-law scaling, and exchange in gray matter. Neuroimage 2022; 251:118976. [PMID: 35168088 PMCID: PMC8961002 DOI: 10.1016/j.neuroimage.2022.118976] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/24/2021] [Accepted: 02/04/2022] [Indexed: 12/27/2022] Open
Abstract
Characterizing neural tissue microstructure is a critical goal for future neuroimaging. Diffusion MRI (dMRI) provides contrasts that reflect diffusing spins' interactions with myriad microstructural features of biological systems. However, the specificity of dMRI remains limited due to the ambiguity of its signals vis-à-vis the underlying microstructure. To improve specificity, biophysical models of white matter (WM) typically express dMRI signals according to the Standard Model (SM) and have more recently in gray matter (GM) taken spherical compartments into account (the SANDI model) in attempts to represent cell soma. The validity of the assumptions underlying these models, however, remains largely undetermined, especially in GM. To validate these assumptions experimentally, observing their unique, functional properties, such as the b-1/2 power-law associated with one-dimensional diffusion, has emerged as a fruitful strategy. The absence of this signature in GM, in turn, has been explained by neurite water exchange, non-linear morphology, and/or by obscuring soma signal contributions. Here, we present diffusion simulations in realistic neurons demonstrating that curvature and branching does not destroy the stick power-law behavior in impermeable neurites, but also that their signal is drowned by the soma signal under typical experimental conditions. Nevertheless, by studying the GM dMRI signal's behavior as a function of diffusion weighting as well as time, we identify an attainable experimental regime in which the neurite signal dominates. Furthermore, we find that exchange-driven time dependence produces a signal behavior opposite to that which would be expected from restricted diffusion, thereby providing a functional signature that disambiguates the two effects. We present data from dMRI experiments in ex vivo rat brain at ultrahigh field of 16.4T and observe a time dependence that is consistent with substantial exchange but also with a GM stick power-law. The first finding suggests significant water exchange between neurites and the extracellular space while the second suggests a small sub-population of impermeable neurites. To quantify these observations, we harness the Kärger exchange model and incorporate the corresponding signal time dependence in the SM and SANDI models.
Collapse
Affiliation(s)
- Jonas L Olesen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Novello L, Henriques RN, Ianuş A, Feiweier T, Shemesh N, Jovicich J. In vivo Correlation Tensor MRI reveals microscopic kurtosis in the human brain on a clinical 3T scanner. Neuroimage 2022; 254:119137. [PMID: 35339682 DOI: 10.1016/j.neuroimage.2022.119137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Diffusion MRI (dMRI) has become one of the most important imaging modalities for noninvasively probing tissue microstructure. Diffusional Kurtosis MRI (DKI) quantifies the degree of non-gaussian diffusion, which in turn has been shown to increase sensitivity towards, e.g., disease and orientation mapping in neural tissue. However, the specificity of DKI is limited as different sources can contribute to the total intravoxel diffusional kurtosis, including: variance in diffusion tensor magnitudes (Kiso), variance due to diffusion anisotropy (Kaniso), and microscopic kurtosis (μK) related to restricted diffusion, microstructural disorder, and/or exchange. Interestingly, μK is typically ignored in diffusion MRI signal modeling as it is assumed to be negligible in neural tissues. However, recently, Correlation Tensor MRI (CTI) based on Double-Diffusion-Encoding (DDE) was introduced for kurtosis source separation, revealing non negligible μK in preclinical imaging. Here, we implemented CTI for the first time on a clinical 3T scanner and investigated the sources of total kurtosis in healthy subjects. A robust framework for kurtosis source separation in humans is introduced, followed by estimation of μK (and the other kurtosis sources) in the healthy brain. Using this clinical CTI approach, we find that μK significantly contributes to total diffusional kurtosis both in gray and white matter tissue but, as expected, not in the ventricles. The first μK maps of the human brain are presented, revealing that the spatial distribution of μK provides a unique source of contrast, appearing different from isotropic and anisotropic kurtosis counterparts. Moreover, group average templates of these kurtosis sources have been generated for the first time, which corroborated our findings at the underlying individual-level maps. We further show that the common practice of ignoring μK and assuming the multiple gaussian component approximation for kurtosis source estimation introduces significant bias in the estimation of other kurtosis sources and, perhaps even worse, compromises their interpretation. Finally, a twofold acceleration of CTI is discussed in the context of potential future clinical applications. We conclude that CTI has much potential for future in vivo microstructural characterizations in healthy and pathological tissue.
Collapse
Affiliation(s)
- Lisa Novello
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.
| | | | - Andrada Ianuş
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| |
Collapse
|
4
|
Correlation Tensor MRI deciphers underlying kurtosis sources in stroke. Neuroimage 2021; 247:118833. [PMID: 34929382 DOI: 10.1016/j.neuroimage.2021.118833] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Noninvasively detecting and characterizing modulations in cellular scale micro-architecture remains a desideratum for contemporary neuroimaging. Diffusion MRI (dMRI) has become the mainstay methodology for probing microstructure, and, in ischemia, its contrasts have revolutionized stroke management. Diffusion kurtosis imaging (DKI) has been shown to significantly enhance the sensitivity of stroke detection compared to its diffusion tensor imaging (DTI) counterparts. However, the interpretation of DKI remains ambiguous as its contrast may arise from competing kurtosis sources related to the anisotropy of tissue components, diffusivity variance across components, and microscopic kurtosis (e.g., arising from cross-sectional variance, structural disorder, and restriction). Resolving these sources may be fundamental for developing more specific imaging techniques for stroke management, prognosis, and understanding its pathophysiology. In this study, we apply Correlation Tensor MRI (CTI) - a double diffusion encoding (DDE) methodology recently introduced for deciphering kurtosis sources based on the unique information captured in DDE's diffusion correlation tensors - to investigate the underpinnings of kurtosis measurements in acute ischemic lesions. Simulations for the different kurtosis sources revealed specific signatures for cross-sectional variance (representing neurite beading), edema, and cell swelling. Ex vivo CTI experiments at 16.4 T were then performed in an experimental photothrombotic stroke model 3 h post-stroke (N = 10), and successfully separated anisotropic, isotropic, and microscopic non-Gaussian diffusion sources in the ischemic lesions. Each of these kurtosis sources provided unique contrasts in the stroked area. Particularly, microscopic kurtosis was shown to be a primary "driver" of total kurtosis upon ischemia; its large increases, coupled with decreases in anisotropic kurtosis, are consistent with the expected elevation in cross-sectional variance, likely linked to beading effects in small objects such as neurites. In vivo experiments at 9.4 T at the same time point (3 h post ischemia, N = 5) demonstrated the stability and relevance of the findings and showed that fixation is not a dominant confounder in our findings. In future studies, the different CTI contrasts may be useful to address current limitations of stroke imaging, e.g., penumbra characterization, distinguishing lesion progression form tissue recovery, and elucidating pathophysiological correlates.
Collapse
|
5
|
Rahman N, Xu K, Omer M, Budde MD, Brown A, Baron CA. Test-retest reproducibility of in vivo oscillating gradient and microscopic anisotropy diffusion MRI in mice at 9.4 Tesla. PLoS One 2021; 16:e0255711. [PMID: 34739479 PMCID: PMC8570471 DOI: 10.1371/journal.pone.0255711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Microstructure imaging with advanced diffusion MRI (dMRI) techniques have shown increased sensitivity and specificity to microstructural changes in various disease and injury models. Oscillating gradient spin echo (OGSE) dMRI, implemented by varying the oscillating gradient frequency, and microscopic anisotropy (μA) dMRI, implemented via tensor valued diffusion encoding, may provide additional insight by increasing sensitivity to smaller spatial scales and disentangling fiber orientation dispersion from true microstructural changes, respectively. The aims of this study were to characterize the test-retest reproducibility of in vivo OGSE and μA dMRI metrics in the mouse brain at 9.4 Tesla and provide estimates of required sample sizes for future investigations. METHODS Twelve adult C57Bl/6 mice were scanned twice (5 days apart). Each imaging session consisted of multifrequency OGSE and μA dMRI protocols. Metrics investigated included μA, linear diffusion kurtosis, isotropic diffusion kurtosis, and the diffusion dispersion rate (Λ), which explores the power-law frequency dependence of mean diffusivity. The dMRI metric maps were analyzed with mean region-of-interest (ROI) and whole brain voxel-wise analysis. Bland-Altman plots and coefficients of variation (CV) were used to assess the reproducibility of OGSE and μA metrics. Furthermore, we estimated sample sizes required to detect a variety of effect sizes. RESULTS Bland-Altman plots showed negligible biases between test and retest sessions. ROI-based CVs revealed high reproducibility for most metrics (CVs < 15%). Voxel-wise CV maps revealed high reproducibility for μA (CVs ~ 10%), but low reproducibility for OGSE metrics (CVs ~ 50%). CONCLUSION Most of the μA dMRI metrics are reproducible in both ROI-based and voxel-wise analysis, while the OGSE dMRI metrics are only reproducible in ROI-based analysis. Given feasible sample sizes (10-15), μA metrics and OGSE metrics may provide sensitivity to subtle microstructural changes (4-8%) and moderate changes (> 6%), respectively.
Collapse
Affiliation(s)
- Naila Rahman
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kathy Xu
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mohammad Omer
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Arthur Brown
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Corey A. Baron
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Henriques RN, Palombo M, Jespersen SN, Shemesh N, Lundell H, Ianuş A. Double diffusion encoding and applications for biomedical imaging. J Neurosci Methods 2020; 348:108989. [PMID: 33144100 DOI: 10.1016/j.jneumeth.2020.108989] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Diffusion Magnetic Resonance Imaging (dMRI) is one of the most important contemporary non-invasive modalities for probing tissue structure at the microscopic scale. The majority of dMRI techniques employ standard single diffusion encoding (SDE) measurements, covering different sequence parameter ranges depending on the complexity of the method. Although many signal representations and biophysical models have been proposed for SDE data, they are intrinsically limited by a lack of specificity. Advanced dMRI methods have been proposed to provide additional microstructural information beyond what can be inferred from SDE. These enhanced contrasts can play important roles in characterizing biological tissues, for instance upon diseases (e.g. neurodegenerative, cancer, stroke), aging, learning, and development. In this review we focus on double diffusion encoding (DDE), which stands out among other advanced acquisitions for its versatility, ability to probe more specific diffusion correlations, and feasibility for preclinical and clinical applications. Various DDE methodologies have been employed to probe compartment sizes (Section 3), decouple the effects of microscopic diffusion anisotropy from orientation dispersion (Section 4), probe displacement correlations, study exchange, or suppress fast diffusing compartments (Section 6). DDE measurements can also be used to improve the robustness of biophysical models (Section 5) and study intra-cellular diffusion via magnetic resonance spectroscopy of metabolites (Section 7). This review discusses all these topics as well as important practical aspects related to the implementation and contrast in preclinical and clinical settings (Section 9) and aims to provide the readers a guide for deciding on the right DDE acquisition for their specific application.
Collapse
Affiliation(s)
- Rafael N Henriques
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Marco Palombo
- Centre for Medical Image Computing and Dept. of Computer Science, University College London, London, UK
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Andrada Ianuş
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
7
|
Kamiya K, Kamagata K, Ogaki K, Hatano T, Ogawa T, Takeshige-Amano H, Murata S, Andica C, Murata K, Feiweier T, Hori M, Hattori N, Aoki S. Brain White-Matter Degeneration Due to Aging and Parkinson Disease as Revealed by Double Diffusion Encoding. Front Neurosci 2020; 14:584510. [PMID: 33177985 PMCID: PMC7594529 DOI: 10.3389/fnins.2020.584510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
Microstructure imaging by means of multidimensional diffusion encoding is increasingly applied in clinical research, with expectations that it yields a parameter that better correlates with clinical disability than current methods based on single diffusion encoding. Under the assumption that diffusion within a voxel can be well described by a collection of diffusion tensors, several parameters of this diffusion tensor distribution can be derived, including mean size, variance of sizes, orientational dispersion, and microscopic anisotropy. The information provided by multidimensional diffusion encoding also enables us to decompose the sources of the conventional fractional anisotropy and mean kurtosis. In this study, we explored the utility of the diffusion tensor distribution approach for characterizing white-matter degeneration in aging and in Parkinson disease by using double diffusion encoding. Data from 23 healthy older subjects and 27 patients with Parkinson disease were analyzed. Advanced age was associated with greater mean size and size variances, as well as smaller microscopic anisotropy. By analyzing the parameters underlying diffusion kurtosis, we found that the reductions of kurtosis in aging and Parkinson disease reported in the literature are likely driven by the reduction in microscopic anisotropy. Furthermore, microscopic anisotropy correlated with the severity of motor impairment in the patients with Parkinson disease. The present results support the use of multidimensional diffusion encoding in clinical studies and are encouraging for its future clinical implementation.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Radiology, Toho University, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kotaro Ogaki
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Ogawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Syo Murata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Radiology, Toho University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Jelescu IO, Palombo M, Bagnato F, Schilling KG. Challenges for biophysical modeling of microstructure. J Neurosci Methods 2020; 344:108861. [PMID: 32692999 PMCID: PMC10163379 DOI: 10.1016/j.jneumeth.2020.108861] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The biophysical modeling efforts in diffusion MRI have grown considerably over the past 25 years. In this review, we dwell on the various challenges along the journey of bringing a biophysical model from initial design to clinical implementation, identifying both hurdles that have been already overcome and outstanding issues. First, we describe the critical initial task of selecting which features of tissue microstructure can be estimated using a model and which acquisition protocol needs to be implemented to make the estimation possible. The model performance should necessarily be tested in realistic numerical simulations and in experimental data - adapting the fitting strategy accordingly, and parameter estimates should be validated against complementary techniques, when/if available. Secondly, the model performance and validity should be explored in pathological conditions, and, if appropriate, dedicated models for pathology should be developed. We build on examples from tumors, ischemia and demyelinating diseases. We then discuss the challenges associated with clinical translation and added value. Finally, we single out four major unresolved challenges that are related to: the availability of a microstructural ground truth, the validation of model parameters which cannot be accessed with complementary techniques, the development of a generalized standard model for any brain region and pathology, and the seamless communication between different parties involved in the development and application of biophysical models of diffusion.
Collapse
|
9
|
Kiselev VG. Microstructure with diffusion MRI: what scale we are sensitive to? J Neurosci Methods 2020; 347:108910. [PMID: 32798530 DOI: 10.1016/j.jneumeth.2020.108910] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022]
Abstract
Diffusion-weighted MRI is the forerunner of the rapidly developed microstructure MRI (μMRI) aimed at in vivo evaluation of the cellular tissue architecture. This brief review focuses on the spatiotemporal scales of the microstructure that are accessible using different diffusion MRI techniques and the need to weight the measurability against the interpretability of results. Diffusion phenomena and models are first classified in two-dimensional space (the q-t-plane) of the measurement with narrow gradient pulses. Three-dimensional parameter space of the Stejskal-Tanner diffusion weighting adds more phenomena to this collection. Modern measurement techniques with larger number of parameters are briefly discussed under the overarching idea of diffusion weighting matching the geometry of the targeted cell species.
Collapse
Affiliation(s)
- Valerij G Kiselev
- Medical Physics, Dpt. of Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Henriques RN, Jespersen SN, Shemesh N. Correlation tensor magnetic resonance imaging. Neuroimage 2020; 211:116605. [DOI: 10.1016/j.neuroimage.2020.116605] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/23/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022] Open
|
11
|
Anaby D, Morozov D, Seroussi I, Hametner S, Sochen N, Cohen Y. Single- and double-Diffusion encoding MRI for studying ex vivo apparent axon diameter distribution in spinal cord white matter. NMR IN BIOMEDICINE 2019; 32:e4170. [PMID: 31573745 DOI: 10.1002/nbm.4170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Mapping average axon diameter (AAD) and axon diameter distribution (ADD) in neuronal tissues non-invasively is a challenging task that may have a tremendous effect on our understanding of the normal and diseased central nervous system (CNS). Water diffusion is used to probe microstructure in neuronal tissues, however, the different water populations and barriers that are present in these tissues turn this into a complex task. Therefore, it is not surprising that recently we have witnessed a burst in the development of new approaches and models that attempt to obtain, non-invasively, detailed microstructural information in the CNS. In this work, we aim at challenging and comparing the microstructural information obtained from single diffusion encoding (SDE) with double diffusion encoding (DDE) MRI. We first applied SDE and DDE MR spectroscopy (MRS) on microcapillary phantoms and then applied SDE and DDE MRI on an ex vivo porcine spinal cord (SC), using similar experimental conditions. The obtained diffusion MRI data were fitted by the same theoretical model, assuming that the signal in every voxel can be approximated as the superposition of a Gaussian-diffusing component and a series of restricted components having infinite cylindrical geometries. The diffusion MRI results were then compared with histological findings. We found a good agreement between the fittings and the experimental data in white matter (WM) voxels of the SC in both diffusion MRI methods. The microstructural information and apparent AADs extracted from SDE MRI were found to be similar or somewhat larger than those extracted from DDE MRI especially when the diffusion time was set to 40 ms. The apparent ADDs extracted from SDE and DDE MRI show reasonable agreement but somewhat weaker correspondence was observed between the diffusion MRI results and histology. The apparent subtle differences between the microstructural information obtained from SDE and DDE MRI are briefly discussed.
Collapse
Affiliation(s)
- Debbie Anaby
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Darya Morozov
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Seroussi
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Simon Hametner
- Neuroimmunology Department, Center of Brain Research, Medical University of Vienna, Vienna, Austria
| | - Nir Sochen
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Alexander DC, Dyrby TB, Nilsson M, Zhang H. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR IN BIOMEDICINE 2019; 32:e3841. [PMID: 29193413 DOI: 10.1002/nbm.3841] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/09/2017] [Accepted: 09/11/2017] [Indexed: 05/22/2023]
Abstract
This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term.
Collapse
Affiliation(s)
- Daniel C Alexander
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Markus Nilsson
- Clinical Sciences Lund, Department of Radiology, Lund University, Lund, Sweden
| | - Hui Zhang
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| |
Collapse
|
13
|
Novikov DS, Fieremans E, Jespersen SN, Kiselev VG. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. NMR IN BIOMEDICINE 2019; 32:e3998. [PMID: 30321478 PMCID: PMC6481929 DOI: 10.1002/nbm.3998] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 05/18/2023]
Abstract
We review, systematize and discuss models of diffusion in neuronal tissue, by putting them into an overarching physical context of coarse-graining over an increasing diffusion length scale. From this perspective, we view research on quantifying brain microstructure as occurring along three major avenues. The first avenue focusses on transient, or time-dependent, effects in diffusion. These effects signify the gradual coarse-graining of tissue structure, which occurs qualitatively differently in different brain tissue compartments. We show that transient effects contain information about the relevant length scales for neuronal tissue, such as the packing correlation length for neuronal fibers, as well as the degree of structural disorder along the neurites. The second avenue corresponds to the long-time limit, when the observed signal can be approximated as a sum of multiple nonexchanging anisotropic Gaussian components. Here, the challenge lies in parameter estimation and in resolving its hidden degeneracies. The third avenue employs multiple diffusion encoding techniques, able to access information not contained in the conventional diffusion propagator. We conclude with our outlook on future directions that could open exciting possibilities for designing quantitative markers of tissue physiology and pathology, based on methods of studying mesoscopic transport in disordered systems.
Collapse
Affiliation(s)
- Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Sune N. Jespersen
- CFIN/MINDLab, Department of Clinical Medicine and Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Valerij G. Kiselev
- Medical Physics, Deptartment of Radiology, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
14
|
Henriques RN, Jespersen SN, Shemesh N. Microscopic anisotropy misestimation in spherical-mean single diffusion encoding MRI. Magn Reson Med 2019; 81:3245-3261. [PMID: 30648753 PMCID: PMC6519215 DOI: 10.1002/mrm.27606] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 12/03/2022]
Abstract
Purpose Microscopic fractional anisotropy (µFA) can disentangle microstructural information from orientation dispersion. While double diffusion encoding (DDE) MRI methods are widely used to extract accurate µFA, it has only recently been proposed that powder‐averaged single diffusion encoding (SDE) signals, when coupled with the diffusion standard model (SM) and a set of constraints, could be used for µFA estimation. This study aims to evaluate µFA as derived from the spherical mean technique (SMT) set of constraints, as well as more generally for powder‐averaged SM signals. Methods SDE experiments were performed at 16.4 T on an ex vivo mouse brain (Δ/δ = 12/1.5 ms). The µFA maps obtained from powder‐averaged SDE signals were then compared to maps obtained from DDE‐MRI experiments (Δ/τ/δ = 12/12/1.5 ms), which allow a model‐free estimation of µFA. Theory and simulations that consider different types of heterogeneity are presented for corroborating the experimental findings. Results µFA, as well as other estimates derived from powder‐averaged SDE signals produced large deviations from the ground truth in both gray and white matter. Simulations revealed that these misestimations are likely a consequence of factors not considered by the underlying microstructural models (such as intercomponent and intracompartmental kurtosis). Conclusion Powder‐averaged SMT and (2‐component) SM are unable to accurately report µFA and other microstructural parameters in ex vivo tissues. Improper model assumptions and constraints can significantly compromise parameter specificity. Further developments and validations are required prior to implementation of these models in clinical or preclinical research.
Collapse
Affiliation(s)
- Rafael Neto Henriques
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
15
|
Ianuş A, Jespersen SN, Serradas Duarte T, Alexander DC, Drobnjak I, Shemesh N. Accurate estimation of microscopic diffusion anisotropy and its time dependence in the mouse brain. Neuroimage 2018; 183:934-949. [DOI: 10.1016/j.neuroimage.2018.08.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 11/27/2022] Open
|
16
|
Ji Y, Lu D, Wu L, Qiu B, Song YQ, Sun PZ. Preliminary evaluation of accelerated microscopic diffusional kurtosis imaging (μDKI) in a rodent model of epilepsy. Magn Reson Imaging 2018; 56:90-95. [PMID: 30352270 DOI: 10.1016/j.mri.2018.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE Our study aimed to develop accelerated microscopic diffusional kurtosis imaging (μDKI) and preliminarily evaluated it in a rodent model of chronic epilepsy. METHODS We investigated two μDKI acceleration schemes of reduced sampling density and angular range in a phantom and wild-type rats, and further tested μDKI method in pilocarpine-induced epilepsy rats using a 4.7 Tesla MRI. Single slice average μDapp and μKapp maps were derived, and Nissl staining was obtained. RESULTS The kurtosis maps from two accelerated μDKI sampling schemes (sampling density and range) are very similar to that using fully sampled data (SSIM > 0.95). For the epileptic models, μDKI showed noticeably different contrast from those obtained with conventional DKI. Specifically, the average μKapp was significantly less than that of the average of Kapp (0.15 ± 0.01 vs. 0.47 ± 0.02) in the ventricle. CONCLUSIONS Our study demonstrated the feasibility of accelerated in vivo μDKI. Our work revealed that μDKI provides complementary information to conventional DKI method, suggesting that advanced DKI sequences are promising to elucidate tissue microstructure in neurological diseases.
Collapse
Affiliation(s)
- Yang Ji
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Dongshuang Lu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Limin Wu
- Neuroscience Center, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Bensheng Qiu
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yi-Qiao Song
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America; Schlumberger-Doll Research Center, Cambridge, MA, United States of America
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America; Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|
17
|
Cohen-Adad J. Microstructural imaging in the spinal cord and validation strategies. Neuroimage 2018; 182:169-183. [PMID: 29635029 DOI: 10.1016/j.neuroimage.2018.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/02/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
In vivo histology using magnetic resonance imaging (MRI) is a newly emerging research field that aims to non-invasively characterize tissue microstructure. The implications of in vivo histology are many, from discovering novel biomarkers to studying human development, to providing tools for disease diagnosis and monitoring the effects of novel treatments on tissue. This review focuses on quantitative MRI (qMRI) techniques that are used to map spinal cord microstructure. Opening with a rationale for non-invasive imaging of the spinal cord, this article continues with a brief overview of the existing MRI techniques for axon and myelin imaging, followed by the specific challenges and potential solutions for acquiring and processing such data. The final part of this review focuses on histological validation, with suggested tissue preparation, acquisition and processing protocols for large-scale microscopy.
Collapse
Affiliation(s)
- J Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
18
|
Distinguishing neuronal from astrocytic subcellular microstructures using in vivo Double Diffusion Encoded 1H MRS at 21.1 T. PLoS One 2017; 12:e0185232. [PMID: 28968410 PMCID: PMC5624579 DOI: 10.1371/journal.pone.0185232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/09/2017] [Indexed: 12/27/2022] Open
Abstract
Measuring cellular microstructures non-invasively and achieving specificity towards a cell-type population within an interrogated in vivo tissue, remains an outstanding challenge in brain research. Magnetic Resonance Spectroscopy (MRS) provides an opportunity to achieve cellular specificity via the spectral resolution of metabolites such as N-Acetylaspartate (NAA) and myo-Inositol (mI), which are considered neuronal and astrocytic markers, respectively. Yet the information typically obtained with MRS describes metabolic concentrations, diffusion coefficients or relaxation rates rather than microstructures. Understanding how these metabolites are compartmentalized is a challenging but important goal, which so far has been mainly addressed using diffusion models. Here, we present direct in vivo evidence for the confinement of NAA and mI within sub-cellular components, namely, the randomly oriented process of neurons and astrocytes, respectively. Our approach applied Relaxation Enhanced MRS at ultrahigh (21.1 T) field, and used its high 1H sensitivity to measure restricted diffusion correlations for NAA and mI using a Double Diffusion Encoding (DDE) filter. While very low macroscopic anisotropy was revealed by spatially localized Diffusion Tensor Spectroscopy, DDE displayed characteristic amplitude modulations reporting on confinements in otherwise randomly oriented anisotropic microstructures for both metabolites. This implies that for the chosen set of parameters, the DDE measurements had a biased sensitivity towards NAA and mI sited in the more confined environments of neurites and astrocytic branches, than in the cell somata. These measurements thus provide intrinsic diffusivities and compartment diameters, and revealed subcellular neuronal and astrocytic morphologies in normal in vivo rat brains. The relevance of these measurements towards human applications—which could in turn help understand CNS plasticity as well as diagnose brain diseases—is discussed.
Collapse
|
19
|
Campbell JSW, Leppert IR, Narayanan S, Boudreau M, Duval T, Cohen-Adad J, Pike GB, Stikov N. Promise and pitfalls of g-ratio estimation with MRI. Neuroimage 2017; 182:80-96. [PMID: 28822750 DOI: 10.1016/j.neuroimage.2017.08.038] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/28/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022] Open
Abstract
The fiber g-ratio is the ratio of the inner to the outer diameter of the myelin sheath of a myelinated axon. It has a limited dynamic range in healthy white matter, as it is optimized for speed of signal conduction, cellular energetics, and spatial constraints. In vivo imaging of the g-ratio in health and disease would greatly increase our knowledge of the nervous system and our ability to diagnose, monitor, and treat disease. MRI based g-ratio imaging was first conceived in 2011, and expanded to be feasible in full brain white matter with preliminary results in 2013. This manuscript reviews the growing g-ratio imaging literature and speculates on future applications. It details the methodology for imaging the g-ratio with MRI, and describes the known pitfalls and challenges in doing so.
Collapse
Affiliation(s)
- Jennifer S W Campbell
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada; NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada.
| | - Ilana R Leppert
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sridar Narayanan
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mathieu Boudreau
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tanguy Duval
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, QC, Canada
| | | | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada; Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
20
|
Morozov D, Tal I, Pisanty O, Shani E, Cohen Y. Studying microstructure and microstructural changes in plant tissues by advanced diffusion magnetic resonance imaging techniques. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2245-2257. [PMID: 28398563 PMCID: PMC5447889 DOI: 10.1093/jxb/erx106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6-10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed.
Collapse
Affiliation(s)
- Darya Morozov
- School of Chemistry, The Sackler Faculty of Exact Sciences, and
| | - Iris Tal
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, Tel Aviv 66978, Israel
| | - Odelia Pisanty
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, Tel Aviv 66978, Israel
| | - Eilon Shani
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, Tel Aviv 66978, Israel
| | - Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, and
| |
Collapse
|
21
|
Ianuş A, Shemesh N, Alexander DC, Drobnjak I. Double oscillating diffusion encoding and sensitivity to microscopic anisotropy. Magn Reson Med 2016; 78:550-564. [PMID: 27580027 PMCID: PMC5516160 DOI: 10.1002/mrm.26393] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/05/2016] [Accepted: 07/31/2016] [Indexed: 12/13/2022]
Abstract
Purpose To introduce a novel diffusion pulse sequence, namely double oscillating diffusion encoding (DODE), and to investigate whether it adds sensitivity to microscopic diffusion anisotropy (µA) compared to the well‐established double diffusion encoding (DDE) methodology. Methods We simulate measurements from DODE and DDE sequences for different types of microstructures exhibiting restricted diffusion. First, we compare the effect of varying pulse sequence parameters on the DODE and DDE signal. Then, we analyse the sensitivity of the two sequences to the microstructural parameters (pore diameter and length) which determine µA. Finally, we investigate specificity of measurements to particular substrate configurations. Results Simulations show that DODE sequences exhibit similar signal dependence on the relative angle between the two gradients as DDE sequences, however, the effect of varying the mixing time is less pronounced. The sensitivity analysis shows that in substrates with elongated pores and various orientations, DODE sequences increase the sensitivity to pore diameter, while DDE sequences are more sensitive to pore length. Moreover, DDE and DODE sequence parameters can be tailored to enhance/suppress the signal from a particular range of substrates. Conclusions A combination of DODE and DDE sequences maximize sensitivity to µA, compared to using just the DDE method. Magn Reson Med 78:550–564, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Andrada Ianuş
- Centre for Medical Image Computing, University College London, London, UK
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Daniel C Alexander
- Centre for Medical Image Computing, University College London, London, UK
| | - Ivana Drobnjak
- Centre for Medical Image Computing, University College London, London, UK
| |
Collapse
|
22
|
Ianuş A, Drobnjak I, Alexander DC. Model-based estimation of microscopic anisotropy using diffusion MRI: a simulation study. NMR IN BIOMEDICINE 2016; 29:672-685. [PMID: 27003223 DOI: 10.1002/nbm.3496] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Non-invasive estimation of cell size and shape is a key challenge in diffusion MRI. This article presents a model-based approach that provides independent estimates of pore size and eccentricity from diffusion MRI data. The technique uses a geometric model of finite cylinders with gamma-distributed radii to represent pores of various sizes and elongations. We consider both macroscopically isotropic substrates and substrates of semi-coherently oriented anisotropic pores and we use Monte Carlo simulations to generate synthetic data. We compare the sensitivity of single and double diffusion encoding (SDE and DDE) sequences to the size distribution and eccentricity, and further analyse different protocols of DDE sequences with parallel and/or perpendicular pairs of gradients. We show that explicitly accounting for size distribution is necessary for accurate microstructural parameter estimates, and a model that assumes a single size yields biased eccentricity values. We also find that SDE sequences support estimates, although DDE sequences with mixed parallel and perpendicular gradients enhance accuracy. In the case of macroscopically anisotropic substrates, this model-based approach can be extended to a rotationally invariant framework to provide features of pore shape (specifically eccentricity) in the presence of size distribution and orientation dispersion.
Collapse
Affiliation(s)
- Andrada Ianuş
- Center for Medical Image Computing, Department of Computer Science, University College London, UK
| | - Ivana Drobnjak
- Center for Medical Image Computing, Department of Computer Science, University College London, UK
| | - Daniel C Alexander
- Center for Medical Image Computing, Department of Computer Science, University College London, UK
| |
Collapse
|
23
|
Mueller L, Wetscherek A, Kuder TA, Laun FB. Eddy current compensated double diffusion encoded (DDE) MRI. Magn Reson Med 2015; 77:328-335. [PMID: 26715361 DOI: 10.1002/mrm.26092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 11/07/2022]
Abstract
PURPOSE Eddy currents might lead to image distortions in diffusion-weighted echo planar imaging. A method is proposed to reduce their effects on double diffusion encoding (DDE) MRI experiments and the thereby derived microscopic fractional anisotropy (μFA). METHODS The twice-refocused spin echo scheme was adapted for DDE measurements. To assess the effect of individual diffusion encodings on the image distortions, measurements of a grid of plastic rods in water were performed. The effect of eddy current compensation on μFA measurements was evaluated in the brains of six healthy volunteers. RESULTS The use of an eddy current compensation reduced the signal variation. As expected, the distortions caused by the second encoding were larger than those of the first encoding, entailing a stronger need to compensate for them. For an optimal result, however, both encodings had to be compensated. The artifact reduction strongly improved the measurement of the μFA in ventricles and gray matter by reducing the overestimation. An effect of the compensation on absolute μFA values in white matter was not observed. CONCLUSION It is advisable to compensate both encodings in DDE measurements for eddy currents. Magn Reson Med 77:328-335, 2017. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lars Mueller
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Wetscherek
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tristan Anselm Kuder
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik Bernd Laun
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Skinner NP, Kurpad SN, Schmit BD, Budde MD. Detection of acute nervous system injury with advanced diffusion-weighted MRI: a simulation and sensitivity analysis. NMR IN BIOMEDICINE 2015; 28:1489-1506. [PMID: 26411743 DOI: 10.1002/nbm.3405] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
Diffusion-weighted imaging (DWI) is a powerful tool to investigate the microscopic structure of the central nervous system (CNS). Diffusion tensor imaging (DTI), a common model of the DWI signal, has a demonstrated sensitivity to detect microscopic changes as a result of injury or disease. However, DTI and other similar models have inherent limitations that reduce their specificity for certain pathological features, particularly in tissues with complex fiber arrangements. Methods such as double pulsed field gradient (dPFG) and q-vector magic angle spinning (qMAS) have been proposed to specifically probe the underlying microscopic anisotropy without interference from the macroscopic tissue organization. This is particularly important for the study of acute injury, where abrupt changes in the microscopic morphology of axons and dendrites manifest as focal enlargements known as beading. The purpose of this work was to assess the relative sensitivity of DWI measures to beading in the context of macroscopic fiber organization and edema. Computational simulations of DWI experiments in normal and beaded axons demonstrated that, although DWI models can be highly specific for the simulated pathologies of beading and volume fraction changes in coherent fiber pathways, their sensitivity to a single idealized pathology is considerably reduced in crossing and dispersed fibers. However, dPFG and qMAS have a high sensitivity for beading, even in complex fiber tracts. Moreover, in tissues with coherent arrangements, such as the spinal cord or nerve fibers in which tract orientation is known a priori, a specific dPFG sequence variant decreases the effects of edema and improves specificity for beading. Collectively, the simulation results demonstrate that advanced DWI methods, particularly those which sample diffusion along multiple directions within a single acquisition, have improved sensitivity to acute axonal injury over conventional DTI metrics and hold promise for more informative clinical diagnostic use in CNS injury evaluation.
Collapse
Affiliation(s)
- Nathan P Skinner
- Biophysics Graduate Program, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
25
|
Double-pulsed diffusional kurtosis imaging for the in vivo assessment of human brain microstructure. Neuroimage 2015; 120:371-81. [DOI: 10.1016/j.neuroimage.2015.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/27/2015] [Accepted: 07/05/2015] [Indexed: 12/20/2022] Open
|
26
|
Shemesh N, Jespersen SN, Alexander DC, Cohen Y, Drobnjak I, Dyrby TB, Finsterbusch J, Koch MA, Kuder T, Laun F, Lawrenz M, Lundell H, Mitra PP, Nilsson M, Özarslan E, Topgaard D, Westin CF. Conventions and nomenclature for double diffusion encoding NMR and MRI. Magn Reson Med 2015; 75:82-7. [DOI: 10.1002/mrm.25901] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown; Lisbon Portugal
| | - Sune N. Jespersen
- CFIN/MindLab, Aarhus University; Aarhus Denmark
- Department of Physics and Astronomy; Aarhus University; Aarhus Denmark
| | - Daniel C. Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London; London United Kingdom
| | - Yoram Cohen
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences; Tel Aviv University; Tel Aviv Israel
- Sagol School of Neurosciences; Tel Aviv University; Tel Aviv Israel
| | - Ivana Drobnjak
- Centre for Medical Image Computing, Department of Computer Science, University College London; London United Kingdom
| | - Tim B. Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre; Hvidovre Denmark
| | - Jurgen Finsterbusch
- Department of Systems Neuroscience; University Medical Center Hamburg-Eppendorf; Hamburg Germany
- Neuroimage Nord, University Medical Centers Hamburg-Kiel-Lübeck; Germany
| | - Martin A. Koch
- Institute of Medical Engineering; University of Lübeck; Lübeck Germany
| | - Tristan Kuder
- Medical Physics in Radiology, German Cancer Research Center; Im Neuenheimer Feld 280 Heidelberg Germany
| | - Fredrik Laun
- Medical Physics in Radiology, German Cancer Research Center; Im Neuenheimer Feld 280 Heidelberg Germany
| | - Marco Lawrenz
- Department of Systems Neuroscience; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre; Hvidovre Denmark
| | - Partha P. Mitra
- Cold Spring Harbor Laboratory; Cold Spring Harbor New York USA
| | - Markus Nilsson
- Lund University Bioimaging Center, Lund University; Lund Sweden
| | - Evren Özarslan
- Department of Physics; Boğaziçi University; Bebek Istanbul Turkey
| | - Daniel Topgaard
- Division of Physical Chemistry, Department of Chemistry; Lund University; Lund Sweden
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
27
|
Stikov N, Campbell JS, Stroh T, Lavelée M, Frey S, Novek J, Nuara S, Ho MK, Bedell BJ, Dougherty RF, Leppert IR, Boudreau M, Narayanan S, Duval T, Cohen-Adad J, Picard PA, Gasecka A, Côté D, Pike GB. In vivo histology of the myelin g-ratio with magnetic resonance imaging. Neuroimage 2015; 118:397-405. [DOI: 10.1016/j.neuroimage.2015.05.023] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 11/25/2022] Open
|
28
|
Abstract
Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE), can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length)6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development.
Collapse
Affiliation(s)
- Noam Shemesh
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Gonzalo A. Álvarez
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lucio Frydman
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
- * E-mail:
| |
Collapse
|
29
|
Goveas J, O'Dwyer L, Mascalchi M, Cosottini M, Diciotti S, De Santis S, Passamonti L, Tessa C, Toschi N, Giannelli M. Diffusion-MRI in neurodegenerative disorders. Magn Reson Imaging 2015; 33:853-76. [PMID: 25917917 DOI: 10.1016/j.mri.2015.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 04/18/2015] [Accepted: 04/19/2015] [Indexed: 12/11/2022]
Abstract
The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), "diffusion" (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias.
Collapse
Affiliation(s)
- Joseph Goveas
- Department of Psychiatry and Behavioral Medicine, and Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Laurence O'Dwyer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt, Germany
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Quantitative and Functional Neuroradiology Research Program at Meyer Children and Careggi Hospitals of Florence, Florence, Italy
| | - Mirco Cosottini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; Unit of Neuroradiology, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Silvia De Santis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Carlo Tessa
- Division of Radiology, "Versilia" Hospital, AUSL 12 Viareggio, Lido di Camaiore, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, Medical Physics Section, University of Rome "Tor Vergata", Rome, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy.
| |
Collapse
|
30
|
Morozov D, Bar L, Sochen N, Cohen Y. Microstructural information from angular double-pulsed-field-gradient NMR: From model systems to nerves. Magn Reson Med 2014; 74:25-32. [DOI: 10.1002/mrm.25371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Darya Morozov
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv University; Tel Aviv Israel
| | - Leah Bar
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv University; Tel Aviv Israel
| | - Nir Sochen
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv University; Tel Aviv Israel
| | - Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv University; Tel Aviv Israel
- Sagol School of Neuroscience, Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
31
|
Lawrenz M, Finsterbusch J. Mapping measures of microscopic diffusion anisotropy in human brain white matter in vivo with double-wave-vector diffusion-weighted imaging. Magn Reson Med 2014; 73:773-83. [DOI: 10.1002/mrm.25140] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/12/2013] [Accepted: 01/02/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Marco Lawrenz
- Department of Systems Neuroscience; University Medical Center Hamburg-Eppendorf; Hamburg Germany
- Neuroimage Nord; University Medical Centers Hamburg-Kiel-Lübeck; Germany
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience; University Medical Center Hamburg-Eppendorf; Hamburg Germany
- Neuroimage Nord; University Medical Centers Hamburg-Kiel-Lübeck; Germany
| |
Collapse
|
32
|
Jespersen SN, Lundell H, Sønderby CK, Dyrby TB. Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments. NMR IN BIOMEDICINE 2013; 26:1647-1662. [PMID: 24038641 DOI: 10.1002/nbm.2999] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 06/02/2023]
Abstract
Pulsed field gradient diffusion sequences (PFG) with multiple diffusion encoding blocks have been indicated to offer new microstructural tissue information, such as the ability to detect nonspherical compartment shapes in macroscopically isotropic samples, i.e. samples with negligible directional signal dependence on diffusion gradients in standard diffusion experiments. However, current acquisition schemes are not rotationally invariant in the sense that the derived metrics depend on the orientation of the sample, and are affected by the interplay of sampling directions and compartment orientation dispersion when applied to macroscopically anisotropic systems. Here we propose a new framework, the d-PFG 5-design, to enable rotationally invariant estimation of double wave vector diffusion metrics (d-PFG). The method is based on the idea that an appropriate orientational average of the signal emulates the signal from a powder preparation of the same sample, where macroscopic anisotropy is absent by construction. Our approach exploits the theory of exact numerical integration (quadrature) of polynomials on the rotation group, and we exemplify the general procedure with a set consisting of 60 pairs of diffusion wave vectors (the d-PFG 5-design) facilitating a theoretically exact determination of the fourth order Taylor or cumulant expansion of the orientationally averaged signal. The d-PFG 5-design is evaluated with numerical simulations and ex vivo high field diffusion MRI experiments in a nonhuman primate brain. Specifically, we demonstrate rotational invariance when estimating compartment eccentricity, which we show offers new microstructural information, complementary to that of fractional anisotropy (FA) from diffusion tensor imaging (DTI). The imaging observations are supported by a new theoretical result, directly relating compartment eccentricity to FA of individual pores.
Collapse
Affiliation(s)
- Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | | | | | | |
Collapse
|
33
|
Shemesh N, Álvarez GA, Frydman L. Measuring small compartment dimensions by probing diffusion dynamics via Non-uniform Oscillating-Gradient Spin-Echo (NOGSE) NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:49-62. [PMID: 24140623 DOI: 10.1016/j.jmr.2013.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 05/22/2023]
Abstract
Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N-1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N-1)x+y≡TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed.
Collapse
Affiliation(s)
- Noam Shemesh
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gonzalo A Álvarez
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lucio Frydman
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
34
|
Solomon E, Shemesh N, Frydman L. Diffusion weighted MRI by spatiotemporal encoding: analytical description and in vivo validations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 232:76-86. [PMID: 23562003 PMCID: PMC5040484 DOI: 10.1016/j.jmr.2013.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/19/2013] [Accepted: 02/27/2013] [Indexed: 05/02/2023]
Abstract
Diffusion-weighted (DW) MRI is a powerful modality for studying microstructure in normal and pathological tissues. The accuracy derived from DW MRI depends on the acquisition of quality images, and on a precise assessment of the b-values involved. Conventional DW MRI tends to be of limited use in regions suffering from large magnetic field or chemical shift heterogeneities, which severely distort the MR images. In this study we propose novel sequences based on SPatio-temporal ENcoding (SPEN), which overcome such shortcomings owing to SPEN's inherent robustness to offsets. SPEN, however, relies on the simultaneous application of gradients and radiofrequency-swept pulses, which may impart different diffusion weightings along the spatial axes. These will be further complicated in DW measurements by the diffusion-sensitizing gradients, and will in general lead to complex, spatially-dependent b-values. This study presents a formalism for analyzing these diffusion-weighted SPEN (dSPEN) data, which takes into account the concomitant effects of adiabatic pulses, of the imaging as well as diffusion gradients, and of the cross-terms between them. These analytical b-values derivations are subject to experimental validations in phantom systems and ex vivo spinal cords. Excellent agreement is found between the theoretical predictions and these dSPEN experiments. The ensuing methodology is then demonstrated by in vivo mapping of diffusion in human breast - organs where conventional k-space DW acquisition methods are challenged by both field and chemical shift heterogeneities. These studies demonstrate the increased robustness of dSPEN vis-à-vis comparable DW echo planar imaging, and demonstrate the value of this new methodology for medium- or high-field diffusion measurements in heterogeneous systems.
Collapse
Affiliation(s)
| | | | - Lucio Frydman
- Corresponding author. Fax: +972 8 9344123. (L. Frydman)
| |
Collapse
|
35
|
Assaf Y, Alexander DC, Jones DK, Bizzi A, Behrens TEJ, Clark CA, Cohen Y, Dyrby TB, Huppi PS, Knoesche TR, Lebihan D, Parker GJM, Poupon C, Anaby D, Anwander A, Bar L, Barazany D, Blumenfeld-Katzir T, De-Santis S, Duclap D, Figini M, Fischi E, Guevara P, Hubbard P, Hofstetter S, Jbabdi S, Kunz N, Lazeyras F, Lebois A, Liptrot MG, Lundell H, Mangin JF, Dominguez DM, Morozov D, Schreiber J, Seunarine K, Nava S, Poupon C, Riffert T, Sasson E, Schmitt B, Shemesh N, Sotiropoulos SN, Tavor I, Zhang HG, Zhou FL. The CONNECT project: Combining macro- and micro-structure. Neuroimage 2013; 80:273-82. [PMID: 23727318 DOI: 10.1016/j.neuroimage.2013.05.055] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 11/28/2022] Open
Abstract
In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper summarizes the project and describes the perspective of using micro-structural measures to study the connectome.
Collapse
Affiliation(s)
- Yaniv Assaf
- Department of Neurobiology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Avram AV, Özarslan E, Sarlls JE, Basser PJ. In vivo detection of microscopic anisotropy using quadruple pulsed-field gradient (qPFG) diffusion MRI on a clinical scanner. Neuroimage 2013; 64:229-39. [PMID: 22939872 PMCID: PMC3520437 DOI: 10.1016/j.neuroimage.2012.08.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/02/2012] [Accepted: 08/18/2012] [Indexed: 11/20/2022] Open
Abstract
We report our design and implementation of a quadruple pulsed-field gradient (qPFG) diffusion MRI pulse sequence on a whole-body clinical scanner and demonstrate its ability to non-invasively detect restriction-induced microscopic anisotropy in human brain tissue. The microstructural information measured using qPFG diffusion MRI in white matter complements that provided by diffusion tensor imaging (DTI) and exclusively characterizes diffusion of water trapped in microscopic compartments with unique measures of average cell geometry. We describe the effect of white matter fiber orientation on the expected MR signal and highlight the importance of incorporating such information in the axon diameter measurement using a suitable mathematical framework. Integration of qPFG diffusion-weighted images (DWI) with fiber orientations measured using high-resolution DTI allows the estimation of average axon diameters in the corpus callosum of healthy human volunteers. Maps of inter-hemispheric average axon diameters reveal an anterior-posterior variation in good topographical agreement with anatomical measurements reported in previous post-mortem studies. With further technical refinements and additional clinical validation, qPFG diffusion MRI could provide a quantitative whole-brain histological assessment of white and gray matter, enabling a wide range of neuroimaging applications for improved diagnosis of neurodegenerative pathologies, monitoring neurodevelopmental processes, and mapping brain connectivity.
Collapse
Affiliation(s)
- Alexandru V Avram
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|