1
|
Seelen LWF, van den Wildenberg L, Gursan A, Froeling M, Gosselink MWJM, van der Kemp WJM, Haj Mohammad N, Molenaar IQ, van Santvoort HC, Klomp DWJ, Prompers JJ. 31P MR Spectroscopy in the Pancreas: Repeatability, Comparison With Liver, and Pilot Pancreatic Cancer Data. J Magn Reson Imaging 2024; 60:2657-2666. [PMID: 38485455 DOI: 10.1002/jmri.29326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Non-invasive evaluation of phosphomonoesters (PMEs) and phosphodiesters (PDEs) by 31-phosphorus MR spectroscopy (31P MRS) may have potential for early therapy (non-)response assessment in cancer. However, 31P MRS has not yet been applied to investigate the human pancreas in vivo. PURPOSE To assess the technical feasibility and repeatability of 31P MR spectroscopic imaging (MRSI) of the pancreas, compare 31P metabolite levels between pancreas and liver, and determine the feasibility of 31P MRSI in pancreatic cancer. STUDY TYPE Prospective cohort study. POPULATION 10 healthy subjects (age 34 ± 12 years, four females) and one patient (73-year-old female) with pancreatic ductal adenocarcinoma. FIELD STRENGTH/SEQUENCE 7-T, 31P FID-MRSI, 1H gradient-echo MRI. ASSESSMENT 31P FID-MRSI of the abdomen (including the pancreas and liver) was performed with a nominal voxel size of 20 mm (isotropic). For repeatability measurements, healthy subjects were scanned twice on the same day. The patient was only scanned once. Test-retest 31P MRSI data of pancreas and liver voxels (segmented on 1H MRI) of healthy subjects were quantified by fitting in the time domain and signal amplitudes were normalized to γ-adenosine triphosphate. In addition, the PME/PDE ratio was calculated. Metabolite levels were averaged over all voxels within the pancreas, right liver lobe and left liver lobe, respectively. STATISTICAL TESTS Repeatability of test-retest data from healthy pancreas was assessed by paired t-tests, Bland-Altman analyses, and calculation of the intrasubject coefficients of variation (CoVs). Significant differences between healthy pancreas and right and left liver lobes were assessed with a two-way analysis of variance (ANOVA) for repeated measures. A P-value <0.05 was considered statistically significant. RESULTS The intrasubject CoVs for PME, PDE, and PME/PDE in healthy pancreas were below 20%. Furthermore, PME and PME/PDE were significantly higher in pancreas compared to liver. In the patient with pancreatic cancer, qualitatively, elevated relative PME signals were observed in comparison with healthy pancreas. DATA CONCLUSION In vivo 31P MRSI of the human healthy pancreas and in pancreatic cancer may be feasible at 7 T. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Leonard W F Seelen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | | | - Ayhan Gursan
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark W J M Gosselink
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wybe J M van der Kemp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, UMC Utrecht Cancer Center, Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - I Quintus Molenaar
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanine J Prompers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Bozymski B, Emir U, Dydak U, Shen X, Thomas MA, Özen A, Chiew M, Clarke W, Sawiak S. 3D ultra-short echo time 31P-MRSI with rosette k-space pattern: Feasibility and comparison with conventional weighted CSI. RESEARCH SQUARE 2024:rs.3.rs-4223790. [PMID: 38659806 PMCID: PMC11042414 DOI: 10.21203/rs.3.rs-4223790/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Phosphorus-31 magnetic resonance spectroscopic imaging (31P-MRSI) provides valuable non-invasive in vivo information on tissue metabolism but is burdened by poor sensitivity and prolonged scan duration. Ultra-short echo time (UTE) acquisitions minimize signal loss when probing signals with relatively short spin-spin relaxation time (T2), while also preventing first-order dephasing. Here, a three-dimensional (3D) UTE sequence with a rosette k-space trajectory is applied to 31P-MRSI at 3T. Conventional chemical shift imaging (CSI) employs highly regular Cartesian k-space sampling, susceptible to substantial artifacts when accelerated via undersampling. In contrast, this novel sequence's "petal-like" pattern offers incoherent sampling more suitable for compressed sensing (CS). These results showcase the competitive performance of UTE rosette 31P-MRSI against conventional weighted CSI with simulation, phantom, and in vivo leg muscle comparisons.
Collapse
Affiliation(s)
| | - Uzay Emir
- School of Health Sciences, Purdue University
| | | | - Xin Shen
- Radiology and Biomedical Imaging, University of California San Francisco
| | | | - Ali Özen
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences
| | - William Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences
| | - Stephen Sawiak
- Department of Clinical Neuroscience, University of Cambridge
| |
Collapse
|
3
|
van den Wildenberg L, Gursan A, Seelen LWF, van der Velden TA, Gosselink MWJM, Froeling M, van der Kemp WJM, Klomp DWJ, Prompers JJ. In vivo phosphorus magnetic resonance spectroscopic imaging of the whole human liver at 7 T using a phosphorus whole-body transmit coil and 16-channel receive array: Repeatability and effects of principal component analysis-based denoising. NMR IN BIOMEDICINE 2023; 36:e4877. [PMID: 36400716 DOI: 10.1002/nbm.4877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Quantitative three-dimensional (3D) imaging of phosphorus (31 P) metabolites is potentially a promising technique with which to assess the progression of liver disease and monitor therapy response. However, 31 P magnetic resonance spectroscopy has a low sensitivity and commonly used 31 P surface coils do not provide full coverage of the liver. This study aimed to overcome these limitations by using a 31 P whole-body transmit coil in combination with a 16-channel 31 P receive array at 7 T. Using this setup, we determined the repeatability of whole-liver 31 P magnetic resonance spectroscopic imaging (31 P MRSI) in healthy subjects and assessed the effects of principal component analysis (PCA)-based denoising on the repeatability parameters. In addition, spatial variations of 31 P metabolites within the liver were analyzed. 3D 31 P MRSI data of the liver were acquired with a nominal voxel size of 20 mm isotropic in 10 healthy volunteers twice on the same day. Data were reconstructed without denoising, and with PCA-based denoising before or after channel combination. From the test-retest data, repeatability parameters for metabolite level quantification were determined for 12 31 P metabolite signals. On average, 31 P MR spectra from 100 ± 25 voxels in the liver were analyzed. Only voxels with contamination from skeletal muscle or the gall bladder were excluded and no voxels were discarded based on (low) signal-to-noise ratio (SNR). Repeatability for most quantified 31 P metabolite levels in the liver was good to excellent, with an intrasubject variability below 10%. PCA-based denoising increased the SNR ~ 3-fold, but did not improve the repeatability for mean liver 31 P metabolite quantification with the fitting constraints used. Significant spatial heterogeneity of various 31 P metabolite levels within the liver was observed, with marked differences for the phosphomonoester and phosphodiester metabolites between the left and right lobe. In conclusion, using a 31 P whole-body transmit coil in combination with a 16-channel 31 P receive array at 7 T allowed 31 P MRSI acquisitions with full liver coverage and good to excellent repeatability.
Collapse
Affiliation(s)
| | - Ayhan Gursan
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonard W F Seelen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tijl A van der Velden
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark W J M Gosselink
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wybe J M van der Kemp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanine J Prompers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Seelen LWF, van den Wildenberg L, van der Kemp WJM, Mohamed Hoesein FAA, Mohammad NH, Molenaar IQ, van Santvoort HC, Prompers JJ, Klomp DWJ. Prospective of 31 P MR Spectroscopy in Hepatopancreatobiliary Cancer: A Systematic Review of the Literature. J Magn Reson Imaging 2023; 57:1144-1155. [PMID: 35916278 DOI: 10.1002/jmri.28372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The incidence of liver and pancreatic cancer is rising. Patients benefit from current treatments, but there are limitations in the evaluation of (early) response to treatment. Tumor metabolic alterations can be measured noninvasively with phosphorus (31 P) magnetic resonance spectroscopy (MRS). PURPOSE To conduct a quantitative analysis of the available literature on 31 P MRS performed in hepatopancreatobiliary cancer and to provide insight into its current and potential for therapy (non-) response assessment. POPULATION Patients with hepatopancreatobiliary cancer. FIELD STRENGTH/SEQUENCE: 31 P MRS. ASSESSMENT The PubMed, EMBASE, and Cochrane library databases were systematically searched for studies published to 17 March 17, 2022. All 31 P MRS studies in hepatopancreatobiliary cancer reporting 31 P metabolite levels were included. STATISTICAL TESTS Relative differences in 31 P metabolite levels/ratios between patients before therapy and healthy controls, and the relative changes in 31 P metabolite levels/ratios in patients before and after therapy were determined. RESULTS The search yielded 10 studies, comprising 301 subjects, of whom 132 (44%) healthy volunteers and 169 (56%) patients with liver cancer of various etiology. To date, 31 P MRS has not been applied in pancreatic cancer. In liver cancer, alterations in levels of 31 P metabolites involved in cell proliferation (phosphomonoesters [PMEs] and phosphodiesters [PDEs]) and energy metabolism (ATP and inorganic phosphate [Pi]) were observed. In particular, liver tumors were associated with elevations of PME/PDE and PME/Pi compared to healthy liver tissue, although there was a broad variety among studies (elevations of 2%-267% and 21%-233%, respectively). Changes in PME/PDE in liver tumors upon therapy were substantial, yet very heterogeneous and both decreases and increases were observed, whereas PME/Pi was consistently decreased after therapy in all studies (-13% to -76%). DATA CONCLUSION 31 P MRS has great potential for treatment monitoring in oncology. Future studies are needed to correlate the changes in 31 P metabolite levels in hepatopancreatobiliary tumors with treatment response. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Leonard W F Seelen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | | | - Wybe J M van der Kemp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Firdaus A A Mohamed Hoesein
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, UMC Utrecht Cancer Center, Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - I Quintus Molenaar
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Jeanine J Prompers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Vaidya MV, Zhang B, Hong D, Brown R, Batsios G, Viswanath P, Paska J, Wulf G, Grant AK, Ronen SM, Larson PEZ. A 13C/ 31P surface coil to visualize metabolism and energetics in the rodent brain at 3 Tesla. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 343:107286. [PMID: 36075133 PMCID: PMC9721620 DOI: 10.1016/j.jmr.2022.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/04/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE We constructed a 13C/31P surface coil at 3 T for studying cancer metabolism and bioenergetics. In a single scan session, hyperpolarized 13C-pyruvate MRS and 31P MRS was carried out for a healthy rat brain. METHODS All experiments were carried out at 3 Tesla. The multinuclear surface coil was designed as two coplanar loops each tuned to either the 13C or 31P operating frequency with an LCC trap on the 13C loop. A commercial volume proton coil was used for anatomical localization and B0 shimming. Single tuned coils operating at either the 13C or 31P frequency were built to evaluate the relative performance of the multinuclear coil. Coil performance metrics consisted of measuring Q factor ratio, calculating system input power using a single-pulse acquisition, and acquiring SNR and flip angle maps using 2D CSI sequences. To observe in vivo spectra, a bolus of hyperpolarized [1-13C] pyruvate was administered via tail vein. In vivo13C and endogenous 31P spectra were obtained in a single scan session using 1D slice selective acquisitions. RESULTS When compared with single tuned surface coils, the multinuclear coil performance showed a decrease in Q factor ratio, SNR, and transmit efficiency. Flip angle maps showed adequate flip angles within the phantom when the transmit voltage was set using an external phantom. Results show good detection of 13C labeled lactate, alanine, and bicarbonate in addition to ATP from 31P MRS. CONCLUSIONS The coil enables obtaining complementary information within a scan session, thus reducing the number of trials and minimizing biological variability for studies of metabolism and bioenergetics.
Collapse
Affiliation(s)
- Manushka V Vaidya
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Bei Zhang
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - DongHyun Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research, and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jan Paska
- Center for Advanced Imaging Innovation and Research, and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Gerburg Wulf
- Department of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Aaron K Grant
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
V. S. U, Gavaskar RG, Chaudhury KN. Multiband Image Fusion with Controllable Error Guarantees. ICASSP 2022 - 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) 2022. [DOI: 10.1109/icassp43922.2022.9747616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Affiliation(s)
- Unni V. S.
- Indian Institute of Science,Department of Electrical Engineering,Bengaluru,India
| | - Ruturaj G. Gavaskar
- Indian Institute of Science,Department of Electrical Engineering,Bengaluru,India
| | - Kunal N. Chaudhury
- Indian Institute of Science,Department of Electrical Engineering,Bengaluru,India
| |
Collapse
|
7
|
Wilcox M, Ogier S, Cheshkov S, Dimitrov I, Malloy C, Wright S, McDougall M. A 16-Channel 13C Array Coil for Magnetic Resonance Spectroscopy of the Breast at 7T. IEEE Trans Biomed Eng 2021; 68:2036-2046. [PMID: 33651680 DOI: 10.1109/tbme.2021.3063061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Considering the reported elevation of ω-6/ω-3 fatty acid ratios in breast neoplasms, one particularly important application of 13C MRS could be in more fully understanding the breast lipidome's relationship to breast cancer incidence. However, the low natural abundance and gyromagnetic ratio of the 13C isotope lead to detection sensitivity challenges. Previous 13C MRS studies have relied on the use of small surface coils with limited field-of-view and shallow penetration depths to achieve adequate signal-to-noise ratio (SNR), and the use of receive array coils is still mostly unexplored. METHODS This work presents a unilateral breast 16-channel 13C array coil and interfacing hardware designed to retain the surface sensitivity of a single small loop coil while improving penetration depth and extending the field-of-view over the entire breast at 7T. The coil was characterized through bench measurements and phantom 13C spectroscopy experiments. RESULTS Bench measurements showed receive coil matching better than -17 dB and average preamplifier decoupling of 16.2 dB with no evident peak splitting. Phantom MRS studies show better than a three-fold increase in average SNR over the entirety of the breast region compared to volume coil reception alone as well as an ability for individual array elements to be used for coarse metabolite localization without the use of single-voxel or spectroscopic imaging methods. CONCLUSION Our current study has shown the benefits of the array. Future in vivo lipidomics studies can be pursued. SIGNIFICANCE Development of the 16-channel breast array coil opens possibilities of in vivo lipidomics studies to elucidate the link between breast cancer incidence and lipid metabolics.
Collapse
|
8
|
Wilcox M, Wright SM, McDougall M. A Review of Non- 1H RF Receive Arrays in Magnetic Resonance Imaging and Spectroscopy. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:290-300. [PMID: 35402958 PMCID: PMC8975242 DOI: 10.1109/ojemb.2020.3030531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
It is now common practice to use radiofrequency (RF) coils to increase the signal-to-noise ratio (SNR) in 1H magnetic resonance imaging and spectroscopy experiments. Use of array coils for non-1H experiments, however, has been historically more limited despite the fact that these nuclei suffer inherently lower sensitivity and could benefit greatly from an increased SNR. Recent advancements in receiver technology and increased support from scanner manufacturers have now opened greater options for the use of array coils for non-1H magnetic resonance experiments. This paper reviews the research in adopting array coil technology with an emphasis on studies of the most commonly studied non-1H nuclei including 31P, 13C, 23Na, and 19F. These nuclei offer complementary information to 1H imaging and spectroscopy and have proven themselves important in the study of numerous disease processes. While recent work with non-1H array coils has shown promising results, the technology is not yet widely utilized and should see substantial developments in the coming years.
Collapse
|
9
|
Valkovič L, Chmelík M, Krššák M. In-vivo 31P-MRS of skeletal muscle and liver: A way for non-invasive assessment of their metabolism. Anal Biochem 2017; 529:193-215. [PMID: 28119063 PMCID: PMC5478074 DOI: 10.1016/j.ab.2017.01.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
In addition to direct assessment of high energy phosphorus containing metabolite content within tissues, phosphorus magnetic resonance spectroscopy (31P-MRS) provides options to measure phospholipid metabolites and cellular pH, as well as the kinetics of chemical reactions of energy metabolism in vivo. Even though the great potential of 31P-MR was recognized over 30 years ago, modern MR systems, as well as new, dedicated hardware and measurement techniques provide further opportunities for research of human biochemistry. This paper presents a methodological overview of the 31P-MR techniques that can be used for basic, physiological, or clinical research of human skeletal muscle and liver in vivo. Practical issues of 31P-MRS experiments and examples of potential applications are also provided. As signal localization is essential for liver 31P-MRS and is important for dynamic muscle examinations as well, typical localization strategies for 31P-MR are also described.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Marek Chmelík
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Martin Krššák
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Magnetic Resonance Imaging of Phosphocreatine and Determination of BOLD Kinetics in Lower Extremity Muscles using a Dual-Frequency Coil Array. Sci Rep 2016; 6:30568. [PMID: 27465636 PMCID: PMC4964597 DOI: 10.1038/srep30568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/01/2016] [Indexed: 01/17/2023] Open
Abstract
Magnetic resonance imaging (MRI) provides the unique ability to study metabolic and microvasculature functions in skeletal muscle using phosphorus and proton measurements. However, the low sensitivity of these techniques can make it difficult to capture dynamic muscle activity due to the temporal resolution required for kinetic measurements during and after exercise tasks. Here, we report the design of a dual-nuclei coil array that enables proton and phosphorus MRI of the human lower extremities with high spatial and temporal resolution. We developed an array with whole-volume coverage of the calf and a phosphorus signal-to-noise ratio of more than double that of a birdcage coil in the gastrocnemius muscles. This enabled the local assessment of phosphocreatine recovery kinetics following a plantar flexion exercise using an efficient sampling scheme with a 6 s temporal resolution. The integrated proton array demonstrated image quality approximately equal to that of a clinical state-of-the-art knee coil, which enabled fat quantification and dynamic blood oxygen level-dependent measurements that reflect microvasculature function. The developed array and time-efficient pulse sequences were combined to create a localized assessment of calf metabolism using phosphorus measurements and vasculature function using proton measurements, which could provide new insights into muscle function.
Collapse
|
11
|
Abstract
PURPOSE Transmembrane sodium ((23)Na) gradient is critical for cell survival and viability and a target for the development of anti-cancer drugs and treatment as it serves as a signal transducer. The ability to integrate abdominal (23)Na MRI in clinical settings would be useful to non-invasively detect and diagnose a number of diseases in various organ systems. Our goal in this work was to enhance the quality of (23)Na MRI of the abdomen using a 3-Tesla MR scanner and a novel 8-channel phased-array dual-tuned (23)Na and (1)H transmit (Tx)/receive (Rx) coil specially designed to image a large abdomen region with relatively high SNR. METHODS A modified GRE imaging sequence was optimized for (23)Na MRI to obtain the best possible combination of SNR, spatial resolution, and scan time in phantoms as well as volunteers. Tissue sodium concentration (TSC) of the whole abdomen was calculated from the inhomogeneity-corrected (23)Na MRI for absolute quantification. In addition, in vivo reproducibility and reliability of TSC measurements from (23)Na MRI was evaluated in normal volunteers. RESULTS (23)Na axial images of the entire abdomen with a high spatial resolution (0.3 cm) and SNR (~20) in 15 min using the novel 8-channel dual-tuned (23)Na and (1)H transmit/receive coil were obtained. Quantitative analysis of the sodium images estimated a mean TSC of the liver to be 20.13 mM in healthy volunteers. CONCLUSION Our results have shown that it is feasible to obtain high-resolution (23)Na images using a multi-channel surface coil with good SNR in clinically acceptable scan times in clinical practice for various body applications.
Collapse
|
12
|
Mirkes C, Shajan G, Chadzynski G, Buckenmaier K, Bender B, Scheffler K. (31)P CSI of the human brain in healthy subjects and tumor patients at 9.4 T with a three-layered multi-nuclear coil: initial results. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:579-89. [PMID: 26811174 DOI: 10.1007/s10334-016-0524-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/20/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Investigation of the feasibility and performance of phosphorus ((31)P) magnetic resonance spectroscopic imaging (MRSI) at 9.4 T with a three-layered phosphorus/proton coil in human normal brain tissue and tumor. MATERIALS AND METHODS A multi-channel (31)P coil was designed to enable MRSI of the entire human brain. The performance of the coil was evaluated by means of electromagnetic field simulations and actual measurements. A 3D chemical shift imaging approach with a variable repetition time and flip angle was used to increase the achievable signal-to-noise ratio of the acquired (31)P spectra. The impact of the resulting k-space modulation was investigated by simulations. Three tumor patients and three healthy volunteers were scanned and differences between spectra from healthy and cancerous tissue were evaluated qualitatively. RESULTS The high sensitivity provided by the 27-channel (31)P coil allowed acquiring CSI data in 22 min with a nominal voxel size of 15 × 15 × 15 mm(3). Shimming and anatomical localization could be performed with the integrated four-channel proton dipole array. The amplitudes of the phosphodiesters and phosphoethanolamine appeared reduced in tumorous tissue for all three patients. A neutral or slightly alkaline pH was measured within the brain lesions. CONCLUSION These initial results demonstrate that (31)P 3D CSI is feasible at 9.4 T and could be performed successfully in healthy subjects and tumor patients in under 30 min.
Collapse
Affiliation(s)
- Christian Mirkes
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany. .,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany.
| | - Gunamony Shajan
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Grzegorz Chadzynski
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Kai Buckenmaier
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| |
Collapse
|
13
|
Runge JH, van der Kemp WJM, Klomp DWJ, Luijten PR, Nederveen AJ, Stoker J. 2D AMESING multi-echo (31)P-MRSI of the liver at 7T allows transverse relaxation assessment and T2-weighted averaging for improved SNR. Magn Reson Imaging 2015; 34:219-26. [PMID: 26597833 DOI: 10.1016/j.mri.2015.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/03/2015] [Accepted: 10/12/2015] [Indexed: 01/06/2023]
Abstract
PURPOSE Liver diseases are a major global health concern often requiring invasive assessment by needle biopsy. (31)P magnetic resonance spectroscopic imaging (MRSI) allows non-invasive probing of important liver metabolites. Recently, the adiabatic multi-echo spectroscopic imaging sequence with spherical k-space sampling (AMESING) was introduced at 7T, enabling acquisition of T2 information. T2-weighed averaging of the multiple echoes improves signal-to-noise ratio (SNR). The purpose of our study was to implement AMESING MRSI of the liver at 3T and 7T, derive localized T2 information and compare T2-weighted average spectra in terms of SNR. METHODS Ten male volunteers underwent 2D AMESING MRSI at 3T and 7T after a minimum four-hour fast. SNR was calculated for PC, PE, Pi, GPE, GPC and α-ATP using maximum peak amplitudes and the SD of the noise. Metabolite peak ratios were calculated after fitting in jMRUI. SNR values and peak ratios were compared with the Wilcoxon signed-rank test. RESULTS For the first time liver metabolites' T2 values at 7T were measured: PE (55.6±3.5 ms), PC (51.2±2.3 ms), Pi (46.4±1.1 ms), GPE (44.0±0.8 ms), GPC (50.4±0.8 ms) and α-ATP (18.2±0.4 ms). SNR gain using T2-weighted averaging at 7T resulted in a 1.2× SNR gain. In conjunction with higher field strength and improved coil set-up T2-weighted averaging at 7T allowed a total 3.2× SNR gain compared to 3T FID-only. CONCLUSION AMESING 2D MRSI of the liver at 7T provides T2 values that allow T2-weighted averaging of data from multiple echoes resulting in improved SNR.
Collapse
Affiliation(s)
- Jurgen Henk Runge
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Wybe J M van der Kemp
- Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter R Luijten
- Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Chmelík M, Valkovič L, Wolf P, Bogner W, Gajdošík M, Halilbasic E, Gruber S, Trauner M, Krebs M, Trattnig S, Krššák M. Phosphatidylcholine contributes to in vivo (31)P MRS signal from the human liver. Eur Radiol 2015; 25:2059-66. [PMID: 25576233 DOI: 10.1007/s00330-014-3578-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/13/2014] [Accepted: 12/18/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To demonstrate the overlap of the hepatic and bile phosphorus ((31)P) magnetic resonance (MR) spectra and provide evidence of phosphatidylcholine (PtdC) contribution to the in vivo hepatic (31)P MRS phosphodiester (PDE) signal, suggested in previous reports to be phosphoenolpyruvate (PEP). METHODS Phantom measurements to assess the chemical shifts of PEP and PtdC signals were performed at 7 T. A retrospective analysis of hepatic 3D (31)P MR spectroscopic imaging (MRSI) data from 18 and five volunteers at 3 T and 7 T, respectively, was performed. Axial images were inspected for the presence of gallbladder, and PDE signals in representative spectra were quantified. RESULTS Phantom experiments demonstrated the strong pH-dependence of the PEP chemical shift and proved the overlap of PtdC and PEP (~2 ppm relative to phosphocreatine) at hepatic pH. Gallbladder was covered in seven of 23 in vivo 3D-MRSI datasets. The PDE(gall)/γ-ATP(liver) ratio was 4.8-fold higher (p = 0.001) in the gallbladder (PDE(gall)/γ-ATP(liver) = 3.61 ± 0.79) than in the liver (PDE(liver)/γ-ATP(liver) = 0.75 ± 0.15). In vivo 7 T (31)P MRSI allowed good separation of PDE components. The gallbladder is a strong source of contamination in adjacent (31)P MR hepatic spectra due to biliary phosphatidylcholine. CONCLUSIONS In vivo (31)P MR hepatic signal at 2.06 ppm may represent both phosphatidylcholine and phosphoenolpyruvate, with a higher phosphatidylcholine contribution due to its higher concentration. KEY POINTS • In vivo (31)P MRS from the gallbladder shows a dominant biliary phosphatidylcholine signal at 2.06 ppm. • Intrahepatic (31)P MRS signal at 2.06 ppm may represent both intrahepatic phosphatidylcholine and phosphoenolpyruvate. • In vivo (31)P MRS has the potential to monitor hepatic phosphatidylcholine.
Collapse
Affiliation(s)
- Marek Chmelík
- MR Centre of Excellence, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chmelik M, Považan M, Krššák M, Gruber S, Tkačov M, Trattnig S, Bogner W. In vivo (31)P magnetic resonance spectroscopy of the human liver at 7 T: an initial experience. NMR IN BIOMEDICINE 2014; 27:478-85. [PMID: 24615903 DOI: 10.1002/nbm.3084] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/11/2013] [Accepted: 01/07/2014] [Indexed: 05/12/2023]
Abstract
Phosphorus ((31) P) MRS is a powerful tool for the non-invasive investigation of human liver metabolism. Four in vivo (31) P localization approaches (single voxel image selected in vivo spectroscopy (3D-ISIS), slab selective 1D-ISIS, 2D chemical shift imaging (CSI), and 3D-CSI) with different voxel volumes and acquisition times were demonstrated in nine healthy volunteers. Localization techniques provided comparable signal-to-noise ratios normalized for voxel volume and acquisition time differences, Cramer-Rao lower bounds (8.7 ± 3.3%1D-ISIS , 7.6 ± 2.5%3D-ISIS , 8.6 ± 4.2%2D-CSI , 10.3 ± 2.7%3D-CSI ), and linewidths (50 ± 24 Hz1D-ISIS , 34 ± 10 Hz3D-ISIS , 33 ± 10 Hz2D-CSI , 34 ± 11 Hz3D-CSI ). Longitudinal (T1 ) relaxation times of human liver metabolites at 7 T were assessed by 1D-ISIS inversion recovery in the same volunteers (n = 9). T1 relaxation times of hepatic (31) P metabolites at 7 T were the following: phosphorylethanolamine - 4.41 ± 1.55 s; phosphorylcholine - 3.74 ± 1.31 s; inorganic phosphate - 0.70 ± 0.33 s; glycerol 3-phosphorylethanolamine - 6.19 ± 0.91 s; glycerol 3-phosphorylcholine - 5.94 ± 0.73 s; γ-adenosine triphosphate (ATP) - 0.50 ± 0.08 s; α-ATP - 0.46 ± 0.07 s; β-ATP - 0.56 ± 0.07 s. The improved spectral resolution at 7 T enabled separation of resonances in the phosphomonoester and phosphodiester spectral region as well as nicotinamide adenine dinucleotide and uridine diphosphoglucose signals. An additional resonance at 2.06 ppm previously assigned to phosphoenolpyruvate or phosphatidylcholine is also detectable. These are the first (31) P metabolite relaxation time measurements at 7 T in human liver, and they will help in the exploration of new, exciting questions in metabolic research with 7 T MR.
Collapse
Affiliation(s)
- Marek Chmelik
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
16
|
Chmelík M, Považan M, Jírů F, Just Kukurová I, Dezortová M, Krššák M, Bogner W, Hájek M, Trattnig S, Valkovič L. Flip-angle mapping of 31P coils by steady-state MR spectroscopic imaging. J Magn Reson Imaging 2013; 40:391-7. [PMID: 24925600 DOI: 10.1002/jmri.24401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/05/2013] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Phosphorus ((31)P) MR spectroscopic imaging (MRSI) is primarily applied with sensitive, surface radiofrequency (RF) coils that provide inhomogeneous excitation RF field (B1(+)) and rough localization due to their B1(+) and sensitivity (B1(-)) profiles. A careful and time-consuming pulse adjustment and an accurate knowledge of flip angle (FA) are mandatory for quantification corrections. MATERIALS AND METHODS In this study, a simple, fast, and universal (31)P B1(+) mapping method is proposed, which requires fast steady-state MRSI (typically one sixth of normal measurement time) in addition to the typical MRSI acquired within the examination protocol. The FA maps are calculated from the ratio of the signal intensities acquired by these two measurements and were used to correct for the influence of B1(+) on the metabolite maps. RESULTS In vitro tests were performed on two scanners (3 and 7 Tesla) using a surface and a volume coil. The calculated FA maps were in good agreement with adjusted nominal FAs and the theoretical calculation using the Biot-Savart law. The method was successfully tested in vivo in the calf muscle and the brain of healthy volunteers (n = 4). The corrected metabolite maps show higher homogeneity compared with their noncorrected versions. CONCLUSION The calculated FA maps helped with B1(+) inhomogeneity corrections of acquired in vivo data, and should also be useful with optimization and testing of pulse performances, or with the construction quality tests of new dual-channel (1)H/(31)P coils.
Collapse
Affiliation(s)
- Marek Chmelík
- MR Centre of Excellence, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rodgers CT, Clarke WT, Snyder C, Vaughan JT, Neubauer S, Robson MD. Human cardiac 31P magnetic resonance spectroscopy at 7 Tesla. Magn Reson Med 2013; 72:304-15. [PMID: 24006267 PMCID: PMC4106879 DOI: 10.1002/mrm.24922] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 01/02/2023]
Abstract
Purpose Phosphorus magnetic resonance spectroscopy (31P-MRS) affords unique insight into cardiac energetics but has a low intrinsic signal-to-noise ratio (SNR) in humans. Theory predicts an increased 31P-MRS SNR at 7T, offering exciting possibilities to better investigate cardiac metabolism. We therefore compare the performance of human cardiac 31P-MRS at 7T to 3T, and measure T1s for 31P metabolites at 7T. Methods Matched 31P-MRS data were acquired at 3T and 7T, on nine normal volunteers. A novel Look-Locker CSI acquisition and fitting approach was used to measure T1s on six normal volunteers. Results T1s in the heart at 7T were: phosphocreatine (PCr) 3.05 ± 0.41s, γ-ATP 1.82 ± 0.09s, α-ATP 1.39 ± 0.09s, β-ATP 1.02 ± 0.17s and 2,3-DPG (2,3-diphosphoglycerate) 3.05 ± 0.41s (N = 6). In the field comparison (N = 9), PCr SNR increased 2.8× at 7T relative to 3T, the Cramer-Ráo uncertainty (CRLB) in PCr concentration decreased 2.4×, the mean CRLB in PCr/ATP decreased 2.7× and the PCr/ATP SD decreased 2×. Conclusion Cardiac 31P-MRS at 7T has higher SNR and the spectra can be quantified more precisely than at 3T. Cardiac 31P T1s are shorter at 7T than at 3T. We predict that 7T will become the field strength of choice for cardiac 31P-MRS. Magn Reson Med 72:304–315, 2014. © 2013 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Christopher T Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of OxfordLevel 0, John Radcliffe Hospital, Oxford, United Kingdom
- * Correspondence to: Christopher T. Rodgers, D.Phil., Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Oxford, OX3 9DU United Kingdom. E-mail:
| | - William T Clarke
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of OxfordLevel 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - Carl Snyder
- Center for Magnetic Resonance Research, University of Minnesota2021 Sixth Street SE, Minneapolis, Minnesota, USA.
| | - J Thomas Vaughan
- Center for Magnetic Resonance Research, University of Minnesota2021 Sixth Street SE, Minneapolis, Minnesota, USA.
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of OxfordLevel 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - Matthew D Robson
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of OxfordLevel 0, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
18
|
Chmelík M, Kukurová IJ, Gruber S, Krššák M, Valkovič L, Trattnig S, Bogner W. Fully adiabatic 31P 2D-CSI with reduced chemical shift displacement error at 7 T--GOIA-1D-ISIS/2D-CSI. Magn Reson Med 2012; 69:1233-44. [PMID: 22714782 DOI: 10.1002/mrm.24363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 04/24/2012] [Accepted: 05/14/2012] [Indexed: 12/24/2022]
Abstract
A fully adiabatic phosphorus (31P) two-dimensional (2D) chemical shift spectroscopic imaging sequence with reduced chemical shift displacement error for 7 T, based on 1D-image-selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging selection, was developed. Slice-selective excitation was achieved by a spatially selective broadband GOIA-W(16,4) inversion pulse with an interleaved subtraction scheme before nonselective adiabatic excitation, and followed by 2D phase encoding. The use of GOIA-W(16,4) pulses (bandwidth 4.3-21.6 kHz for 10-50 mm slices) reduced the chemical shift displacement error in the slice direction ∼1.5-7.7 fold, compared to conventional 2D-chemical shift spectroscopic imaging with Sinc3 selective pulses (2.8 kHz). This reduction was experimentally demonstrated with measurements of an MR spectroscopy localization phantom and with experimental evaluation of pulse profiles. In vivo experiments in clinically acceptable measurement times were demonstrated in the calf muscle (nominal voxel volume, 5.65 ml in 6 min 53 s), brain (10 ml, 6 min 32 s), and liver (8.33 ml, 8 min 14 s) of healthy volunteers at 7 T. High reproducibility was found in the calf muscle at 7 T. In combination with adiabatic excitation, this sequence is insensitive to the B1 inhomogeneities associated with surface coils. This sequence, which is termed GOIA-1D-ISIS/2D-CSI (goISICS), has the potential to be applied in both clinical research and in the clinical routine.
Collapse
Affiliation(s)
- M Chmelík
- MR Centre of Excellence, Department of Radiology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|