1
|
Sfondrini MF, Pascadopoli M, Gandini P, Preda L, Sfondrini D, Bertino K, Rizzi C, Scribante A. Multibraided Fixed Retainers with Different Diameters after Magnetic Resonance Imaging (MRI): In Vitro Study Investigating Temperature Changes and Bonding Efficacy. Dent J (Basel) 2024; 12:255. [PMID: 39195099 DOI: 10.3390/dj12080255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVES Orthodontists are often asked to remove fixed retainers before patients undergo magnetic resonance imaging (MRI). The present in vitro study was designed to analyze the heating and bonding efficacy of stainless steel multibraided fixed retainers after 1.5- and 3-tesla (T) MRI. MATERIALS AND METHODS A total of 180 human mandibular incisors were used to create 45 specimens of four teeth each, divided into nine groups. Handmade multibraided fixed retainers of three different sizes, defined by the diameter of the initial wire used (0.008″, 0.010″ and 0.012″), were tested. Three groups underwent MRI at 1.5 T, another three groups underwent MRI at 3 T and the last three groups did not undergo MRI. Temperature was assessed before and after MRI. Shear bond strength (SBS) and adhesive remnant index (ARI) were assessed after MRI for all groups. Data were statistically analyzed (p < 0.05). RESULTS After 1.5 T exposure, no significant temperature increase from T0 to T1 was observed in any of the groups (p > 0.05). Regarding the 3 T groups, a significant difference from T0 to T1 was found for all the groups (p < 0.05). Temperature changes were not clinically relevant, as they were less than 1 °C for all groups except for group 3 (ΔT0-T1: 1.18 ± 0.3 °C) and group 6 (ΔT0-T1: 1.12 ± 0.37 °C). Furthermore, there were no significant differences between the temperature variations associated with different wire diameters (p > 0.05). CONCLUSIONS No significant changes in SBS or ARI were found (p > 0.05). CLINICAL SIGNIFICANCE Since overheating was irrelevant and adhesion values did not change, the tested devices were concluded to be safe for MRI examinations at 1.5 T and 3 T.
Collapse
Affiliation(s)
- Maria Francesca Sfondrini
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Paola Gandini
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Preda
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Department of Radiology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
- National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Domenico Sfondrini
- Maxillo-Facial Surgery Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Karin Bertino
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Cinzia Rizzi
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Andrea Scribante
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
2
|
Duan S, Wu X, Shi J, Li W, Dong Q, Xin SX. Study of the radiofrequency-induced heating inside the human head with dental implants at 7 T. Bioelectromagnetics 2024; 45:82-93. [PMID: 37860924 DOI: 10.1002/bem.22490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Conductive dental implants are commonly used in restorative therapy to replace missing teeth in patients. Ensuring the radiofrequency (RF) safety of these patients is crucial when performing 7 T magnetic resonance scans of their heads. This study aimed to investigate RF-induced heating inside the human head with dental implants at 7 T. Dental implants and their attachments were fabricated and integrated into an anatomical head model, creating different measurement configurations (MCs). Numerical simulations were conducted using a 7 T transmit coil loaded with the anatomical head model, both with and without dental implants. The maximum temperatures inside the head for various MCs were computed using the maximum permissible input powers (MPIPs) obtained without dental implants and compared with published limits. Additionally, the MPIPs with dental implants were calculated for scenarios where the temperature limits were exceeded. The maximum temperatures observed inside the head ranged from 38.4°C to 39.6°C. The MPIPs in the presence of dental implants were 81.9%-97.3% of the MPIPs in the absence of dental implants for scenarios that exceeded the regulatory limit. RF-induced heating effect of the dental implants was not significant. The safe scanning condition in terms of RF exposure was achievable for patients with dental implants. For patients with conductive dental implants of unknown configuration, it is recommended to reduce the input power by 18.1% of MPIP without dental implants to ensure RF safety.
Collapse
Affiliation(s)
- Song Duan
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiuxiu Wu
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Juntian Shi
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenhui Li
- Department of Dentistry, Air Force Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong, China
| | - Qingshan Dong
- Department of Stomatology, General Hospital of Central Theater Command of PLA, WuHan, China
| | - Sherman Xuegang Xin
- Biophysics and Medical Imaging Lab, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Jacobs P, Fagan AJ. The effect of frequency (64-498 MHz) on specific absorption rate adjacent to metallic orthopedic screws in MRI: A numerical simulation study. Med Phys 2024; 51:1074-1082. [PMID: 38116822 PMCID: PMC10922637 DOI: 10.1002/mp.16902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/04/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The imaging of patients with implanted electrically-conductive devices via magnetic resonance imaging at ultra-high fields is hampered by uncertainties relating to the potential for inducing tissue heating adjacent to the implant due to coupling of energy from the incident electromagnetic field into the implant. Existing data in the peer-reviewed literature of comparisons across field strengths of tissue heating and its surrogate, the specific absorption rate (SAR), is scarce and contradictory, leading to further doubts pertaining to the safety of imaging patients with such devices. PURPOSE The radiofrequency-induced SAR adjacent to orthopedic screws of varying length and at frequencies of 64 to 498 MHz was investigated via full-wave electromagnetic simulations, to provide an accurate comparison of SAR across MRI field strengths. METHODS Dipole antennas were used for RF transmission to achieve a uniform electric field tangential to the screws located 120 mm above the antenna midpoints, embedded in a bone-mimicking material. The input power to the antennas was constrained to achieve the following targets without the screw present: (i) E = 100 V/m, (ii) B1 + = 2 μT, and (iii) global-average-SAR = 3.2 W/kg. Simulations were performed with a spatial resolution of 0.2 mm in the volume surrounding the screws, resulting in 76-137 MCells, noting the maximum 1 g-averaged SAR value in each case. Simulations were repeated at 128 and 297 MHz for screws embedded in muscle tissue. RESULTS The peak SAR, occurring at the resonant screw length, substantially increased as the frequency decreased when the input power to the dipole antenna was constrained to achieve constant electric field in background tissue at the screws' locations. A similar pattern was observed when constraining input power to achieve constant B1 + and global-average-SAR. The dielectric properties of the tissue in which the screws were embedded dominated the SAR comparisons between 297 and 128 MHz. CONCLUSIONS The study design allowed for a direct comparison to be performed of SAR across frequencies and implant lengths without the confounding effect of variable incident electric field. Lower frequencies produced substantially larger SAR values for implants approaching the resonant length for the worst-case uniform incident electric field along the screws' length. The data may inform risk-benefit assessments for imaging patients with orthopedic implants at the new clinical field strength of 7 Tesla.
Collapse
Affiliation(s)
- Paul Jacobs
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew J Fagan
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Terekhov M, Elabyad IA, Lohr D, Reiter T, Kögler C, Lanz T, Schreiber LM. Complementary analysis of specific absorption rate safety for an 8Tx/16Rx array with central symmetry of elements for magnetic resonance imaging of the human heart and abdominopelvic organs at 7 T. NMR IN BIOMEDICINE 2023; 36:e5023. [PMID: 37620002 DOI: 10.1002/nbm.5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/16/2023] [Accepted: 07/16/2023] [Indexed: 08/26/2023]
Abstract
A complementary safety assessment of the specific absorption rate (SAR) of the electromagnetic energy was performed in a prototype 8Tx/16Rx RF array for cardiac magnetic resonance imaging (MRI) at 7 T. The study aimed to address two critical aspects of 7-T SAR safety not always explicitly examined by coil vendors: (i) the influence of an RF-array position on a peak SAR value, and (ii) the risk of exceeding the permitted maximal SAR in the tissue surrounding conductive passive implants. The full-wave 3D electromagnetic simulations for the thorax with shifted array position and the whole-body volume in the presence of a dental retainer, an intrauterine contraceptive device (IUD), and a hip joint implant, were performed for two human voxel models. The effect of the array displacement on the SAR was simulated for seven array locations on the thorax shifted from the central position in different directions on 50 mm. The peak SAR values for both models were analyzed for the three phase-only transmit vectors optimized for B1 + homogeneity and transmit efficiency. Peak SAR values due to the shifts of the array position increase up to ≈50%. The worst-case peak SAR value for a dental retainer was found to be in the range of 10% of the maximal SAR in the tissue within the array's borders. For the IUD and artificial hip joint implants the effect was found to be negligible (peak SAR < 1% of the SAR within array borders). In addition to simulations for cardiac MRI, we performed a preliminary B1 + shimming and SAR-safety analysis for the same RF-array at various positions lower on the body trunk to assess a potential application in imaging abdominopelvic organs (prostate, kidney, and liver). The most promising target for an ad hoc alternative application of the array was found to be the prostate.
Collapse
Affiliation(s)
- Maxim Terekhov
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg (UKW), Würzburg, Germany
| | - Ibrahim A Elabyad
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg (UKW), Würzburg, Germany
| | - David Lohr
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg (UKW), Würzburg, Germany
| | - Theresa Reiter
- Department of Internal Medicine I/Cardiology, University Hospital Würzburg (UKW), Würzburg, Germany
| | | | | | - Laura M Schreiber
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg (UKW), Würzburg, Germany
| |
Collapse
|
5
|
Özütemiz C, White M, Elvendahl W, Eryaman Y, Marjańska M, Metzger GJ, Patriat R, Kulesa J, Harel N, Watanabe Y, Grant A, Genovese G, Cayci Z. Use of a Commercial 7-T MRI Scanner for Clinical Brain Imaging: Indications, Protocols, Challenges, and Solutions-A Single-Center Experience. AJR Am J Roentgenol 2023; 221:788-804. [PMID: 37377363 PMCID: PMC10825876 DOI: 10.2214/ajr.23.29342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The first commercially available 7-T MRI scanner (Magnetom Terra) was approved by the FDA in 2017 for clinical imaging of the brain and knee. After initial protocol development and sequence optimization efforts in volunteers, the 7-T system, in combination with an FDA-approved 1-channel transmit/32-channel receive array head coil, can now be routinely used for clinical brain MRI examinations. The ultrahigh field strength of 7-T MRI has the advantages of improved spatial resolution, increased SNR, and increased CNR but also introduces an array of new technical challenges. The purpose of this article is to describe an institutional experience with the use of the commercially available 7-T MRI scanner for routine clinical brain imaging. Specific clinical indications for which 7-T MRI may be useful for brain imaging include brain tumor evaluation with possible perfusion imaging and/or spectroscopy, radiotherapy planning; evaluation of multiple sclerosis and other demyelinating diseases, evaluation of Parkinson disease and guidance of deep brain stimulator placement, high-detail intracranial MRA and vessel wall imaging, evaluation of pituitary pathology, and evaluation of epilepsy. Detailed protocols, including sequence parameters, for these various indications are presented, and implementation challenges (including artifacts, safety, and side effects) and potential solutions are explored.
Collapse
Affiliation(s)
- Can Özütemiz
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
| | - Matthew White
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Wendy Elvendahl
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Rémi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Jeramy Kulesa
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN
| | - Andrea Grant
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Guglielmo Genovese
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Zuzan Cayci
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
6
|
Ladd ME, Quick HH, Speck O, Bock M, Doerfler A, Forsting M, Hennig J, Ittermann B, Möller HE, Nagel AM, Niendorf T, Remy S, Schaeffter T, Scheffler K, Schlemmer HP, Schmitter S, Schreiber L, Shah NJ, Stöcker T, Uder M, Villringer A, Weiskopf N, Zaiss M, Zaitsev M. Germany's journey toward 14 Tesla human magnetic resonance. MAGMA (NEW YORK, N.Y.) 2023; 36:191-210. [PMID: 37029886 PMCID: PMC10140098 DOI: 10.1007/s10334-023-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioural Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Jürgen Hennig
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Bernd Ittermann
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Harald E Möller
- Methods and Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefan Remy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Tobias Schaeffter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | | | - Sebastian Schmitter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Laura Schreiber
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Tony Stöcker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Moritz Zaiss
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Dobai A, Dembrovszky F, Vízkelety T, Barsi P, Juhász F, Dobó-Nagy C. MRI compatibility of orthodontic brackets and wires: systematic review article. BMC Oral Health 2022; 22:298. [PMID: 35854295 PMCID: PMC9295293 DOI: 10.1186/s12903-022-02317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Before the magnetic resonance imaging (MRI) examination fixed orthodontic devices, such as brackets and wires, cause challenges not only for the orthodontist but also for the radiologist. Essentially, the MRI-safe scan of the fixed orthodontic tools requires a proper guideline in clinical practice. Therefore, this systematic review aimed to examine all aspects of MRI-safe scan, including artifact, thermal, and debonding effects, to identify any existing gaps in knowledge in this regard and develop an evidence-based protocol. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement was used in this study. The clinical question in "PIO" format was: "Does MRI examination influence the temperature of the orthodontic devices, the size of artifacts, and the debonding force in patients who have fixed orthodontic bracket and/or wire?" The search process was carried out in PubMed, PubMed Central, Scopus, and Google Scholar databases. The search resulted in 1310 articles. After selection according to the eligibility criteria, 18 studies were analyzed by two reviewers. The risk of bias was determined using the Quality In Prognosis Studies tool. RESULTS Out of the eligible 18 studies, 10 articles examined the heating effect, 6 were about the debonding effect, and 11 measured the size of artifact regarding brackets and wires. Considering the quality assessment, the overall levels of evidence were high and medium. The published studies showed that heating and debonding effects during MRI exposure were not hazardous for patients. As some wires revealed higher temperature changes, it is suggested to remove the wire or insert a spacer between the appliances and the oral mucosa. Based on the material, ceramic and plastic brackets caused no relevant artifact and were MRI-safe. Stainless steel brackets and wires resulted in susceptibility artifacts in the orofacial region and could cause distortion in the frontal lobe, orbits, and pituitary gland. The retainer wires showed no relevant artifact. CONCLUSIONS In conclusion, the thermal and debonding effects of the fixed orthodontic brackets and wires were irrelevant or resoluble; however, the size of the artifacts was clinically relevant and determined most significantly the feasibility of fixed brackets and wires in MRI examination.
Collapse
Affiliation(s)
- Adrienn Dobai
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Szentkirályi u. 47, Budapest, 1088, Hungary.
| | - Fanni Dembrovszky
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti Street 12, Pecs, 7024, Hungary
| | - Tamás Vízkelety
- Dento-Cura Private Practice, Kálvin Street 3, Budapest, 1053, Hungary
| | - Péter Barsi
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Balassa Street 6, Budapest, 1083, Hungary
| | - Fanni Juhász
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Semmelweis University, Szentkirályi u. 47, Budapest, 1088, Hungary
| | - Csaba Dobó-Nagy
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Szentkirályi u. 47, Budapest, 1088, Hungary
| |
Collapse
|
8
|
Abstract
Food and Drug Administration approval of 7T MR imaging allows ultrahigh-field neuroimaging to extend from the research realm into the clinical realm. Increased signal is clinically advantageous for smaller voxels and thereby high spatial resolution imaging, with additional advantages of increased tissue contrast. Susceptibility, time-of-flight signal, and blood oxygen level-dependent signal also have favorable clinical benefit from 7T. This article provides a survey of clinical cases showcasing some advantages of 7T.
Collapse
|
9
|
Characterization of displacement forces and image artifacts in the presence of passive medical implants in low-field (<100 mT) permanent magnet-based MRI systems, and comparisons with clinical MRI systems. Phys Med 2021; 84:116-124. [PMID: 33894581 DOI: 10.1016/j.ejmp.2021.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To investigate the displacement forces and image artifacts associated with passive medical implants for recently-developed low-field (<100 mT) MRI systems, and to compare these with values from higher field strengths used for clinical diagnosis. METHODS Setups were constructed to measure displacement forces in a permanent magnet-based Halbach array used for in vivo MRI at 50 mT, and results compared with measurements at 7 T. Image artifacts were assessed using turbo (fast) spin echo imaging sequences for four different passive medical implants: a septal occluder, iliac stent, pedicle screw and (ferromagnetic) endoscopic clip. Comparisons were made with artifacts produced at 1.5, 3 and 7 T. Finally, specific absorption rate (SAR) simulations were performed to determine under what operating conditions the limits might be approached at low-field. RESULTS Displacement forces at 50 mT on all but the ferromagnetic implant were between 1 and 10 mN. Image artifacts at 50 mT were much less than at clinical field strengths for all passive devices, and with the exception of the ferromagnetic clip. SAR simulations show that very long echo train (>128) turbo spin echo sequences can be run with short inter-pulse times (5-10 ms) within SAR limits. CONCLUSIONS This work presents the first evaluation of the effects of passive implants at field strengths less than 100 mT in terms of displacement forces, image artifacts and SAR. The results support previous claims that such systems can be used safely and usefully in challenging enviroments such as the intensive care unit.
Collapse
|
10
|
März K, Chepura T, Plewig B, Haddad D, Weber D, Schmid M, Hirschfelder U, Gölz L. Cephalometry without complex dedicated postprocessing in an oriented magnetic resonance imaging dataset: a pilot study. Eur J Orthod 2021; 43:614-621. [PMID: 33735379 DOI: 10.1093/ejo/cjaa066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Magnetic resonance imaging (MRI) enables a 3D-volume-imaging without ionizing radiation. Therefore, it was the aim of this study to present a post-processing-free method for cephalometric analysis of a MRI-dataset and to examine whether there is a significant difference between cephalometric analysis of conventional 2D cephalograms and MRI scans. METHODS One MRI scan each was performed on three cadaver heads using a 3T-MR-scanner. Cephalometric analysis was conducted directly on the 3D dataset. All reference points were projected onto a virtual sagittal plane that was perpendicular to the Frankfort horizontal plane. Double-sided points were averaged. Cephalometric angles were measured from the projected points. Results were compared with cephalometric measurements on conventional lateral cephalometric radiographs (LCRs). The cephalometric analysis was performed by five raters. RESULTS 390-angle measurements were obtained. The inter-rater reliability was high [intraclass correlation coefficients (ICCs) ≥ 0.74 for all angles]. Differences between the measurements on the cephalograms and MRI scans ranged between -0.91° (-1.88°, 0.07°) and 0.97° (-0.63°, 2.57°) on average and were equivalent with respect to a margin of [-2°, 2°] in all angles except L1-Me-Tgo (Bonferroni-Holm-corrected P < 0.05 in all angles except L1-Me-Tgo). The best match was found for the SNA angle. CONCLUSION The clinical comparability of the MRI- and LCR-based cephalometry could be stated. Using MRI in orthodontics would reduce radiation exposure and the risk of stochastic radiation damage, which is of importance especially in younger patients.
Collapse
Affiliation(s)
- Karoline März
- Department of Orthodontics and Orofacial Orthopedics, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Taras Chepura
- Department of Orthodontics and Orofacial Orthopedics, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Blanka Plewig
- Department of Orthodontics and Orofacial Orthopedics, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Daniel Haddad
- Magnetic Resonance and X-ray Imaging Department of the Development Centre X-ray Technology EZRT, Division of Fraunhofer Institute for Integrated Circuits IIS, Würzburg, Germany
| | - Daniel Weber
- Magnetic Resonance and X-ray Imaging Department of the Development Centre X-ray Technology EZRT, Division of Fraunhofer Institute for Integrated Circuits IIS, Würzburg, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Germany
| | - Ursula Hirschfelder
- Department of Orthodontics and Orofacial Orthopedics, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Lina Gölz
- Department of Orthodontics and Orofacial Orthopedics, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| |
Collapse
|
11
|
Fagan AJ, Bitz AK, Björkman-Burtscher IM, Collins CM, Kimbrell V, Raaijmakers AJ. 7T MR Safety. J Magn Reson Imaging 2021; 53:333-346. [PMID: 32830900 PMCID: PMC8170917 DOI: 10.1002/jmri.27319] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging and spectroscopy (MRI/MRS) at 7T represents an exciting advance in MR technology, with intriguing possibilities to enhance image spatial, spectral, and contrast resolution. To ensure the safe use of this technology while still harnessing its potential, clinical staff and researchers need to be cognizant of some safety concerns arising from the increased magnetic field strength and higher Larmor frequency. The higher static magnetic fields give rise to enhanced transient bioeffects and an increased risk of adverse incidents related to electrically conductive implants. Many technical challenges remain and the continuing rapid pace of development of 7T MRI/MRS is likely to present further challenges to ensuring safety of this technology in the years ahead. The recent regulatory clearance for clinical diagnostic imaging at 7T will likely increase the installed base of 7T systems, particularly in hospital environments with little prior ultrahigh-field MR experience. Informed risk/benefit analyses will be required, particularly where implant manufacturer-published 7T safety guidelines for implants are unavailable. On behalf of the International Society for Magnetic Resonance in Medicine, the aim of this article is to provide a reference document to assist institutions developing local institutional policies and procedures that are specific to the safe operation of 7T MRI/MRS. Details of current 7T technology and the physics underpinning its functionality are reviewed, with the aim of supporting efforts to expand the use of 7T MRI/MRS in both research and clinical environments. Current gaps in knowledge are also identified, where additional research and development are required. Level of Evidence 5 Technical Efficacy 2 J. MAGN. RESON. IMAGING 2021;53:333-346.
Collapse
Affiliation(s)
- Andrew J. Fagan
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andreas K. Bitz
- Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, Aachen, Germany
| | - Isabella M. Björkman-Burtscher
- Department of Radiology, University of Gothenburg, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christopher M. Collins
- Center for Advanced Imaging Innovation and Research, NYU Langone Medical Center, New York, New York, USA
| | - Vera Kimbrell
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
12
|
Fagan AJ, Jacobs PS, Hulshizer TC, Rossman PJ, Frick MA, Amrami KK, Felmlee JP. 7T MR Thermometry technique for validation of system-predicted SAR with a home-built radiofrequency wrist coil. Med Phys 2020; 48:781-790. [PMID: 33294999 DOI: 10.1002/mp.14641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/03/2020] [Accepted: 11/30/2020] [Indexed: 11/12/2022] Open
Abstract
PURPOSE A 7T magnetic resonance thermometry (MRT) technique was developed to validate the conversion factor between the system-measured transmitted radiofrequency (RF) power into a home-built RF wrist coil with the system-predicted SAR value. The conversion factor for a new RF coil developed for ultra high magnetic field MRI systems is used to ensure that regulatory limits on RF energy deposition in tissue, specifically the local 10g-averaged specific absorption rate (SAR10g ), are not exceeded. MRT can be used to validate this factor by ensuring that MRT-measured SAR values do not exceed those predicted by the system. METHODS A 14-cm diameter high-pass birdcage RF coil was built to image the wrist at 7T. A high spatial and temporal resolution dual-echo gradient echo MRT technique, incorporating quasi-simultaneous RF-induced heating and temperature change measurements using the proton resonance frequency method, was developed. The technique allowed for high-temperature resolution measurements (~±0.1°C) to be performed every 20 s over a 4-min heating period, with high spatial resolution (2.56 mm3 voxel size) and avoiding phase discontinuities arising from severe magnetic susceptibility-induced B0 inhomogeneities. Magnetic resonance thermometry was performed on a phantom made from polyvinylpyrrolidone to mimic the dielectric properties of muscle tissue at 297.2 MHz. Temperature changes measured with MRT and four fiber optic temperature sensors embedded in the phantom were compared. Electromagnetic simulations of the coil and phantom were developed and validated via comparison of simulated and measured B1 + maps in the phantom. The position of maximum SAR within the coil was determined from simulations, and MRT was performed within a wrist-sized piece of meat positioned at that SAR hotspot location. MRT-measured and system-predicted SAR values for the phantom and meat were compared. RESULTS Temperature change measurements from MRT matched closely to those from the fiber optic temperature sensors. The simulations were validated via close correlation between the simulated and MRT-measured B1 + and SAR maps. Using a coil conversion factor of 2 kg-1 , MRT-measured point-SAR values did not exceed the system-predicted SAR10g in either the uniform phantom or in the piece of meat mimicking the wrist located at the SAR hotspot location. CONCLUSIONS A highly accurate MRT technique with high spatial and temporal resolution was developed. This technique can be used to ensure that system-predicted SAR values are not exceeded in practice, thereby providing independent validation of SAR levels delivered by a newly built RF wrist coil. The MRT technique is readily generalizable to perform safety evaluations for other RF coils at 7T.
Collapse
Affiliation(s)
- Andrew J Fagan
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Paul S Jacobs
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Thomas C Hulshizer
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Phillip J Rossman
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew A Frick
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kimberly K Amrami
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Joel P Felmlee
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
13
|
Fagan AJ, Amrami KK, Welker KM, Frick MA, Felmlee JP, Watson RE. Magnetic Resonance Safety in the 7T Environment. Magn Reson Imaging Clin N Am 2020; 28:573-582. [PMID: 33040997 DOI: 10.1016/j.mric.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The arrival of 7T MR imaging into the clinic represents a significant step-change in MR technology. This article describes safety concerns associated with imaging at 7T, including the increased magnetic forces on magnetic objects at 7T and the interaction of the 300 MHz (Larmor) radiofrequency energy with tissue in the body. A dedicated multidisciplinary 7T Safety team should develop safety policies and procedures to address these safety challenges and keep abreast of best practice in the field. The off-label imaging of implanted devices is discussed, and also the need for staff training to deal with complexities of patient handling and image interpretation.
Collapse
Affiliation(s)
- Andrew J Fagan
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| | - Kimberly K Amrami
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Kirk M Welker
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Matthew A Frick
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Joel P Felmlee
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Robert E Watson
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Image Artifact Management for Clinical Magnetic Resonance Imaging on a 7 T Scanner Using Single-Channel Radiofrequency Transmit Mode. Invest Radiol 2020; 54:781-791. [PMID: 31503079 DOI: 10.1097/rli.0000000000000598] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of this work was to devise mitigation strategies for addressing a range of image artifacts on a clinical 7 T magnetic resonance imaging scanner using the regulatory-approved single-channel radiofrequency transmit mode and vendor-supplied radiofrequency coils to facilitate clinical scanning within reasonable scan times. MATERIALS AND METHODS Optimized imaging sequence protocols were developed for routine musculoskeletal knee and neurological imaging. Sources of severe image nonuniformities were identified, and mitigation strategies were devised. A range of custom-made high permittivity dielectric pads were used to compensate for B1 and B1 inhomogeneities, and also for magnetic susceptibility-induced signal dropouts particularly in the basal regions of the temporal lobes and in the cerebellum. RESULTS Significant improvements in image uniformity were obtained using dielectric pads in the knee and brain. A combination of small voxels, reduced field of view B0 shimming, and high in-plane parallel imaging factors helped to minimize signal loss in areas of high susceptibility-induced field distortions. The high inherent signal-to-noise ratio at 7 T allowed for high receiver bandwidths and thin slices to minimize chemical shift artifacts. Intermittent artifacts due to radiofrequency inversion pulse limitations (power, bandwidth) were minimized with dielectric pads. A patient with 2 implanted metallic cranial fixation devices located within the radiofrequency transmit field was successfully imaged, with minimal image geometric distortions. CONCLUSIONS Challenges relating to severe image artifacts at 7 T using single-channel radiofrequency transmit functionality in the knee and brain were overcome using the approaches described in this article. The resultant high diagnostic image quality paves the way for incorporation of this technology into the routine clinical workflow. Further developmental efforts are required to expand the range of applications to other anatomical areas, and to expand the evidence- and knowledge-base relating to the safety of scanning patients with implanted metallic devices.
Collapse
|
15
|
Abstract
BACKGROUND It can be expected that the number of 7 T MRI systems for clinical use will increase in the future. On the other hand, almost no medical implant has been labeled MR conditional for 7 T, so far, leaving the question of implant safety unanswered to the MR operator. METHODS In principle, the same interactions between magnetizable and electric conductive material apply at 7 T as known at lower magnetic field strengths. However, there are a few important differences that need to be taken into account to perform a profound risk-benefit analysis. After a more general introduction of technical differences between 3 and 7 T systems, the article will focus mainly on safety assessments with regard to interactions between implant and radiofrequency (RF) transmit fields. In addition, strategies to ensure access at 7 T will be discussed. RESULTS OF PRACTICAL RELEVANCE Besides hazards due to the magnetic force which can be up to 2.3 times stronger at 7 T compared to 3 T, increased risks of RF-induced tissue heating are the most critical aspects. The resonant-length of an implant at 7 T is about 5 cm. Other than at 3 T, MR systems at 7 T are less standardized. Especially with regard to the RF transmit coil and transmission methods used, substantial differences need to be expected. Hence, it is important to critically question published safety assessments of implants and to have a thorough discussion about how this relates to the individual exposure scenario. For nonmagnetic implants without a dedicated 7 T safety evaluation, but which are 3 T MR conditional and have a certain minimum distance to the RF transmit coil, a consensus recommendation from the national network German Ultrahigh Field Imaging (GUFI) may be helpful.
Collapse
Affiliation(s)
- O Kraff
- Erwin L. Hahn Institute for MR Imaging, Universität Duisburg-Essen, Kokereiallee 7, 45141, Essen, Deutschland.
| | - H H Quick
- Erwin L. Hahn Institute for MR Imaging, Universität Duisburg-Essen, Kokereiallee 7, 45141, Essen, Deutschland.,Hochfeld- und Hybride MR-Bildgebung, Universitätsklinikum Essen, Essen, Deutschland
| |
Collapse
|
16
|
Greenberg TD, Hoff MN, Gilk TB, Jackson EF, Kanal E, McKinney AM, Och JG, Pedrosa I, Rampulla TL, Reeder SB, Rogg JM, Shellock FG, Watson RE, Weinreb JC, Hernandez D. ACR guidance document on MR safe practices: Updates and critical information 2019. J Magn Reson Imaging 2019; 51:331-338. [PMID: 31355502 DOI: 10.1002/jmri.26880] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
The need for a guidance document on MR safe practices arose from a growing awareness of the MR environment's potential risks and adverse event reports involving patients, equipment, and personnel. Initially published in 2002, the American College of Radiology White Paper on MR Safety established de facto industry standards for safe and responsible practices in clinical and research MR environments. The most recent version addresses new sources of risk of adverse events, increases awareness of dynamic MR environments, and recommends that those responsible for MR medical director safety undergo annual MR safety training. With regular updates to these guidelines, the latest MR safety concerns can be accounted for to ensure a safer MR environment where dangers are minimized. Level of Evidence: 1 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2020;51:331-338.
Collapse
Affiliation(s)
| | | | - Michael N Hoff
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | | | - Edward F Jackson
- Departments of Medical Physics, Radiology, and Human Oncology, University of Wisconsin School of Medicine and Public Heath, Madison, Wisconsin, USA
| | - Emanuel Kanal
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Alexander M McKinney
- Department of Radiology, University of Minnesota Medical Center, Minneapolis, Minnesota, USA
| | - Joseph G Och
- Department of Medical & Health Physics, Geisinger, Danville, Pennsylvania, USA
| | - Ivan Pedrosa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Scott B Reeder
- Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffrey M Rogg
- Department of Diagnostic Imaging, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Frank G Shellock
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Robert E Watson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey C Weinreb
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
17
|
Hoff MN, McKinney A, Shellock FG, Rassner U, Gilk T, Watson RE, Greenberg TD, Froelich J, Kanal E. Safety Considerations of 7-T MRI in Clinical Practice. Radiology 2019; 292:509-518. [PMID: 31310177 DOI: 10.1148/radiol.2019182742] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although 7-T MRI has recently received approval for use in clinical patient care, there are distinct safety issues associated with this relatively high magnetic field. Forces on metallic implants and radiofrequency power deposition and heating are safety considerations at 7 T. Patient bioeffects such as vertigo, dizziness, false feelings of motion, nausea, nystagmus, magnetophosphenes, and electrogustatory effects are more common and potentially more pronounced at 7 T than at lower field strengths. Herein the authors review safety issues associated with 7-T MRI. The rationale for safety concerns at this field strength are discussed as well as potential approaches to mitigate risk to patients and health care professionals.
Collapse
Affiliation(s)
- Michael N Hoff
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Alexander McKinney
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Frank G Shellock
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Ulrich Rassner
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Tobias Gilk
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Robert E Watson
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Todd D Greenberg
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Jerry Froelich
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Emanuel Kanal
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| |
Collapse
|
18
|
Noureddine Y, Kraff O, Ladd ME, Wrede K, Chen B, Quick HH, Schaefers G, Bitz AK. Radiofrequency induced heating around aneurysm clips using a generic birdcage head coil at 7 Tesla under consideration of the minimum distance to decouple multiple aneurysm clips. Magn Reson Med 2019; 82:1859-1875. [DOI: 10.1002/mrm.27835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yacine Noureddine
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- MR:comp GmbH, MR Safety Testing Laboratory Gelsenkirchen Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
| | - Mark E. Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy and Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Karsten Wrede
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- Department of Neurosurgery University Hospital Essen Essen Germany
| | - Bixia Chen
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- Department of Neurosurgery University Hospital Essen Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- High Field and Hybrid MR, University Hospital Essen Essen Germany
| | - Gregor Schaefers
- MR:comp GmbH, MR Safety Testing Laboratory Gelsenkirchen Germany
- MRI‐STaR – Magnetic Resonance Institute for Safety, Technology and Research GmbH Gelsenkirchen Germany
| | - Andreas K. Bitz
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Electrical Engineering and Information Technology FH Aachen University of Applied Sciences Aachen NRW Germany
| |
Collapse
|
19
|
Abstract
Radiofrequency (RF) coils are an essential part of the magnetic resonance (MR) system. To exploit the inherently higher signal-to-noise ratio at ultrahigh magnetic fields (UHF), research sites were forced to build up expertise in RF coil development, as the number of commercially available RF coils were limited. In addition, an integrated transmit body RF coil, which is well-established at MR systems of lower field strength, is still missing at UHF due to technical and physical constraints. This review article provides a brief recapitulation of RF characteristics and RF coils in general to introduce terminology and RF-related parameters, and will then provide an extensive overview of current state-of-the-art RF coils used for MRI from head to toe at 7 Tesla. Finally, a section on RF safety will briefly discuss challenges in performing a safety assessment for custom-designed RF coils, and issues arising from the interaction of the RF field and potentially implanted medical devices.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|
20
|
Niendorf T, Schulz-Menger J, Paul K, Huelnhagen T, Ferrari VA, Hodge R. High Field Cardiac Magnetic Resonance Imaging: A Case for Ultrahigh Field Cardiac Magnetic Resonance. Circ Cardiovasc Imaging 2019; 10:CIRCIMAGING.116.005460. [PMID: 28611118 DOI: 10.1161/circimaging.116.005460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Thoralf Niendorf
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.).
| | - Jeanette Schulz-Menger
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Katharina Paul
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Till Huelnhagen
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Victor A Ferrari
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Russell Hodge
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| |
Collapse
|
21
|
Yilmaz S, Adisen MZ. Ex Vivo Mercury Release from Dental Amalgam after 7.0-T and 1.5-T MRI. Radiology 2018; 288:799-803. [DOI: 10.1148/radiol.2018172597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Selmi Yilmaz
- From the Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Akdeniz University, P.K. 10 Dumlupinar Bulvari Kampus, 07058 Konyaalti/Antalya, Turkey (S.Y.); and Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey (M.Z.A.)
| | - M. Zahit Adisen
- From the Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Akdeniz University, P.K. 10 Dumlupinar Bulvari Kampus, 07058 Konyaalti/Antalya, Turkey (S.Y.); and Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey (M.Z.A.)
| |
Collapse
|
22
|
Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging 2017; 46:1573-1589. [DOI: 10.1002/jmri.25723] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital Essen; Essen Germany
| |
Collapse
|
23
|
Fiedler TM, Ladd ME, Bitz AK. SAR Simulations & Safety. Neuroimage 2017; 168:33-58. [PMID: 28336426 DOI: 10.1016/j.neuroimage.2017.03.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/28/2017] [Accepted: 03/16/2017] [Indexed: 01/19/2023] Open
Abstract
At ultra-high fields, the assessment of radiofrequency (RF) safety presents several new challenges compared to low-field systems. Multi-channel RF transmit coils in combination with parallel transmit techniques produce time-dependent and spatially varying power loss densities in the tissue. Further, in ultra-high-field systems, localized field effects can be more pronounced due to a transition from the quasi stationary to the electromagnetic field regime. Consequently, local information on the RF field is required for reliable RF safety assessment as well as for monitoring of RF exposure during MR examinations. Numerical RF and thermal simulations for realistic exposure scenarios with anatomical body models are currently the only practical way to obtain the requisite local information on magnetic and electric field distributions as well as tissue temperature. In this article, safety regulations and the fundamental characteristics of RF field distributions in ultra-high-field systems are reviewed. Numerical methods for computation of RF fields as well as typical requirements for the analysis of realistic multi-channel RF exposure scenarios including anatomical body models are highlighted. In recent years, computation of the local tissue temperature has become of increasing interest, since a more accurate safety assessment is expected because temperature is directly related to tissue damage. Regarding thermal simulation, bio-heat transfer models and approaches for taking into account the physiological response of the human body to RF exposure are discussed. In addition, suitable methods are presented to validate calculated RF and thermal results with measurements. Finally, the concept of generalized simulation-based specific absorption rate (SAR) matrix models is discussed. These models can be incorporated into local SAR monitoring in multi-channel MR systems and allow the design of RF pulses under constraints for local SAR.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, 52066 Aachen, Germany
| |
Collapse
|
24
|
Noureddine Y, Kraff O, Ladd ME, Wrede KH, Chen B, Quick HH, Schaefers G, Bitz AK. In vitro and in silico assessment of RF-induced heating around intracranial aneurysm clips at 7 Tesla. Magn Reson Med 2017; 79:568-581. [DOI: 10.1002/mrm.26650] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/11/2017] [Accepted: 01/26/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Yacine Noureddine
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- MR:comp GmbH, MR Safety Testing Laboratory; Gelsenkirchen Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
| | - Mark E. Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- Division of Medical Physics in Radiology (E020); German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Karsten H. Wrede
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- Department of Neurosurgery; University Hospital Essen; Essen Germany
| | - Bixia Chen
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- Department of Neurosurgery; University Hospital Essen; Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital Essen; Essen Germany
| | - Gregor Schaefers
- MR:comp GmbH, MR Safety Testing Laboratory; Gelsenkirchen Germany
- MRI-STaR-Magnetic Resonance Institute for Safety, Technology and Research GmbH; Gelsenkirchen Germany
| | - Andreas K. Bitz
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- Division of Medical Physics in Radiology (E020); German Cancer Research Center (DKFZ); Heidelberg Germany
- Faculty of Electrical Engineering and Information Technology; FH Aachen-University of Applied Sciences; Aachen NRW Germany
| |
Collapse
|
25
|
Oberacker E, Paul K, Huelnhagen T, Oezerdem C, Winter L, Pohlmann A, Boehmert L, Stachs O, Heufelder J, Weber A, Rehak M, Seibel I, Niendorf T. Magnetic resonance safety and compatibility of tantalum markers used in proton beam therapy for intraocular tumors: A 7.0 Tesla study. Magn Reson Med 2016; 78:1533-1546. [DOI: 10.1002/mrm.26534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Eva Oberacker
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Katharina Paul
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Celal Oezerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Laura Boehmert
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Oliver Stachs
- Department of Ophthalmology; University of Rostock; Rostock Germany
| | - Jens Heufelder
- Charité-Universitätsmedizin Berlin, BerlinProtonen am HZB; Berlin Germany
| | - Andreas Weber
- Charité-Universitätsmedizin Berlin, BerlinProtonen am HZB; Berlin Germany
| | - Matus Rehak
- Charité-Universitätsmedizin Berlin, Klinik für Augenheilkunde Campus Benjamin Franklin; Berlin Germany
| | - Ira Seibel
- Charité-Universitätsmedizin Berlin, Klinik für Augenheilkunde Campus Benjamin Franklin; Berlin Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| |
Collapse
|
26
|
Colon AJ, van Osch MJP, Buijs M, Grond JVD, Boon P, van Buchem MA, Hofman PAM. Detection superiority of 7 T MRI protocol in patients with epilepsy and suspected focal cortical dysplasia. Acta Neurol Belg 2016; 116:259-69. [PMID: 27389578 PMCID: PMC4989014 DOI: 10.1007/s13760-016-0662-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022]
Abstract
In 11 adult patients with suspicion of Focal cortical dysplasia (FCD) on 1.5 T (n = 1) or 3 T (n = 10) magnetic resonance imaging (MRI), 7 T MRI was performed. Visibility, extent, morphological features and delineation were independently rated and subsequently discussed by three observers. Additionally, head-to-head comparisons with corresponding 3 T images were made in the eight patients with a previous 3 T MRI and sustained suspicion of FCD. Comparison with histopathology was done in the five patients that underwent surgery. All lesions, seen at 1.5 and 3 T, were also recognized on 7 T. At 7 T FLAIR highlighted the FCD-like lesions best, whereas T2 and T2* were deemed better suited to review structure and extent of the lesion. Image quality with the used 7 T MRI setup was higher than the quality with the used 3 T MRI setup. In 2 out of 11 patients diagnosis changed, in one after re-evaluation of the images, and in the other based on histopathology. With the used 7 T MRI setup, FCD-like lesions can be detected with more confidence and detail as compared to lower field strength. However, concordance between radiologic diagnosis and final diagnosis seems to be lower than expected.
Collapse
Affiliation(s)
- A J Colon
- Academic Center for Epileptology Kempenhaeghe, Maastricht Universitair Medisch Centrum + (MUMC+), Sterkselseweg 65, 5590 VE, Heeze, The Netherlands.
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
- Department of Neurology, University Hospital Gent, Ghent, Belgium.
| | - M J P van Osch
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - M Buijs
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - J V D Grond
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - P Boon
- Academic Center for Epileptology Kempenhaeghe, Maastricht Universitair Medisch Centrum + (MUMC+), Sterkselseweg 65, 5590 VE, Heeze, The Netherlands
- Department of Neurology, University Hospital Gent, Ghent, Belgium
| | - M A van Buchem
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - P A M Hofman
- Academic Center for Epileptology Kempenhaeghe, Maastricht Universitair Medisch Centrum + (MUMC+), Sterkselseweg 65, 5590 VE, Heeze, The Netherlands
| |
Collapse
|
27
|
Magnetic permeability as a predictor of the artefact size caused by orthodontic appliances at 1.5 T magnetic resonance imaging. Clin Oral Investig 2016; 21:281-289. [PMID: 26984824 DOI: 10.1007/s00784-016-1788-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Artefacts caused by orthodontic attachments limit the diagnostic value and lead to removal of these appliances before magnetic resonance imaging. Magnetic permeability can predict the artefact size. There is no standardised approach to determine the permeability of such attachments. The aim was to establish a reliable approach to determine artefact size caused by orthodontic attachments at 1.5 T MRI. MATERIALS AND METHODS Artefact radii of 21 attachments were determined applying two prevalent sequences of the head and neck region (turbo spin echo and gradient echo). The instrument Ferromaster (Stefan Mayer Instruments, Dinslaken) is approved for permeability measurements of objects with a minimum size (d = 20 mm, h = 5 mm). Eleven small test specimens of known permeability between 1.003 and 1.431 were produced. They are slightly larger than the orthodontic attachments. Their artefacts were measured and cross tabulated against the permeability. The resulting curve was used to compare the orthodontic attachments with the test bodies. RESULTS Steel caused a wide range of artefact size of 10-74 mm subject to their permeability. Titanium, cobalt-chromium and ceramic materials produced artefact radii up to 20 mm. Measurement of artefacts of the test bodies revealed an interrelationship according to a root function. The artefact size of all brackets was below that root function. CONCLUSIONS The permeability can be reliably assessed by conventional measurement devices and the artefact size can be predicted. The radiologist is able to decide whether or not the orthodontic attachments should be removed. CLINICAL RELEVANCE This study clarifies whether an orthodontic appliance must be removed before taking an MRI.
Collapse
|
28
|
Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: a retrospective study. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2015; 28:577-90. [DOI: 10.1007/s10334-015-0499-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/25/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
|
29
|
Benjamin P, Viessmann O, MacKinnon AD, Jezzard P, Markus HS. 7 Tesla MRI in Cerebral Small Vessel Disease. Int J Stroke 2015; 10:659-64. [PMID: 25845965 DOI: 10.1111/ijs.12490] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/04/2015] [Indexed: 11/29/2022]
Abstract
Cerebral small vessel disease (SVD) is a major cause of stroke and cognitive decline. Magnetic resonance imaging (MRI) currently plays a central role in diagnosis, and advanced MRI techniques are widely used in research but are limited by spatial resolution. Human 7 Tesla (7T) MRI has recently become available offering the ability to image at higher spatial resolution. This may provide additional insights into both the vascular pathology itself as well as parenchymal markers which could only previously be examined post mortem. In this review we cover the advantages and limitations of 7T MRI, review studies in SVD performed to date, and discuss potential future insights into SVD which 7T MRI may provide.
Collapse
Affiliation(s)
- Philip Benjamin
- Neurosciences Research Centre, St George's University of London, London, UK
| | - Olivia Viessmann
- Functional MRI of the Brain (FMRIB) Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrew D. MacKinnon
- Atkinson Morley Regional Neuroscience Centre, St George's NHS Healthcare Trust, London, UK
| | - Peter Jezzard
- Functional MRI of the Brain (FMRIB) Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hugh S. Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Winter L, Oberacker E, Özerdem C, Ji Y, von Knobelsdorff-Brenkenhoff F, Weidemann G, Ittermann B, Seifert F, Niendorf T. On the RF heating of coronary stents at 7.0 Tesla MRI. Magn Reson Med 2014; 74:999-1010. [PMID: 25293952 DOI: 10.1002/mrm.25483] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE Examine radiofrequency (RF) induced heating of coronary stents at 7.0 Tesla (T) to derive an analytical approach which supports RF heating assessment of arbitrary stent geometries and RF coils. METHODS Simulations are performed to detail electromagnetic fields (EMF), local specific absorption rates (SAR) and temperature changes. For validation E-field measurements and RF heating experiments are conducted. To progress to clinical setups RF coils tailored for cardiac MRI at 7.0T and coronary stents are incorporated into EMF simulations using a human voxel model. RESULTS Our simulations of coronary stents at 297 MHz were confirmed by E-field and temperature measurements. An analytical solution which describes SAR(1g tissue voxel) induced by an arbitrary coronary stent interfering with E-fields generated by an arbitrary RF coil was derived. The analytical approach yielded a conservative estimation of induced SAR(1g tissue voxel) maxima without the need for integrating the stent into EMF simulations of the human voxel model. CONCLUSION The proposed analytical approach can be applied for any patient, coronary stent type, RF coil configuration and RF transmission regime. The generalized approach is of value for RF heating assessment of other passive electrically conductive implants and provides a novel design criterion for RF coils.
Collapse
Affiliation(s)
- Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Eva Oberacker
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Celal Özerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Yiyi Ji
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Florian von Knobelsdorff-Brenkenhoff
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Gerd Weidemann
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Bernd Ittermann
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
31
|
de Rotte AAJ, Koning W, den Hartog AG, Bovens SM, Zwanenburg JJM, Klomp DWJ, Pasterkamp G, Moll FL, Luijten PR, de Borst GJ, Hendrikse J. 7.0 T MRI detection of cerebral microinfarcts in patients with a symptomatic high-grade carotid artery stenosis. J Cereb Blood Flow Metab 2014; 34:1715-9. [PMID: 25074748 PMCID: PMC4269734 DOI: 10.1038/jcbfm.2014.141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 12/27/2022]
Abstract
In the current study, the presence of cerebral cortical microinfarcts (CMIs) was evaluated in a series of 21 patients with a symptomatic high-grade >50% stenosis of the carotid artery. A T2-weighted fluid-attenuated inversion recovery sequence and a T1-weighted turbo field echo sequence of the brain were obtained at 7.0 Tesla magnetic resonance imaging. Primary study endpoint was the number of CMIs and macroinfarcts. In total, 53 cerebral infarcts (35 macroinfarcts; 18 CMIs) were found ipsilateral to the symptomatic carotid artery, in 14 patients (67%). In four of these patients, both CMIs and macroinfarcts were visible. In the contralateral hemisphere, seven infarcts (five macroinfarcts and two CMIs) were found in five patients (24%). In the ipsilateral hemispheres, the number of CMIs and macroinfarcts were significantly correlated (P=0.02). Unpaired comparison of medians showed that the number of CMIs in the ipsilateral hemisphere was significantly higher than the number of CMIs in the contralateral hemisphere (P=0.04). No significant correlation was found between stenosis grade and the number of any infarct. The current study shows that in symptomatic patients with significant extracranial carotid artery stenosis, CMIs are part of the total cerebrovascular burden and these CMIs prevail with a similar pattern as observed macroinfarcts.
Collapse
Affiliation(s)
| | - Wouter Koning
- Department of Radiology, University Medical Center, Utrecht, The Netherlands
| | - Anne G den Hartog
- Department of Vascular Surgery, University Medical Center, Utrecht, The Netherlands
| | | | - Jaco J M Zwanenburg
- Department of Radiology, University Medical Center, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center, Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Department of Experimental Cardiology, University Medical Center, Utrecht, The Netherlands
| | - Frans L Moll
- Department of Vascular Surgery, University Medical Center, Utrecht, The Netherlands
| | - Peter R Luijten
- Department of Radiology, University Medical Center, Utrecht, The Netherlands
| | - Gert Jan de Borst
- Department of Vascular Surgery, University Medical Center, Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
32
|
|
33
|
de Rotte AAJ, van der Kolk AG, Rutgers D, Zelissen PMJ, Visser F, Luijten PR, Hendrikse J. Feasibility of high-resolution pituitary MRI at 7.0 tesla. Eur Radiol 2014; 24:2005-11. [DOI: 10.1007/s00330-014-3230-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 05/08/2014] [Indexed: 11/28/2022]
|
34
|
Wezel J, Kooij BJ, Webb AG. Assessing the MR compatibility of dental retainer wires at 7 Tesla. Magn Reson Med 2013; 72:1191-8. [DOI: 10.1002/mrm.25019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Joep Wezel
- Department of Telecommunications; Delft University of Technology; Delft The Netherlands
- C.J. Gorter Center for High Field MRI, Department of Radiology; Leiden University Medical Center; Leiden The Netherlands
| | - Bert Jan Kooij
- Department of Telecommunications; Delft University of Technology; Delft The Netherlands
| | - Andrew G. Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|