1
|
Koundinyan SP, Baron CA, Malavé MO, Ong F, Addy NO, Cheng JY, Yang PC, Hu BS, Nishimura DG. High-resolution, respiratory-resolved coronary MRA using a Phyllotaxis-reordered variable-density 3D cones trajectory. Magn Reson Imaging 2023; 98:140-148. [PMID: 36646397 PMCID: PMC9991864 DOI: 10.1016/j.mri.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
PURPOSE To develop a respiratory-resolved motion-compensation method for free-breathing, high-resolution coronary magnetic resonance angiography (CMRA) using a 3D cones trajectory. METHODS To achieve respiratory-resolved 0.98 mm resolution images in a clinically relevant scan time, we undersample the imaging data with a variable-density 3D cones trajectory. For retrospective motion compensation, translational estimates from 3D image-based navigators (3D iNAVs) are used to bin the imaging data into four phases from end-expiration to end-inspiration. To ensure pseudo-random undersampling within each respiratory phase, we devise a phyllotaxis readout ordering scheme mindful of eddy current artifacts in steady state free precession imaging. Following binning, residual 3D translational motion within each phase is computed using the 3D iNAVs and corrected for in the imaging data. The noise-like aliasing characteristic of the combined phyllotaxis and cones sampling pattern is leveraged in a compressed sensing reconstruction with spatial and temporal regularization to reduce aliasing in each of the respiratory phases. RESULTS In initial studies of six subjects, respiratory motion compensation using the proposed method yields improved image quality compared to non-respiratory-resolved approaches with no motion correction and with 3D translational correction. Qualitative assessment by two cardiologists and quantitative evaluation with the image edge profile acutance metric indicate the superior sharpness of coronary segments reconstructed with the proposed method (P < 0.01). CONCLUSION We have demonstrated a new method for free-breathing, high-resolution CMRA based on a variable-density 3D cones trajectory with modified phyllotaxis ordering and respiratory-resolved motion compensation with 3D iNAVs.
Collapse
Affiliation(s)
| | - Corey A Baron
- Medical Biophysics, Western University, London, Ontario, Canada
| | - Mario O Malavé
- Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Frank Ong
- Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Nii Okai Addy
- Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Joseph Y Cheng
- Electrical Engineering, Stanford University, Stanford, CA, United States; Radiology, Stanford University, Stanford, CA, United States
| | - Phillip C Yang
- Cardiovascular Medicine, Stanford University, Stanford, CA, United States
| | - Bob S Hu
- Electrical Engineering, Stanford University, Stanford, CA, United States; Cardiology, Palo Alto Medical Foundation, Palo Alto, CA, United States
| | - Dwight G Nishimura
- Electrical Engineering, Stanford University, Stanford, CA, United States.
| |
Collapse
|
2
|
Assessment of Non-contrast-enhanced Dixon Water-fat Separation Compressed Sensing Whole-heart Coronary MR Angiography at 3.0 T: A Single-center Experience. Acad Radiol 2022; 29 Suppl 4:S82-S90. [PMID: 34127363 DOI: 10.1016/j.acra.2021.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
RATIONALE AND OBJECTIVES The clinical utility of Dixon water-fat separation coronary MR angiography (CMRA) with compressed sensing (CS) reconstruction has not been determined in a patient population. This study was designed to evaluate the performance of 3.0 T non-contrast-enhanced Dixon water-fat separation CS whole-heart CMRA sequence in vitro and in vivo. MATERIALS AND METHODS In vitro phantom MRI, we compared key parameters of the SENSE and CS images. And in this prospective in vivo study, from November 2019 to October 2020, 94 participants were recruited for 3.0 T non-contrast-enhanced Dixon water-fat separation CS whole-heart CMRA. The accuracy of CMRA for detecting a ≥ 50% reduction in diameter was determined using X-ray coronary angiography (CA) as the reference method. RESULTS Compared with SENSE, CS with an appropriate acceleration factor offers both higher SNR/CNR (p < 0.05) and a shortened acquisition. Fifty-eight patients successfully completed the CMRA and CA. The sensitivity, specificity, positive predictive values, negative predictive values, and accuracy of 3.0 T non-contrast-enhanced Dixon water-fat separation CS whole-heart CMRA according to a patient-based analysis were 96.4%, 66.7%, 73.0%, 95.2% and 81.0%, respectively. The area under the receiver-operator characteristic (ROC) curve (AUC) of 3.0 T non-contrast-enhanced Dixon water-fat separation CS whole-heart CMRA for detecting significant coronary artery stenosis is 0.908, 0.895, and 0.904 in patient-, vessel-, and segment-based analyses respectively. CONCLUSION 3.0 T non-contrast-enhanced Dixon water-fat separation whole-heart CMRA using appropriate CS is a promising noninvasive and radiation-free technique to detect clinically significant coronary stenosis on patients with suspected CAD.
Collapse
|
3
|
Nakamura S, Ishida M, Nakata K, Ichikawa Y, Takase S, Takafuji M, Ito H, Nakamori S, Kurita T, Dohi K, Sakuma H. Long-term prognostic value of whole-heart coronary magnetic resonance angiography. J Cardiovasc Magn Reson 2021; 23:56. [PMID: 33993891 PMCID: PMC8127259 DOI: 10.1186/s12968-021-00749-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Coronary magnetic resonance angiography (CMRA) allows non-ionizing visualization of luminal narrowing in coronary artery disease (CAD). Although a prior study showed the usefulness of CMRA for risk stratification in short-term follow-up, the long-term prognostic value of CMRA remains unclear. The purpose of this study was to evaluate the long-term prognostic value of CMRA. METHODS A total of 506 patients without history of myocardial infarction or prior coronary artery revascularization underwent free-breathing whole-heart CMRA between 2009 and 2015. Images were acquired using a 1.5 T or 3 T scanner and visually evaluated as the consensus decisions of two observers. Obstructive CAD on CMRA was defined as luminal narrowing of ≥ 50% in at least one coronary artery. Major adverse cardiac events (MACE) comprised cardiac death, nonfatal myocardial infarction, and unstable angina. RESULTS Obstructive CAD on CMRA was observed in 214 patients (42%). During follow-up (median, 5.6 years), 31 MACE occurred. Kaplan-Meier curve analysis revealed a significant difference in event-free survival between patients with and without obstructive CAD for MACE (log-rank, p = 0.003) and cardiac death (p = 0.012). Annualized event rates for MACE in patients with no obstructive CAD, 1-vessel disease, 2-vessel disease, and left-main or 3-vessel disease were 0.6%, 1.5%, 2.3%, and 3.6%, respectively (log-rank, p = 0.003). Cox proportional hazard regression analysis showed that, among obstructive CAD on CMRA and clinical risk factors (age, sex, hypertension, diabetes, dyslipidemia, smoking, and family history of CAD), obstructive CAD and diabetes were significant predictors of MACE (hazard ratios, 2.9 [p = 0.005] and 2.2 [p = 0.034], respectively). In multivariate analysis, obstructive CAD remained an independent predictor (adjusted hazard ratio, 2.6 [p = 0.010]) after adjusting for diabetes. Addition of obstructive CAD to clinical risk factors significantly increased the global chi-square result from 8.3 to 13.8 (p = 0.022). CONCLUSIONS In long-term follow-up, free breathing whole heart CMRA allows non-invasive risk stratification for MACE and cardiac death and provides incremental prognostic value over conventional risk factors in patients without a history of myocardial infarction or prior coronary artery revascularization. The presence and severity of obstructive CAD detected by CMRA were associated with worse prognosis. Importantly, patients without obstructive CAD on CMRA displayed favorable prognosis.
Collapse
Affiliation(s)
- Satoshi Nakamura
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masaki Ishida
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Kei Nakata
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yasutaka Ichikawa
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shinichi Takase
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masafumi Takafuji
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Haruno Ito
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shiro Nakamori
- Department of Cardiology and Nephrology, Mie University Hospital, Tsu, Mie, Japan
| | - Tairo Kurita
- Department of Cardiology and Nephrology, Mie University Hospital, Tsu, Mie, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Hospital, Tsu, Mie, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
4
|
Nguyen CT, Christodoulou AG, Coll-Font J, Ma S, Xie Y, Reese TG, Mekkaoui C, Lewis GD, Bi X, Sosnovik DE, Li D. Free-breathing diffusion tensor MRI of the whole left ventricle using second-order motion compensation and multitasking respiratory motion correction. Magn Reson Med 2021; 85:2634-2648. [PMID: 33252140 PMCID: PMC7902339 DOI: 10.1002/mrm.28611] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE We aimed to develop a novel free-breathing cardiac diffusion tensor MRI (DT-MRI) approach, M2-MT-MOCO, capable of whole left ventricular coverage that leverages second-order motion compensation (M2) diffusion encoding and multitasking (MT) framework to efficiently correct for respiratory motion (MOCO). METHODS Imaging was performed in 16 healthy volunteers and 3 heart failure patients with symptomatic dyspnea. The healthy volunteers were scanned to compare the accuracy of interleaved multislice coverage of the entire left ventricle with a single-slice acquisition and the accuracy of the free-breathing conventional MOCO and MT-MOCO approaches with reference breath-hold DT-MRI. Mean diffusivity (MD), fractional anisotropy (FA), helix angle transmurality (HAT), and intrascan repeatability were quantified and compared. RESULTS In all subjects, free-breathing M2-MT-MOCO DT-MRI yielded DWI of the entire left ventricle without bulk motion-induced signal loss. No significant differences were seen in the global values of MD, FA, and HAT in the multislice and single-slice acquisitions. Furthermore, global quantification of MD, FA, and HAT were also not significantly different between the MT-MOCO and breath-hold, whereas conventional MOCO yielded significant differences in MD, FA, and HAT with MT-MOCO and FA with breath-hold. In heart failure patients, M2-MT-MOCO DT-MRI was feasible yielding higher MD, lower FA, and lower HAT compared with healthy volunteers. Substantial agreement was found between repeated scans across all subjects for MT-MOCO. CONCLUSION M2-MT-MOCO enables free-breathing DT-MRI of the entire left ventricle in 10 min, while preserving quantification of myocardial microstructure compared to breath-held and single-slice acquisitions and is feasible in heart failure patients.
Collapse
Affiliation(s)
- Christopher T. Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Anthony G. Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA
| | - Jaume Coll-Font
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Sen Ma
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Timothy G. Reese
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
- Department of Radiology, Harvard Medical School, Boston, MA
| | - Choukri Mekkaoui
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
- Department of Radiology, Harvard Medical School, Boston, MA
| | - Gregory D. Lewis
- Department of Medicine, Harvard Medical School, Boston, MA
- Heart Failure Section, Cardiology Division, Massachusetts General Hospital, Boston, MA
| | - Xiaoming Bi
- Siemens Medical Solutions USA, Inc., Los Angeles, CA
| | - David E. Sosnovik
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
5
|
Heerfordt J, Stuber M, Maillot A, Bianchi V, Piccini D. A quantitative comparison between a navigated Cartesian and a self-navigated radial protocol from clinical studies for free-breathing 3D whole-heart bSSFP coronary MRA. Magn Reson Med 2019; 84:157-169. [PMID: 31815322 DOI: 10.1002/mrm.28101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE Navigator-gated 3D bSSFP whole-heart coronary MRA has been evaluated in several large studies including a multi-center trial. Patient studies have also been performed with more recent self-navigated techniques. In this study, these two approaches are compared side-by-side using a Cartesian navigator-gated and corrected (CNG) and a 3D radial self-navigated (RSN) protocol from published patient studies. METHODS Sixteen healthy subjects were examined with both sequences on a 1.5T scanner. Assessment of the visibility of coronary ostia and quantitative comparisons of acquisition times, blood pool homogeneity, and visible length and sharpness of the right coronary artery (RCA) and the combined left main (LM)+left anterior descending (LAD) coronary arteries were performed. Paired sample t-tests with P < .05 considered statistically significant were used for all comparisons. RESULTS The acquisition time was 5:40 ± 0:28 min (mean ± SD) for RSN, being significantly shorter than the 16:59 ± 5:05 min of CNG (P < .001). RSN images showed higher blood pool homogeneity (P < .001). All coronary ostia were visible with both techniques. CNG provided significantly higher vessel sharpness in the RCA (CNG: 50.0 ± 8.6%, RSN: 34.2 ± 6.9%, P < .001) and the LM+LAD (CNG: 48.7 ± 6.7%, RSN: 32.3 ± 7.1%, P < .001). The visible vessel length was significantly longer in the LM+LAD using CNG (CNG: 9.8 ± 2.7 cm, RSN: 8.5 ± 2.6 cm, P < .05) but not in the RCA (CNG: 9.7 ± 2.3 cm, RSN: 9.3 ± 2.9 cm, P = .29). CONCLUSION CNG provided superior vessel sharpness and might hence be the better option for examining coronary lumina. However, its blood pool inhomogeneity and prolonged and unpredictable acquisition times compared to RSN may make clinical adoption more challenging.
Collapse
Affiliation(s)
- John Heerfordt
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Aurélien Maillot
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Veronica Bianchi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| |
Collapse
|
6
|
Chieh SW, Kaveh M, Akçakaya M, Moeller S. Self-calibrated interpolation of non-Cartesian data with GRAPPA in parallel imaging. Magn Reson Med 2019; 83:1837-1850. [PMID: 31722128 DOI: 10.1002/mrm.28033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE To develop a non-Cartesian k-space reconstruction method using self-calibrated region-specific interpolation kernels for highly accelerated acquisitions. METHODS In conventional non-Cartesian GRAPPA with through-time GRAPPA (TT-GRAPPA), the use of region-specific interpolation kernels has demonstrated improved reconstruction quality in dynamic imaging for highly accelerated acquisitions. However, TT-GRAPPA requires the acquisition of a large number of separate calibration scans. To reduce the overall imaging time, we propose Self-calibrated Interpolation of Non-Cartesian data with GRAPPA (SING) to self-calibrate region-specific interpolation kernels from dynamic undersampled measurements. The SING method synthesizes calibration data to adapt to the distinct shape of each region-specific interpolation kernel geometry, and uses a novel local k-space regularization through an extension of TT-GRAPPA. This calibration approach is used to reconstruct non-Cartesian images at high acceleration rates while mitigating noise amplification. The reconstruction quality of SING is compared with conjugate-gradient SENSE and TT-GRAPPA in numerical phantoms and in vivo cine data sets. RESULTS In both numerical phantom and in vivo cine data sets, SING offers visually and quantitatively similar reconstruction quality to TT-GRAPPA, and provides improved reconstruction quality over conjugate-gradient SENSE. Furthermore, temporal fidelity in SING and TT-GRAPPA is similar for the same acceleration rates. G-factor evaluation over the heart shows that SING and TT-GRAPPA provide similar noise amplification at moderate and high rates. CONCLUSION The proposed SING reconstruction enables significant improvement of acquisition efficiency for calibration data, while matching the reconstruction performance of TT-GRAPPA.
Collapse
Affiliation(s)
- Seng-Wei Chieh
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Mostafa Kaveh
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Mehmet Akçakaya
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
7
|
Duran AH, Duran MN, Masood I, Maciolek LM, Hussain H. The Additional Diagnostic Value of the Three-dimensional Volume Rendering Imaging in Routine Radiology Practice. Cureus 2019; 11:e5579. [PMID: 31695998 PMCID: PMC6820665 DOI: 10.7759/cureus.5579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Three-dimensional volume rendering (3DVR) is useful in a wide variety of medical-imaging applications. The increasingly advanced capabilities of CT and MRI to acquire volumetric data sets with isotropic voxels have resulted in the increased use of the 3DVR techniques for clinical applications. The two most commonly used techniques are the maximum intensity projection (MIP) and, more recently, 3DVR. Several kinds of medical imaging data could be reconstructed for 3D display, including CT, MRI, and ultrasonography (US). In particular, the 3D CT imaging has been developed, improved, and widely used of late. Understanding the mechanisms of 3DVR is essential for the accurate evaluation of the resulting images. Although further research is required to detect the efficiency of 3DVR in radiological applications, with wider availability and improved diagnostic performance, 3DVR is likely to enjoy widespread acceptance in the radiology practice going forward.
Collapse
Affiliation(s)
| | | | - Irfan Masood
- Radiology, University of Texas Medical Branch, Galveston, USA
| | | | - Huda Hussain
- Radiology, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
8
|
|
9
|
Zhang J, Feng L, Otazo R, Kim SG. Rapid dynamic contrast-enhanced MRI for small animals at 7T using 3D ultra-short echo time and golden-angle radial sparse parallel MRI. Magn Reson Med 2019; 81:140-152. [PMID: 30058079 PMCID: PMC6258350 DOI: 10.1002/mrm.27357] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/02/2018] [Accepted: 04/22/2018] [Indexed: 01/18/2023]
Abstract
PURPOSE To develop a rapid dynamic contrast-enhanced MRI method with high spatial and temporal resolution for small-animal imaging at 7 Tesla. METHODS An ultra-short echo time (UTE) pulse sequence using a 3D golden-angle radial sampling was implemented to achieve isotropic spatial resolution with flexible temporal resolution. Continuously acquired radial spokes were grouped into subsets for image reconstruction using a multicoil compressed sensing approach (Golden-angle RAdial Sparse Parallel; GRASP). The proposed 3D-UTE-GRASP method with high temporal and spatial resolutions was tested using 7 mice with GL261 intracranial glioma models. RESULTS Iterative reconstruction with different temporal resolutions and regularization factors λ showed that, in all cases, the cost function decreased to less than 2.5% of its starting value within 20 iterations. The difference between the time-intensity curves of 3D-UTE-GRASP and nonuniform fast Fourier transform (NUFFT) images was minimal when λ was 1% of the maximum signal intensity of the initial NUFFT images. The 3D isotropic images were used to generate pharmacokinetic parameter maps to show the detailed images of the tumor characteristics in 3D and also to show longitudinal changes during tumor growth. CONCLUSION This feasibility study demonstrated that the proposed 3D-UTE-GRASP method can be used for effective measurement of the 3D spatial heterogeneity of tumor pharmacokinetic parameters.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Li Feng
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Ricardo Otazo
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Sungheon Gene Kim
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
10
|
Engel LC, Landmesser U, Gigengack K, Wurster T, Manes C, Girke G, Jaguszewski M, Skurk C, Leistner DM, Lauten A, Schuster A, Hamm B, Botnar RM, Makowski MR, Bigalke B. Novel Approach for In Vivo Detection of Vulnerable Coronary Plaques Using Molecular 3-T CMR Imaging With an Albumin-Binding Probe. JACC Cardiovasc Imaging 2018; 12:297-306. [PMID: 29361487 DOI: 10.1016/j.jcmg.2017.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study sought to investigate the potential of the noninvasive albumin-binding probe gadofosveset-enhanced cardiac magnetic resonance (GE-CMR) for detection of coronary plaques that can cause acute coronary syndromes (ACS). BACKGROUND ACS are frequently caused by rupture or erosion of coronary plaques that initially do not cause hemodynamically significant stenosis and are therefore not detected by invasive x-ray coronary angiography (XCA). METHODS A total of 25 patients with ACS or symptoms of stable coronary artery disease underwent GE-CMR, clinically indicated XCA, and optical coherence tomography (OCT) within 24 h. GE-CMR was performed approximately 24 h following a 1-time application of gadofosveset-trisodium. Contrast-to-noise ratio (CNR) was quantified within coronary segments in comparison with blood signal. RESULTS A total of 207 coronary segments were analyzed on GE-CMR. Segments containing a culprit lesion in ACS patients (n = 11) showed significant higher signal enhancement (CNR) following gadofosveset-trisodium application than segments without culprit lesions (n = 196; 6.1 [3.9 to 16.5] vs. 2.1 [0.5 to 3.5]; p < 0.001). GE-CMR was able to correctly identify culprit coronary lesions in 9 of 11 segments (sensitivity 82%) and correctly excluded culprit coronary lesions in 162 of 195 segments (specificity 83%). Additionally, segmented areas of thin-cap fibroatheroma (n = 22) as seen on OCT demonstrated significantly higher CNR than segments without coronary plaque or segments containing early atherosclerotic lesions (n = 185; 9.2 [3.3 to 13.7] vs. 2.1 [0.5 to 3.4]; p = 0.001). CONCLUSIONS In this study, we demonstrated for the first time the noninvasive detection of culprit coronary lesions and thin-cap fibroatheroma of the coronary arteries in vivo by using GE-CMR. This method may represent a novel approach for noninvasive cardiovascular risk prediction.
Collapse
Affiliation(s)
- Leif-Christopher Engel
- Klinik für Kardiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Ulf Landmesser
- Klinik für Kardiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Kevin Gigengack
- Klinik für Kardiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Wurster
- Klinik für Kardiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany
| | - Constantina Manes
- Klinik für Kardiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Girke
- Klinik für Kardiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany
| | - Milosz Jaguszewski
- Klinik für Kardiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Skurk
- Klinik für Kardiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany
| | - David M Leistner
- Klinik für Kardiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Lauten
- Klinik für Kardiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Schuster
- Department of Cardiology, Royal North Shore Hospital, The Kolling Institute, Northern Clinical School, University of Sydney, Sydney, Australia; Department of Cardiology and Pulmonology, German Centre for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK) Partner Site, Göttingen, Germany
| | - Bernd Hamm
- Klinik für Radiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany
| | - Rene M Botnar
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; Pontificia Universidad Católica de Chile Escuela de Ingeniería, Santiago, Chile
| | - Marcus R Makowski
- Klinik für Radiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany.
| | - Boris Bigalke
- Klinik für Kardiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Bratis K, Henningsson M, Grigoratos C, Dell’Omodarme M, Chasapides K, Botnar R, Nagel E. 'Image-navigated 3-dimensional late gadolinium enhancement cardiovascular magnetic resonance imaging: feasibility and initial clinical results'. J Cardiovasc Magn Reson 2017; 19:97. [PMID: 29202776 PMCID: PMC5713472 DOI: 10.1186/s12968-017-0418-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Image-navigated 3-dimensional late gadolinium enhancement (iNAV-3D LGE) is an advanced imaging technique that allows for direct respiratory motion correction of the heart. Its feasibility in a routine clinical setting has not been validated. METHODS Twenty-three consecutive patients referred for cardiovascular magnetic resonance (CMR) examination including late gadolinium enhancement (LGE) imaging were prospectively enrolled. Image-navigated free-breathing 3-dimensional (3D) T1-weighted gradient-echo LGE and two-dimensional (2D LGE) images were acquired in random order on a 1.5 T CMR system. Images were assessed for global, segmental LGE detection and transmural extent. Objective image quality including signal-to-noise (SNR), contrast-to-noise (CNR) and myocardial/blood sharpness were performed. RESULTS Interpretable images were obtained in all 2D-LGE and in 22/23 iNAV-3D LGE exams, resulting in a total of 22 datasets and 352 segments. LGE was detected in 5 patients with ischemic pattern, in 7 with non-ischemic pattern, while it was absent in 10 cases. There was an excellent agreement between 2D and 3D data sets with regard to global, segmental LGE detection and transmurality. Blood-myocardium sharpness measurements were also comparable between the two techniques. SNRblood and CNRblood-myo was significantly higher for 2D LGE (P < 0.001, respectively), while SNRmyo was not statistically significant between 2D LGE and iNAV-3D LGE. CONCLUSION Diagnostic performance of iNAV-3D LGE was comparable to 2D LGE in a prospective clinical setting. SNRblood and CNRblood-myo was significantly lower in the iNAV-3D LGE group.
Collapse
Affiliation(s)
- Konstantinos Bratis
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Markus Henningsson
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | | | | | | | - Rene Botnar
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, Frankfurt/Main, Germany
| |
Collapse
|
12
|
Anwaier G, Chen C, Cao Y, Qi R. A review of molecular imaging of atherosclerosis and the potential application of dendrimer in imaging of plaque. Int J Nanomedicine 2017; 12:7681-7693. [PMID: 29089763 PMCID: PMC5656339 DOI: 10.2147/ijn.s142385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the fact that technological advancements have been made in diagnosis and treatment, cardiovascular diseases (CVDs) remain the leading cause of mortality and morbidity worldwide. Early detection of atherosclerosis (AS), especially vulnerable plaques, plays a crucial role in the prevention of acute coronary syndrome (ACS). Targeting the critical cytokines and molecules that are upregulated during the biological process of AS by in vivo molecular imaging has been widely used in plaque imaging. With their three-dimensional architecture, composition, and abundant terminal functional groups, dendrimers provide a platform for multitargeting and multimodal imaging. Thus, modified dendrimers with the key molecules upregulated in AS plaques will be an innovative attempt to achieve targeted imaging of AS plaques specifically and efficiently. This review was aimed to address some recent works on imaging of AS plaques using various types of image technology and further discuss the applications of dendrimers, an innovative yet seldom used method in imaging of AS plaques due to some limitations and challenges, and we highlight the bright future of the modified dendrimers in characterizing AS plaques.
Collapse
Affiliation(s)
- Gulinigaer Anwaier
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing.,School of Basic Medical Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Cong Chen
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing
| | - Yini Cao
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing.,School of Basic Medical Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| |
Collapse
|
13
|
Deng Z, Yang W, Pang J, Bi X, Tuli R, Li D, Fan Z. Improved vessel-tissue contrast and image quality in 3D radial sampling-based 4D-MRI. J Appl Clin Med Phys 2017; 18:250-257. [PMID: 28980395 PMCID: PMC5689937 DOI: 10.1002/acm2.12194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/21/2017] [Accepted: 08/27/2017] [Indexed: 12/26/2022] Open
Abstract
Purpose In radiation treatment planning for thoracic and abdominal tumors, 4D‐MRI has shown promise in respiratory motion characterization with improved soft‐tissue contrast compared to clinical standard, 4D computed tomography (4D‐CT). This study aimed to further improve vessel–tissue contrast and overall image quality in 3D radial sampling‐based 4D‐MRI using a slab‐selective (SS) excitation approach. Methods The technique was implemented in a 3D radial sampling with self‐gating‐based k‐space sorting sequence. The SS excitation approach was compared to a non‐selective (NS) approach in six cancer patients and two healthy volunteers at 3T. Improvements in vessel–tissue contrast ratio (CR) and vessel signal‐to‐noise ratio (SNR) were analyzed in five of the eight subjects. Image quality was visually assessed in all subjects on a 4‐point scale (0: poor; 3: excellent). Tumor (patients) and pancreas (healthy) motion trajectories were compared between the two imaging approaches. Results Compared with NS‐4D‐MRI, SS‐4D‐MRI significantly improved the overall vessel–tissue CR (2.60 ± 3.97 vs. 1.03 ± 1.44, P < 0.05), SNR (63.33 ± 38.45 vs. 35.74 ± 28.59, P < 0.05), and image quality score (2.6 ± 0.5 vs. 1.4 ± 0.5, P = 0.02). Motion trajectories from the two approaches exhibited strong correlation in the superior–inferior (0.96 ± 0.06), but weaker in the anterior–posterior (0.78 ± 0.24) and medial–lateral directions (0.46 ± 0.44). Conclusions The proposed 4D‐MRI with slab‐selectively excited 3D radial sampling allows for improved blood SNR, vessel–tissue CR, and image quality.
Collapse
Affiliation(s)
- Zixin Deng
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Wensha Yang
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Jianing Pang
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.,MR R&D, Siemens Healthineers, Chicago, IL, USA
| | - Xiaoming Bi
- MR R&D, Siemens Healthineers, Los Angeles, CA, USA
| | - Richard Tuli
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Debiao Li
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Bioengineering, University of California, Los Angeles, CA, USA.,Department of Medicine, University of California, Los Angeles, CA, USA
| | - Zhaoyang Fan
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Coronary Atherosclerosis T 1-Weighed Characterization With Integrated Anatomical Reference: Comparison With High-Risk Plaque Features Detected by Invasive Coronary Imaging. JACC Cardiovasc Imaging 2016; 10:637-648. [PMID: 27743950 DOI: 10.1016/j.jcmg.2016.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The aim of this work is the development of coronary atherosclerosis T1-weighted characterization with integrated anatomical reference (CATCH) technique and the validation by comparison with high-risk plaque features (HRPF) observed on intracoronary optical coherence tomography (OCT) and invasive coronary angiography. BACKGROUND T1-weighted cardiac magnetic resonance with or without contrast media has been used for characterizing coronary atherosclerosis showing promising prognostic value. Several limitations include: 1) coverage is limited to proximal coronary segments; 2) spatial resolution is low and often anisotropic; and 3) a separate magnetic resonance angiography acquisition is needed to localize lesions. METHODS CATCH acquired dark-blood T1-weighted images and bright-blood anatomical reference images in an interleaved fashion. Retrospective motion correction with 100% respiratory gating efficiency was achieved. Reference control subjects (n = 13) completed both pre- and post-contrast scans. Stable angina patients (n = 30) completed pre-contrast scans, among whom 26 eligible patients also completed post-contrast scans. After cardiac magnetic resonance, eligible patients (n = 22) underwent invasive coronary angiography and OCT for the interrogation of coronary atherosclerosis. OCT images were assessed and scored for HRPF (lipid-richness, macrophages, cholesterol crystals, and microvessels) by 2 experienced analysts blinded to magnetic resonance results. RESULTS Per-subject analysis showed none of the 13 reference control subjects had coronary hyperintensive plaques (CHIP) in either pre-contrast or post-contrast CATCH. Five patients had CHIP on pre-contrast CATCH and 5 patients had CHIP on post-contrast CATCH. Patients with CHIP had greater lipid abnormality than those without. Per-segment analysis showed elevated pre- and post-contrast plaque to myocardium signal ratio in the lesions with HRPF versus those without. Positive correlation was observed between plaque to myocardium signal ratio and OCT HRPF scoring. CHIP on pre-contrast CATCH were associated with significantly higher stenosis level than non-CHIP on invasive coronary angiography. CONCLUSIONS CATCH provided accelerated whole heart coronary plaque characterization with simultaneously acquired anatomical reference. CHIP detected by CATCH showed positive association with high-risk plaque features on invasive imaging studies.
Collapse
|
15
|
Yue Y, Fan Z, Yang W, Pang J, Deng Z, McKenzie E, Tuli R, Wallace R, Li D, Fraass B. Geometric validation of self-gating k-space-sorted 4D-MRI vs 4D-CT using a respiratory motion phantom. Med Phys 2016; 42:5787-97. [PMID: 26429253 DOI: 10.1118/1.4929552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE MRI is increasingly being used for radiotherapy planning, simulation, and in-treatment-room motion monitoring. To provide more detailed temporal and spatial MR data for these tasks, we have recently developed a novel self-gated (SG) MRI technique with advantage of k-space phase sorting, high isotropic spatial resolution, and high temporal resolution. The current work describes the validation of this 4D-MRI technique using a MRI- and CT-compatible respiratory motion phantom and comparison to 4D-CT. METHODS The 4D-MRI sequence is based on a spoiled gradient echo-based 3D projection reconstruction sequence with self-gating for 4D-MRI at 3 T. Respiratory phase is resolved by using SG k-space lines as the motion surrogate. 4D-MRI images are reconstructed into ten temporal bins with spatial resolution 1.56 × 1.56 × 1.56 mm(3). A MRI-CT compatible phantom was designed to validate the performance of the 4D-MRI sequence and 4D-CT imaging. A spherical target (diameter 23 mm, volume 6.37 ml) filled with high-concentration gadolinium (Gd) gel is embedded into a plastic box (35 × 40 × 63 mm(3)) and stabilized with low-concentration Gd gel. The phantom, driven by an air pump, is able to produce human-type breathing patterns between 4 and 30 respiratory cycles/min. 4D-CT of the phantom has been acquired in cine mode, and reconstructed into ten phases with slice thickness 1.25 mm. The 4D images sets were imported into a treatment planning software for target contouring. The geometrical accuracy of the 4D MRI and CT images has been quantified using target volume, flattening, and eccentricity. The target motion was measured by tracking the centroids of the spheres in each individual phase. Motion ground-truth was obtained from input signals and real-time video recordings. RESULTS The dynamic phantom has been operated in four respiratory rate (RR) settings, 6, 10, 15, and 20/min, and was scanned with 4D-MRI and 4D-CT. 4D-CT images have target-stretching, partial-missing, and other motion artifacts in various phases, whereas the 4D-MRI images are visually free of those artifacts. Volume percentage difference for the 6.37 ml target ranged from 5.3% ± 4.3% to 10.3% ± 5.9% for 4D-CT, and 1.47 ± 0.52 to 2.12 ± 1.60 for 4D-MRI. With an increase of respiratory rate, the target volumetric and geometric deviations increase for 4D-CT images while remaining stable for the 4D-MRI images. Target motion amplitude errors at different RRs were measured with a range of 0.66-1.25 mm for 4D-CT and 0.2-0.42 mm for 4D-MRI. The results of Mann-Whitney tests indicated that 4D-MRI significantly outperforms 4D-CT in phase-based target volumetric (p = 0.027) and geometric (p < 0.001) measures. Both modalities achieve equivalent accuracy in measuring motion amplitude (p = 0.828). CONCLUSIONS The k-space self-gated 4D-MRI technique provides a robust method for accurately imaging phase-based target motion and geometry. Compared to 4D-CT, the current 4D-MRI technique demonstrates superior spatiotemporal resolution, and robust resistance to motion artifacts caused by fast target motion and irregular breathing patterns. The technique can be used extensively in abdominal targeting, motion gating, and toward implementing MRI-based adaptive radiotherapy.
Collapse
Affiliation(s)
- Yong Yue
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Zhaoyang Fan
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Wensha Yang
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Jianing Pang
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Zixin Deng
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048 and Department of Bioengineering, University of California, Los Angeles, California 90095
| | - Elizabeth McKenzie
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Robert Wallace
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Debiao Li
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048 and Department of Bioengineering, University of California, Los Angeles, California 90095
| | - Benedick Fraass
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048
| |
Collapse
|
16
|
Cruz G, Atkinson D, Henningsson M, Botnar RM, Prieto C. Highly efficient nonrigid motion-corrected 3D whole-heart coronary vessel wall imaging. Magn Reson Med 2016; 77:1894-1908. [PMID: 27221073 PMCID: PMC5412916 DOI: 10.1002/mrm.26274] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/25/2022]
Abstract
Purpose To develop a respiratory motion correction framework to accelerate free‐breathing three‐dimensional (3D) whole‐heart coronary lumen and coronary vessel wall MRI. Methods We developed a 3D flow‐independent approach for vessel wall imaging based on the subtraction of data with and without T2‐preparation prepulses acquired interleaved with image navigators. The proposed method corrects both datasets to the same respiratory position using beat‐to‐beat translation and bin‐to‐bin nonrigid corrections, producing coregistered, motion‐corrected coronary lumen and coronary vessel wall images. The proposed method was studied in 10 healthy subjects and was compared with beat‐to‐beat translational correction (TC) and no motion correction for the left and right coronary arteries. Additionally, the coronary lumen images were compared with a 6‐mm diaphragmatic navigator gated and tracked scan. Results No significant differences (P > 0.01) were found between the proposed method and the gated and tracked scan for coronary lumen, despite an average improvement in scan efficiency to 96% from 59%. Significant differences (P < 0.01) were found in right coronary artery vessel wall thickness, right coronary artery vessel wall sharpness, and vessel wall visual score between the proposed method and TC. Conclusion The feasibility of a highly efficient motion correction framework for simultaneous whole‐heart coronary lumen and vessel wall has been demonstrated. Magn Reson Med 77:1894–1908, 2017. © 2016 International Society for Magnetic Resonance in Medicine
Collapse
Affiliation(s)
- Gastão Cruz
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Markus Henningsson
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - Rene M Botnar
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Claudia Prieto
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| |
Collapse
|
17
|
He Y, Pang J, Dai Q, Fan Z, An J, Li D. Diagnostic Performance of Self-navigated Whole-Heart Contrast-enhanced Coronary 3-T MR Angiography. Radiology 2016; 281:401-408. [PMID: 27192461 DOI: 10.1148/radiol.2016152514] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To evaluate the diagnostic performance of self-navigated whole-heart coronary 3-T magnetic resonance (MR) angiography by using conventional invasive coronary angiography (ICA) as the reference gold standard. Materials and Methods This study was approved by the local ethics committee. Written informed consent was obtained from each patient before the study. Thirty-nine consecutive patients underwent coronary MR angiography and later underwent ICA. Coronary MR angiography was performed with a 3-T imager with contrast agent enhancement during free breathing with self-navigated affine motion correction reconstruction. Coronary segments with reference diameters larger than 1.5 mm were included in the comparison between coronary MR angiography and ICA. The coronary MR angiography images were evaluated by two experienced readers blinded to the ICA results to identify significant luminal narrowing (>50% diameter reduction in reference ICA). Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were performed to detect significant coronary artery stenosis. Results Coronary MR angiography examinations were successfully performed in all 39 patients. A total of 327 coronary segments had reference luminal diameter larger than 1.5 mm. Of these 327 coronary segments, 303 (92.7%) segments had a quality score greater than 1 at coronary MR angiography and were included in the analysis. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 78.2%, 75.0%, 81.8%, 70.6%, and 76.9%, respectively, on a per-patient basis. Conclusion Contrast-enhanced self-navigated coronary 3-T MR angiography is a promising technique for the noninvasive detection of clinically significant coronary stenosis. © RSNA, 2016.
Collapse
Affiliation(s)
- Yi He
- From the Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Rd, Chaoyang District, Beijing, China 100029 (Y.H., Q.D., Z.F.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.P., D.L.); and MR Collaboration NE Asia, Siemens Shenzhen Magnetic Resonance, Shanghai, China (J.A.)
| | - Jianing Pang
- From the Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Rd, Chaoyang District, Beijing, China 100029 (Y.H., Q.D., Z.F.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.P., D.L.); and MR Collaboration NE Asia, Siemens Shenzhen Magnetic Resonance, Shanghai, China (J.A.)
| | - Qinyi Dai
- From the Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Rd, Chaoyang District, Beijing, China 100029 (Y.H., Q.D., Z.F.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.P., D.L.); and MR Collaboration NE Asia, Siemens Shenzhen Magnetic Resonance, Shanghai, China (J.A.)
| | - Zhanming Fan
- From the Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Rd, Chaoyang District, Beijing, China 100029 (Y.H., Q.D., Z.F.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.P., D.L.); and MR Collaboration NE Asia, Siemens Shenzhen Magnetic Resonance, Shanghai, China (J.A.)
| | - Jing An
- From the Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Rd, Chaoyang District, Beijing, China 100029 (Y.H., Q.D., Z.F.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.P., D.L.); and MR Collaboration NE Asia, Siemens Shenzhen Magnetic Resonance, Shanghai, China (J.A.)
| | - Debiao Li
- From the Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Rd, Chaoyang District, Beijing, China 100029 (Y.H., Q.D., Z.F.); Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.P., D.L.); and MR Collaboration NE Asia, Siemens Shenzhen Magnetic Resonance, Shanghai, China (J.A.)
| |
Collapse
|
18
|
Luo J, Addy NO, Ingle RR, Baron CA, Cheng JY, Hu BS, Nishimura DG. Nonrigid Motion Correction With 3D Image-Based Navigators for Coronary MR Angiography. Magn Reson Med 2016; 77:1884-1893. [PMID: 27174673 DOI: 10.1002/mrm.26273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/31/2016] [Accepted: 04/19/2016] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a retrospective nonrigid motion-correction method based on 3D image-based navigators (iNAVs) for free-breathing whole-heart coronary magnetic resonance angiography (MRA). METHODS The proposed method detects global rigid-body motion and localized nonrigid motion from 3D iNAVs and compensates them with an autofocusing algorithm. To model the global motion, 3D rotation and translation are estimated from the 3D iNAVs. Two sets of localized nonrigid motions are obtained from deformation fields between 3D iNAVs and reconstructed binned images, respectively. A bank of motion-corrected images is generated and the final image is assembled pixel-by-pixel by selecting the best focused pixel from this bank. In vivo studies with six healthy volunteers were conducted to compare the performance of the proposed method with 3D translational motion correction and no correction. RESULTS In vivo studies showed that compared to no correction, 3D translational motion correction and the proposed method increased the vessel sharpness by 13% ± 13% and 19% ± 16%, respectively. Out of 90 vessel segments, 75 segments showed improvement with the proposed method compared to 3D translational correction. CONCLUSION We have developed a nonrigid motion-correction method based on 3D iNAVs and an autofocusing algorithm that improves the vessel sharpness of free-breathing whole-heart coronary MRA. Magn Reson Med 77:1884-1893, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jieying Luo
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - Nii Okai Addy
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - R Reeve Ingle
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - Corey A Baron
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - Joseph Y Cheng
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - Bob S Hu
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA.,Palo Alto Medical Foundation, Palo Alto, California, USA
| | - Dwight G Nishimura
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| |
Collapse
|
19
|
Cruz G, Atkinson D, Buerger C, Schaeffter T, Prieto C. Accelerated motion corrected three-dimensional abdominal MRI using total variation regularized SENSE reconstruction. Magn Reson Med 2016; 75:1484-98. [PMID: 25996443 PMCID: PMC4979665 DOI: 10.1002/mrm.25708] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 02/16/2015] [Accepted: 03/10/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE Develop a nonrigid motion corrected reconstruction for highly accelerated free-breathing three-dimensional (3D) abdominal images without external sensors or additional scans. METHODS The proposed method accelerates the acquisition by undersampling and performs motion correction directly in the reconstruction using a general matrix description of the acquisition. Data are acquired using a self-gated 3D golden radial phase encoding trajectory, enabling a two stage reconstruction to estimate and then correct motion of the same data. In the first stage total variation regularized iterative SENSE is used to reconstruct highly undersampled respiratory resolved images. A nonrigid registration of these images is performed to estimate the complex motion in the abdomen. In the second stage, the estimated motion fields are incorporated in a general matrix reconstruction, which uses total variation regularization and incorporates k-space data from multiple respiratory positions. The proposed approach was tested on nine healthy volunteers and compared against a standard gated reconstruction using measures of liver sharpness, gradient entropy, visual assessment of image sharpness and overall image quality by two experts. RESULTS The proposed method achieves similar quality to the gated reconstruction with nonsignificant differences for liver sharpness (1.18 and 1.00, respectively), gradient entropy (1.00 and 1.00), visual score of image sharpness (2.22 and 2.44), and visual rank of image quality (3.33 and 3.39). An average reduction of the acquisition time from 102 s to 39 s could be achieved with the proposed method. CONCLUSION In vivo results demonstrate the feasibility of the proposed method showing similar image quality to the standard gated reconstruction while using data corresponding to a significantly reduced acquisition time. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance.
Collapse
Affiliation(s)
- Gastao Cruz
- King's College LondonDivision of Imaging Sciences and Biomedical EngineeringLondonUnited Kingdom
| | - David Atkinson
- Centre for Medical ImagingUniversity College LondonLondonUnited Kingdom
| | | | - Tobias Schaeffter
- King's College LondonDivision of Imaging Sciences and Biomedical EngineeringLondonUnited Kingdom
| | - Claudia Prieto
- King's College LondonDivision of Imaging Sciences and Biomedical EngineeringLondonUnited Kingdom
- Pontificia Universidad Católica de Chile, Escuela de IngenieríaSantiagoChile
| |
Collapse
|
20
|
Part 2 - Coronary angiography with gadofosveset trisodium: a prospective intra-subject comparison for dose optimization for 100 % efficiency imaging. BMC Cardiovasc Disord 2016; 16:58. [PMID: 27004532 PMCID: PMC4804531 DOI: 10.1186/s12872-015-0152-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/18/2015] [Indexed: 11/10/2022] Open
Abstract
Background Three tesla (3T) coronary magnetic resonance angiography (MRA) may be optimized using gadolinium-based contrast agents (GBCA) such as gadofosveset trisodium. The goal of this study was to evaluate if there is a qualitative or quantitative improvement in the coronary arteries with variation in contrast dose. Methods Twenty-eight healthy volunteers were prospectively recruited for coronary MRA at 3T using a steady state injection technique for 3D radial whole-heart image acquisition with retrospective respiratory self-gating (ClinicalTrials.gov identifier: NCT01853592). Nineteen volunteers completed both single- and double-dose imaging instances (0.03 and 0.06 mmol/kg, respectively). Intra-individual comparison of image quality was assessed by measurement of apparent signal/contrast-to-noise ratio (aSNR/aCNR) and subjective evaluation of image quality by 2 independent reviewers. Results The average duration of coronary MRA acquisition was 7.2 ± 1.2 min. There was significantly higher (60 %, p < 0.001) aSNR of the aorta and right/left ventricle for the double dose compared to single dose injection scheme and aSNR of the coronary arteries increased by 70 % (p < 0.001) for the double dose injection. aCNR increased by +55 % and +60 % in the ventricles and coronary arteries, respectively (p < 0.001). Overall segmental artery visualization for single dose was possible 47 % of the time, which improved to 60 % with double dose (p = 0.019), predominantly driven by improvements in more distal segment visualization (+40 % improvement in mid arterial segments, p = 0.013). Conclusions Gadofosveset trisodium dose of 0.06 mmol/kg significantly quantitatively and qualitatively improves the coronary artery image quality compared to 0.03 mmol/kg at 3T for moderate duration (6–8 min) steady state contrast enhanced coronary MRA.
Collapse
|
21
|
Ding X, Pang J, Ren Z, Diaz-Zamudio M, Jiang C, Fan Z, Berman DS, Li D, Terzopoulos D, Slomka PJ, Dey D. Automated pericardial fat quantification from coronary magnetic resonance angiography: feasibility study. J Med Imaging (Bellingham) 2016; 3:014002. [PMID: 26958578 PMCID: PMC4757750 DOI: 10.1117/1.jmi.3.1.014002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/22/2016] [Indexed: 11/14/2022] Open
Abstract
Pericardial fat volume (PFV) is emerging as an important parameter for cardiovascular risk stratification. We propose a hybrid approach for automated PFV quantification from water/fat-resolved whole-heart noncontrast coronary magnetic resonance angiography (MRA). Ten coronary MRA datasets were acquired. Image reconstruction and phase-based water-fat separation were conducted offline. Our proposed algorithm first roughly segments the heart region on the original image using a simplified atlas-based segmentation with four cases in the atlas. To get exact boundaries of pericardial fat, a three-dimensional graph-based segmentation is used to generate fat and nonfat components on the fat-only image. The algorithm then selects the components that represent pericardial fat. We validated the quantification results on the remaining six subjects and compared them with manual quantifications by an expert reader. The PFV quantified by our algorithm was [Formula: see text], compared to [Formula: see text] by the expert reader, which were not significantly different ([Formula: see text]) and showed excellent correlation ([Formula: see text],[Formula: see text]). The mean absolute difference in PFV between the algorithm and the expert reader was [Formula: see text]. The mean value of the paired differences was [Formula: see text] (95% confidence interval: [Formula: see text] to 6.21). The mean Dice coefficient of pericardial fat voxels was [Formula: see text]. Our approach may potentially be applied in a clinical setting, allowing for accurate magnetic resonance imaging (MRI)-based PFV quantification without tedious manual tracing.
Collapse
Affiliation(s)
- Xiaowei Ding
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Department of Biomedical Sciences, 8700 Beverly Boulevard, Los Angeles, California 90048, United States
- University of California–Los Angeles, Computer Science Department, Computer Graphics & Vision Laboratory, 580 Portola Plaza, Los Angeles, California 90095, United States
| | - Jianing Pang
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Department of Biomedical Sciences, 8700 Beverly Boulevard, Los Angeles, California 90048, United States
| | - Zhou Ren
- University of California–Los Angeles, Computer Science Department, Computer Graphics & Vision Laboratory, 580 Portola Plaza, Los Angeles, California 90095, United States
| | - Mariana Diaz-Zamudio
- Cedars-Sinai Medical Center, Departments of Imaging and Medicine, 8700 Beverly Boulevard, Los Angeles, California 90048, United States
| | - Chenfanfu Jiang
- University of California–Los Angeles, Computer Science Department, Computer Graphics & Vision Laboratory, 580 Portola Plaza, Los Angeles, California 90095, United States
| | - Zhaoyang Fan
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Department of Biomedical Sciences, 8700 Beverly Boulevard, Los Angeles, California 90048, United States
| | - Daniel S. Berman
- Cedars-Sinai Medical Center, Departments of Imaging and Medicine, 8700 Beverly Boulevard, Los Angeles, California 90048, United States
- University of California–Los Angeles, Department of Medicine, David-Geffen School of Medicine, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Debiao Li
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Department of Biomedical Sciences, 8700 Beverly Boulevard, Los Angeles, California 90048, United States
- University of California–Los Angeles, Department of Medicine, David-Geffen School of Medicine, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Demetri Terzopoulos
- University of California–Los Angeles, Computer Science Department, Computer Graphics & Vision Laboratory, 580 Portola Plaza, Los Angeles, California 90095, United States
| | - Piotr J. Slomka
- Cedars-Sinai Medical Center, Departments of Imaging and Medicine, 8700 Beverly Boulevard, Los Angeles, California 90048, United States
- University of California–Los Angeles, Department of Medicine, David-Geffen School of Medicine, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Damini Dey
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Department of Biomedical Sciences, 8700 Beverly Boulevard, Los Angeles, California 90048, United States
- University of California–Los Angeles, Department of Medicine, David-Geffen School of Medicine, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Ahlman MA, Raman FS, Penzak SR, Pang J, Fan Z, Liu S, Gai N, Li D, Bluemke DA. Part 1 - Coronary angiography with gadofosveset trisodium: a prospective feasibility study evaluating injection techniques for steady-state imaging. BMC Cardiovasc Disord 2015; 15:177. [PMID: 26695065 PMCID: PMC4688989 DOI: 10.1186/s12872-015-0176-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/17/2015] [Indexed: 01/01/2023] Open
Abstract
Background The purpose of this study was to define an optimal injection protocol for 5–10 min duration navigator-based coronary MR angiography using an intravascular gadolinium-based contrast agent (GBCA), which is better suited for steady-state coronary MR angiography than conventional GBCAs. Methods Using projections from pharmacokinetic models of the intravascular concentration of gadofosveset, a dual-injection protocol was formulated and tested on 14 healthy human subjects. Modified Look-Locker inversion recovery (MOLLI) sequences were used for T1 mapping at 3 Tesla to evaluate the concentration of tracer in the aorta over the scanning interval. Results Pharmacokinetic models for a bolus plus slow infusion technique at a 5, 10, and 15 min steady state intravascular concentration was compared to single bolus curves. The 70 %/30 % bolus/slow infusion technique resulted in the highest intravascular concentration over a 5 min scan duration. Similarly, the 60 %/40 % bolus/slow infusion technique was projected to be ideal for image acquisition duration of 5–10 min. These models were confirmed with T1 maps on normal volunteers. Arterial-venous mixing of contrast was achieved within 90 s of the beginning of the bolus. Conclusions Gadofosveset injection is optimized for the lowest intravascular T1 time for 5–10 min duration MR angiography by bolus injection of 60–70 % of the total dose followed by slow infusion of the remainder of the total dose. This protocol achieves rapid and prolonged steady state intravascular concentrations of the GBCA that may be useful for prolonged image acquisition, such as required for navigator-based coronary MR angiography at 3 Tesla. Trial registration ClinicalTrials.gov identifier: NCT01130545NCT01130545, registered as of May 25, 2010.
Collapse
Affiliation(s)
- Mark A Ahlman
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA.
| | - Fabio S Raman
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA.
| | - Scott R Penzak
- Department of Pharmacotherapy, University of North Texas, Fort Worth, TX, USA.
| | - Jianing Pang
- Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Zhaoyang Fan
- Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Songtao Liu
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA.
| | - Neville Gai
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA.
| | - Debiao Li
- Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - David A Bluemke
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA.
| |
Collapse
|
23
|
Kiuchi K, Okajima K, Shimane A, Yokoi K, Teranishi J, Aoki K, Chimura M, Tsubata H, Miyata T, Matsuoka Y, Toba T, Ohishi S, Sawada T, Tsukishiro Y, Onishi T, Kobayashi S, Yamada S, Taniguchi Y, Yasaka Y, Kawai H, Ikeuchi K, Shigenaga Y, Ikeda T. Visualizing radiofrequency lesions using delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation: A modification of the method used by the University of Utah group. J Arrhythm 2015; 31:71-5. [PMID: 26336534 DOI: 10.1016/j.joa.2014.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/20/2014] [Accepted: 07/02/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Atrial tissue fibrosis has previously been identified using delayed-enhancement MRI (DE-MRI) in patients with atrial fibrillation (AF). Although the clinical importance of DE-MRI is well recognized, the visualization of atrial fibrosis and radiofrequency (RF) lesions has still not been achieved in Japan, primarily because of the differences in contrast agents, volume-rendering tools, and technical experience. The objective of this study was to visualize RF lesions by using commercially available tools. METHODS DE-MRI was performed in 15 patients who had undergone AF ablation (age, 59±4 years, left atrium diameter, 40±2 mm). Specific parameters for MR scanning obtained from previous reports were modified. RESULTS Of the 15 images, the images of three patients were uninterpretable owing to low image quality. RF lesions could be visualized in 8 (67%) of the 12 patients. CONCLUSIONS In the current study, we successfully demonstrated that RF lesions could be visualized in Japanese patients using DE-MRI, although only commercially available tools were used.
Collapse
Affiliation(s)
- Kunihiko Kiuchi
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Katsunori Okajima
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Akira Shimane
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Kiminobu Yokoi
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Jin Teranishi
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Kousuke Aoki
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Misato Chimura
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Hideo Tsubata
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Taishi Miyata
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Yuuki Matsuoka
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Takayoshi Toba
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Shogo Ohishi
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Takahiro Sawada
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Yasue Tsukishiro
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Tetsuari Onishi
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Seiichi Kobayashi
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Shinichiro Yamada
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Yasuyo Taniguchi
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Yoshinori Yasaka
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Hiroya Kawai
- Department of Cardiology, Himeji Cardiovascular Center, 520 kou saishou, Himeji, Hyogo, Japan
| | - Kazushi Ikeuchi
- Department of Laboratory and Radiology, Himeji Cardiovascular Centre, 520 kou saishou, Himeji, Hyogo, Japan
| | - Yutaka Shigenaga
- Department of Laboratory and Radiology, Himeji Cardiovascular Centre, 520 kou saishou, Himeji, Hyogo, Japan
| | - Takayuki Ikeda
- Department of Laboratory and Radiology, Himeji Cardiovascular Centre, 520 kou saishou, Himeji, Hyogo, Japan
| |
Collapse
|
24
|
Monney P, Piccini D, Rutz T, Vincenti G, Coppo S, Koestner SC, Sekarski N, Di Bernardo S, Bouchardy J, Stuber M, Schwitter J. Single centre experience of the application of self navigated 3D whole heart cardiovascular magnetic resonance for the assessment of cardiac anatomy in congenital heart disease. J Cardiovasc Magn Reson 2015; 17:55. [PMID: 26156377 PMCID: PMC4496886 DOI: 10.1186/s12968-015-0156-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For free-breathing cardiovascular magnetic resonance (CMR), the self-navigation technique recently emerged, which is expected to deliver high-quality data with a high success rate. The purpose of this study was to test the hypothesis that self-navigated 3D-CMR enables the reliable assessment of cardiovascular anatomy in patients with congenital heart disease (CHD) and to define factors that affect image quality. METHODS CHD patients ≥2 years-old and referred for CMR for initial assessment or for a follow-up study were included to undergo a free-breathing self-navigated 3D CMR at 1.5T. Performance criteria were: correct description of cardiac segmental anatomy, overall image quality, coronary artery visibility, and reproducibility of great vessels diameter measurements. Factors associated with insufficient image quality were identified using multivariate logistic regression. RESULTS Self-navigated CMR was performed in 105 patients (55% male, 23 ± 12y). Correct segmental description was achieved in 93% and 96% for observer 1 and 2, respectively. Diagnostic quality was obtained in 90% of examinations, and it increased to 94% if contrast-enhanced. Left anterior descending, circumflex, and right coronary arteries were visualized in 93%, 87% and 98%, respectively. Younger age, higher heart rate, lower ejection fraction, and lack of contrast medium were independently associated with reduced image quality. However, a similar rate of diagnostic image quality was obtained in children and adults. CONCLUSION In patients with CHD, self-navigated free-breathing CMR provides high-resolution 3D visualization of the heart and great vessels with excellent robustness.
Collapse
Affiliation(s)
- Pierre Monney
- Division of Cardiology and Cardiac MR Center, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| | - Davide Piccini
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland.
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland.
- Center for Biomedical Imaging and Center for Cardiovascular Magnetic Resonance Research, University of Lausanne, Lausanne, Switzerland.
| | - Tobias Rutz
- Division of Cardiology and Cardiac MR Center, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| | - Gabriella Vincenti
- Division of Cardiology and Cardiac MR Center, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| | - Simone Coppo
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland.
- Center for Biomedical Imaging and Center for Cardiovascular Magnetic Resonance Research, University of Lausanne, Lausanne, Switzerland.
| | - Simon C Koestner
- Division of Cardiology and Cardiac MR Center, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| | - Nicole Sekarski
- Pediatric Cardiology Unit, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| | - Stefano Di Bernardo
- Pediatric Cardiology Unit, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| | - Judith Bouchardy
- Division of Cardiology and Cardiac MR Center, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| | - Matthias Stuber
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland.
- Center for Biomedical Imaging and Center for Cardiovascular Magnetic Resonance Research, University of Lausanne, Lausanne, Switzerland.
| | - Juerg Schwitter
- Division of Cardiology and Cardiac MR Center, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| |
Collapse
|
25
|
Moghari MH, Annese D, Geva T, Powell AJ. Three-dimensional heart locator and compressed sensing for whole-heart MR angiography. Magn Reson Med 2015; 75:2086-93. [PMID: 26069182 DOI: 10.1002/mrm.25800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE We sought to develop a whole-heart magnetic resonance angiography technique with three-dimensional (3D) respiratory motion compensation and reduced scan time. METHODS A novel respiratory motion compensation method was implemented that acquires a 1D navigator (NAV) and a low-resolution 3D-image of the heart (3D-LOC) just before the angiography data. The central 10% of SSFP k-space was fully acquired using NAV-gating, and then 10% of peripheral k-space was randomly undersampled to complete the scan. Spatial registration of the 3D-LOC information was used to correct the central and peripheral k-space lines for the bulk respiratory motion in three dimensions, and then the remaining k-space data was estimated using compressed sensing (CS). Ten volunteers each underwent two angiography acquisitions with 1 mm(3) resolution: (i) conventional NAV with CS, and (ii) the new 3D-LOC with CS. RESULTS Compared with conventional NAV, the new 3D-LOC with CS technique had a shorter scan time (4.8 ± 1.1 versus 6.3 ± 1.7 min; P < 0.001), better objective vessel sharpness for all three coronary arteries (P < 0.05), and no difference in subjective vessel sharpness for all three coronary arteries. CONCLUSION Compared with conventional NAV with CS, acceleration and respiratory motion correction using 3D-LOC with CS reduces scan time and improves objective vessel sharpness.
Collapse
Affiliation(s)
- Mehdi H Moghari
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - David Annese
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tal Geva
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Deng Z, Pang J, Yang W, Yue Y, Sharif B, Tuli R, Li D, Fraass B, Fan Z. Four-dimensional MRI using three-dimensional radial sampling with respiratory self-gating to characterize temporal phase-resolved respiratory motion in the abdomen. Magn Reson Med 2015; 75:1574-85. [PMID: 25981762 DOI: 10.1002/mrm.25753] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/17/2015] [Accepted: 04/07/2015] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a four-dimensional MRI (4D-MRI) technique to characterize the average respiratory tumor motion for abdominal radiotherapy planning. METHODS A continuous spoiled gradient echo sequence was implemented with 3D radial trajectory and 1D self-gating for respiratory motion detection. Data were retrospectively sorted into different respiratory phases based on their temporal locations within a respiratory cycle, and each phase was reconstructed by means of a self-calibrating CG-SENSE program. Motion phantom, healthy volunteer and patient studies were performed to validate the respiratory motion detected by the proposed method against that from a 2D real-time protocol. RESULTS The proposed method successfully visualized the respiratory motion in phantom and human subjects. The 4D-MRI and real-time 2D-MRI yielded comparable superior-inferior (SI) motion amplitudes (intraclass correlation = 0.935) with up-to one pixel mean absolute differences in SI displacements over 10 phases and high cross-correlation between phase-resolved displacements (phantom: 0.985; human: 0.937-0.985). Comparable anterior-posterior and left-right displacements of the tumor or gold fiducial between 4D and real-time 2D-MRI were also observed in the two patients, and the hysteresis effect was shown in their 3D trajectories. CONCLUSION We demonstrated the feasibility of the proposed 4D-MRI technique to characterize abdominal respiratory motion, which may provide valuable information for radiotherapy planning.
Collapse
Affiliation(s)
- Zixin Deng
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Jianing Pang
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Radiology and Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Wensha Yang
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yong Yue
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Behzad Sharif
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Benedick Fraass
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
27
|
Lin K, Carr JC. MR imaging of the coronary vasculature: imaging the lumen, wall, and beyond. Radiol Clin North Am 2015; 53:345-53. [PMID: 25726999 DOI: 10.1016/j.rcl.2014.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The characteristics of coronary artery disease are gradual thickening of the coronary walls and narrowing of the vascular lumen by the buildup of atherosclerosis plaques. These morphologic changes can be noninvasively detected by coronary magnetic resonance (MR) imaging/MR angiography (MRA). In addition, functional changes, such as coronary wall distensibility and flow changes, may also be evaluated with MR imaging. However, the application of current MR imaging/MRA techniques is limited in clinical practice because of several adverse technical and physiologic factors, such as cardiac and respiratory motion. Many technical innovations have been adopted to address these problems from multiple aspects.
Collapse
Affiliation(s)
- Kai Lin
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611, USA.
| | - James C Carr
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611, USA
| |
Collapse
|
28
|
Schmitter S, Wu X, Uğurbil K, Van de Moortele PF. Design of parallel transmission radiofrequency pulses robust against respiration in cardiac MRI at 7 Tesla. Magn Reson Med 2014; 74:1291-305. [PMID: 25411131 DOI: 10.1002/mrm.25512] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/15/2014] [Accepted: 10/13/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE Two-spoke parallel transmission (pTX) radiofrequency (RF) pulses have been demonstrated in cardiac MRI at 7T. However, current pulse designs rely on a single set of B1(+)/B0 maps that may not be valid for subsequent scans acquired at another phase of the respiration cycle because of organ displacement. Such mismatches may yield severe excitation profile degradation. METHODS B1(+)/B0 maps were obtained, using 16 transmit channels at 7T, at three breath-hold positions: exhale, half-inhale, and inhale. Standard and robust RF pulses were designed using maps obtained at exhale only, and at multiple respiratory positions, respectively. Excitation patterns were analyzed for all positions using Bloch simulations. Flip-angle homogeneity was compared in vivo in cardiac CINE acquisitions. RESULTS Standard one- and two-spoke pTX RF pulses are sensitive to breath-hold position, primarily due to B1(+) alterations, with high dependency on excitation trajectory for two spokes. In vivo excitation inhomogeneity varied from nRMSE = 8.2% (exhale) up to 32.5% (inhale) with the standard design; much more stable results were obtained with the robust design with nRMSE = 9.1% (exhale) and 10.6% (inhale). CONCLUSION A new pTX RF pulse design robust against respiration induced variations of B1(+)/B0 maps is demonstrated and is expected to have a positive impact on cardiac MRI in breath-hold, free-breathing, and real-time acquisitions.
Collapse
Affiliation(s)
- Sebastian Schmitter
- University of Minnesota, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- University of Minnesota, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA
| | - Kâmil Uğurbil
- University of Minnesota, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA
| | | |
Collapse
|
29
|
100% Efficient three-dimensional coronary MR angiography with two-dimensional beat-to-beat translational and bin-to-bin affine motion correction. Magn Reson Med 2014; 74:756-64. [DOI: 10.1002/mrm.25460] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/31/2014] [Accepted: 08/21/2014] [Indexed: 12/25/2022]
|
30
|
Nguyen C, Fan Z, Xie Y, Dawkins J, Tseliou E, Bi X, Sharif B, Dharmakumar R, Marbán E, Li D. In vivo contrast free chronic myocardial infarction characterization using diffusion-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014; 16:68. [PMID: 25230598 PMCID: PMC4167272 DOI: 10.1186/s12968-014-0068-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the established role of late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) in characterizing chronic myocardial infarction (MI), a significant portion of chronic MI patients are contraindicative for the use of contrast agents. One promising alternative contrast free technique is diffusion weighted CMR (dwCMR), which has been shown ex vivo to be sensitive to myocardial fibrosis. We used a recently developed in vivo dwCMR in chronic MI pigs to compare apparent diffusion coefficient (ADC) maps with LGE imaging for infarct characterization. METHODS In eleven mini pigs, chronic MI was induced by complete occlusion of the left anterior descending artery for 150 minutes. LGE, cine, and dwCMR imaging was performed 8 weeks post MI. ADC maps were derived from three orthogonal diffusion directions (b = 400 s/mm2) and one non-diffusion weighted image. Two semi-automatic infarct classification methods, threshold and full width half max (FWHM), were performed in both LGE and ADC maps. Regional wall motion (RWM) analysis was performed and compared to ADC maps to determine if any observed ADC change was significantly influenced by bulk motion. RESULTS ADC of chronic MI territories was significantly increased (threshold: 2.4 ± 0.3 μm2/ms, FWHM: 2.4 ± 0.2 μm2/ms) compared to remote myocardium (1.4 ± 0.3 μm2/ms). RWM was significantly reduced (threshold: 1.0 ± 0.4 mm, FWHM: 0.9 ± 0.4 mm) in infarcted regions delineated by ADC compared to remote myocardium (8.3 ± 0.1 mm). ADC-derived infarct volume and location had excellent agreement with LGE. Both LGE and ADC were in complete agreement when identifying transmural infarcts. Additionally, ADC was able to detect LGE-delineated infarcted segments with high sensitivity, specificity, PPV, and NPV. (threshold: 0.88, 0.93, 0.87, and 0.94, FWHM: 0.98, 0.97, 0.93, and 0.99, respectively). CONCLUSIONS In vivo diffusion weighted CMR has potential as a contrast free alternative for LGE in characterizing chronic MI.
Collapse
Affiliation(s)
- Christopher Nguyen
- />Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, Los Angeles, CA 90048 USA
- />Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Engineering V Room 5121, PO Box 951600, Los Angeles, CA 90095 USA
| | - Zhaoyang Fan
- />Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, Los Angeles, CA 90048 USA
| | - Yibin Xie
- />Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, Los Angeles, CA 90048 USA
- />Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Engineering V Room 5121, PO Box 951600, Los Angeles, CA 90095 USA
| | - James Dawkins
- />Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vincente Blvd. Advanced Health Sciences Pavilion A3600, Los Angeles, CA 90048 USA
| | - Eleni Tseliou
- />Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vincente Blvd. Advanced Health Sciences Pavilion A3600, Los Angeles, CA 90048 USA
| | - Xiaoming Bi
- />MR Research and Development, Siemens Healthcare, 116 N. Robertson Blvd Suite 800, Los Angeles, 90048 CA USA
| | - Behzad Sharif
- />Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, Los Angeles, CA 90048 USA
| | - Rohan Dharmakumar
- />Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, Los Angeles, CA 90048 USA
- />Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Engineering V Room 5121, PO Box 951600, Los Angeles, CA 90095 USA
- />Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vincente Blvd. Advanced Health Sciences Pavilion A3600, Los Angeles, CA 90048 USA
| | - Eduardo Marbán
- />Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vincente Blvd. Advanced Health Sciences Pavilion A3600, Los Angeles, CA 90048 USA
| | - Debiao Li
- />Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, Los Angeles, CA 90048 USA
- />Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Engineering V Room 5121, PO Box 951600, Los Angeles, CA 90095 USA
| |
Collapse
|
31
|
Pang J, Sharif B, Fan Z, Bi X, Arsanjani R, Berman DS, Li D. ECG and navigator-free four-dimensional whole-heart coronary MRA for simultaneous visualization of cardiac anatomy and function. Magn Reson Med 2014; 72:1208-17. [PMID: 25216287 DOI: 10.1002/mrm.25450] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/17/2014] [Accepted: 08/22/2014] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a cardiac and respiratory self-gated four-dimensional (4D) coronary MRA technique for simultaneous cardiac anatomy and function visualization. METHODS A contrast-enhanced, ungated spoiled gradient echo sequence with self-gating (SG) and 3DPR trajectory was used for image acquisition. Data were retrospectively binned into different cardiac and respiratory phases based on information extracted from SG projections using principal component analysis. Each cardiac phase was reconstructed using a respiratory motion-corrected self-calibrating SENSE framework, and those belong to the quiescent period were retrospectively combined for coronary visualization. Healthy volunteer studies were conducted to evaluate the efficacy of the SG method, the accuracy of the left ventricle (LV) function parameters and the quality of coronary artery visualization. RESULTS SG performed reliably for all subjects including one with poor electrocardiogram (ECG). The LV function parameters showed excellent agreement with those from a conventional cine protocol. For coronary imaging, the proposed method yielded comparable apparent signal to noise ratio and coronary sharpness and lower apparent contrast to noise ratio on three subjects compared with an ECG and navigator-gated Cartesian protocol and an ECG-gated, respiratory motion-corrected 3DPR protocol. CONCLUSION A fully self-gated 4D whole-heart imaging technique was developed, potentially allowing cardiac anatomy and function assessment from a single measurement.
Collapse
Affiliation(s)
- Jianing Pang
- Department of Radiology and Biomedical Engineering, Northwestern University, Chicago, Illinois, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|